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Abstract. A salient merit of processing quantum information is the ability of simultaneously working with both
bit zero and bit one. The basic unit of quantum information, the so-called qubit, is a superposition of two orthogonal
(or near-orthogonal) quantum states which can be realised on distinct physical platforms. At present, no unique
qubit encoding exists that is superior to all the other ones. Different labs are implementing their most convenient
technique for encoding the qubit and so the network of labs becomes heterogeneous. In this paper, we consider two
types of qubit encodings, one is the single-rail qubit in terms of discrete-variable (DV) states |0〉 and |1〉 which are
respectively the vacuum and the single-photon state and the other is the coherent-state qubit in terms of continuous-
variable (CV) states |α〉 and |−α〉 which are coherent states with equal amplitudes but opposite phases. We devise
linear-optics schemes to teleport one type of qubit to the other type. More than that, our teleportation schemes are
designed so that two kinds of controllers, one is capable of manipulating single-rail qubits (DV controller) while
the other coherent-state ones (CV controller), are able to simultaneously supervise the tasks in both directions. We
first propose a quantum circuit to prepare a relevant four-party pure entangled state serving as a quantum channel
between the four participants: two teleporters and two controllers. We then detail the hybrid controlled teleportation
protocols taking into account the dissipation effect caused by the presence of losses in the environment surrounding
the participants.

Keywords. Controlled teleportations; lossy environment; single-rail qubit encoding; coherent-state qubit
encoding.
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1. Introduction

Quantum information encoded in quantum states pro-
vides a totally novel way of information processing that
enables one to execute intriguing tasks which would not
be possible by means of traditional classical methods
[1]. Information can be encoded either in particle-like
discrete-variable (DV) states [2,3], which live in finite-
dimensional Hilbert spaces, or in wave-like continuous-
variable (CV) states [4–6], whose Hilbert spaces are of
infinite dimension. DV approach, which relies mainly on

using single photons, entangled photon pairs, passive
linear-optics devices and photodetectors, can achieve
close-to-unity fidelity. However, the Bell-state mea-
surement, which is the prerequisite for many quantum
protocols, cannot be performed deterministically by
means of linear optics and photodetections because only
two of the four Bell states can be identified with certainty
[7]. Thus, the DV teleportation success probability could
not exceed 1/2 [8,9]. On the other hand, CV approach,
which acts on macroscopic continuous-variable states
and their superpositions, has some prominent benefits
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such as unconditional operations, high detection effi-
ciencies and the Bell-state measurement for entangled
coherent states can be performed in a near-deterministic
manner [10,11]. However, the CV teleportation fidelity
is modest because the CV entanglement degree is usu-
ally limited. Since both DV and CV encodings have their
own advantages and drawbacks [1,7–9,12–14], combin-
ing these two approaches to form the so-called hybrid
approach has become topical in quantum communica-
tion and quantum computation. Such a hybrid approach
might provide positive features of each approach while
at the same time overcomes their intrinsic negative
effects [15,16]. It also promises potential applications
by encoding information exploiting the wave–particle
degrees of freedom [17–23]. Recently, generation and
manipulation of hybrid entangled states have not only
attracted much attention in theory but also obtained sev-
eral significant demonstrations in experiment [24–26]. It
appeared as essential resources for some important tasks
within a heterogeneous quantum network [23,27–29],
generation of non-Gaussian states [30], hybrid telepor-
tation [15,31] and so on. For examples, Ralph et al
discussed a scheme to perform teleportation between
a dual-rail qubit (superposition of two orthogonally
polarised states of a photon) and a single-rail qubit
(superposition of vacuum and single-photon states) [32].
Park et al [31] and Jeong et al [33] studied quantum tele-
portation between a polarised single-photon qubit and
a coherent-state qubit as well as between a single-rail
qubit and a coherent-state qubit using hybrid entangle-
ment between those two types of qubits, respectively. To
address practical conditions for such quantum informa-
tion transfers, it would be important to take into account
decoherence effects caused by photon losses that are
typical in optical systems embedded in dissipative envi-
ronments. Also, in practice it often appears necessary to
quantumly control a global task. This can be realised by
adding controllers who are also entangled with the other
authorised parties and have the right at the last minute
to decide completion of a task after carefully consider-
ing all the concerned situations, including non-technical
issues.

The tasks of our concern in this work are hybrid con-
trolled teleportations between two particular types of
qubits: single-rail qubit and coherent-state qubit. Con-
cretely, let Alice, Bob, Charlie and David be four parties
who are far apart from each other and allowed to per-
form only local operations and classical communication.
Alice and Charlie are DV parties who are able to work
only with single-rail qubits while Bob and David are
CV parties who are only capable of manipulating coher-
ent state qubits. Our purpose is to devise protocols that
allow teleportations in both directions, from a single-
rail qubit to a coherent-state qubit as well as from a

coherent-state qubit to a single-rail qubit, across a lossy
environment under simultaneous control of both DV
Charlie and CV David. The formulation of our tasks
and a scheme to generate the relevant working quan-
tum channel are presented in §2. In §3 the affect of
dissipation caused by the lossy environment on the quan-
tum channel is investigated. Section 4 details the hybrid
controlled teleportations using the dissipated quantum
channel. Comparisons of the average fidelities and suc-
cess probabilities between teleportations in opposite
directions are given in §5. Section 6 concludes and raises
some possible problems to be studied in future.

2. Formulation of the tasks and their relevant
quantum channel

As mentioned already, we are interested in teleporting a
DV qubit to a CV qubit and vice versa. We shall consider
these tasks separately. The first task is that Alice holds
a single-rail qubit in state

|ψDV〉 = a |0〉 + b |1〉, (1)

where |0〉 (|1〉) is the vacuum (the single-photon) state
and a, b are unknown complex coefficients satisfying
the normalisation constraint |a|2 + |b|2 = 1. She needs
to securely transfer to Bob the coefficients a, b in terms
of a coherent-state qubit state

|ψCV(α)〉 = N (a |α〉 + b |−α〉), (2)

where |±α〉 are coherent states with complex amplitudes
±α and N = N (a, b, α) = (1 + 2Re(a∗b)e−2|α|2)−1/2

is to normalise the state |ψCV(α)〉. The second task,
inverse to the first one, is that Bob holds an unknown
coherent-state qubit in state (2) and needs to securely
transfer to Alice the coefficients a, b in terms of a single-
rail qubit state (1). We aim at designing protocols such
that both the tasks are simultaneously supervised by two
controllers Charlie and David, with Charlie being able to
work only with DV single-rail states while David being
only capable of manipulating CV coherent-state qubits.
Each of the two tasks could only be completed upon
permission of both the controllers.

To execute either of the two tasks by means of local
operations and classical communication, the four parties
Alice, Bob, Charlie and David should share in advance
a relevant hybrid DV–CV four-party quantum entangle-
ment in terms of the pure entangled state of the form

|�(α)〉1234 = 1√
2
(|α, α, 0, 0〉 + |−α, −α, 1, 1〉)1234,

(3)

where |α, α, 0, 0〉1234 and |−α, −α, 1, 1〉1234 are short
for |α〉1 ⊗|α〉2 ⊗|0〉3 ⊗|0〉4 and |−α〉1 ⊗|−α〉2 ⊗|1〉3 ⊗
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Figure 1. Quantum circuit to produce the hybrid entangle-
ment defined by eq. ( 3). BS denotes a beam-splitter, which
acts on two modes as BSxy(π/4) = exp[π(a+

x ay−a+
y ax )/4].

The solid line labelled n (k, l,m, n, p and q) represents mode
n (k, l,m, n, p and q). Dk and Dm are photodetectors to count
the photon numbers in the corresponding modes. The dashed
lines represent the numbers nk and nm of the detected photons.
R = I , X , Z or X Z conditioned on the detected numbers of
photons.

|1〉4 , respectively. In order to prepare the pure hybrid
entangled state (3), we need the following initial state:

|�0(α)〉klmn =
∣
∣
∣�(α

√
2)

〉

kl
|�(2α)〉mn , (4)

where

|�(γ )〉xy = 1√
2
(|γ, 0〉 + |−γ, 1〉)xy (5)

is a hybrid entangled state between a coherent state and a
single-rail state which can be produced using the photon
addition techniques [25]. Supplied with the state (4),
our three-step scheme for the preparation of state (3) is
sketched in figure 1.

Step 1. Modem of the state |�(2α)〉mn is sent to a beam-
splitter denoted by BS, which acts on two modes x , y
as BSxy(π/4) = exp[π(a+

x ay −a+
y ax )/4], with a+

j (a j )

the photon creation (annihilation) operator of mode j.
Action of such a combined device on |�0〉klmn trans-
forms it to

|�1〉klmnp = BSmp |�0〉klmn , (6)

with p a new mode emerging as the reflected mode after
the first BS (see figure 1).

Step 2. Mode m, which has just passed through the first
BS, is mixed with mode k of the state |�(α

√
2)〉kl on

another BS. As a result, |�1〉klmnp becomes

|�2〉klmnp = BSmk |�1〉klmnp . (7)

Behind the device BSmk (which is the second BS in
figure 1) two photodetectors, Dm and Dk, are placed
to count the photon number nm and nk of the outgoing
modes m and k, respectively. The state of modes l, n

and p are projected onto

|�3〉lnp = mk〈nm, nk |�2〉klmnp
√

Pnmnk
, (8)

with

Pnmnk = |mk〈nm, nk |�2〉klmnp |2 (9)

the corresponding probability. Five possibilities are
labelled from (i) to (v) as follows:

(i) If nm = even �= 0 and nk = 0, then the state |�3〉pnl
in eq. (8) is

|�(i)
3 〉pnl = 1√

2
(|α√

2, 0, 0〉 + | − α
√

2, 1, 1〉)pnl,
(10)

which happens with a probability

Peven�=0,0 = 1

2
e−4|α|2[cosh(4|α|2) − 1]. (11)

(ii) If nm = odd and nk = 0, then the state |�3〉lnp in
eq. (8) is

|�(ii)
3 〉pnl = 1√

2
(|α√

2, 0, 0〉 − | − α
√

2, 1, 1〉)pnl ,
(12)

which happens with a probability

Podd,0 = 1

2
e−4|α|2 sinh(4|α|2). (13)

(iii) If nm = 0 and nk = even �= 0, then the state
|�3〉pnl in eq. (8) is

|�(iii)
3 〉pnl = 1√

2
(|α√

2, 0, 1〉 + | − α
√

2, 1, 0〉)pnl ,
(14)

which happens with a probability P0,even�=0 = Peven�=0,0.
(iv) If nm = 0 and nk = odd, then the state |�3〉pnl in
eq. (8) is

|�(iv)
3 〉pnlq = 1√

2
(|α√

2, 0, 1〉 − | − α
√

2, 1, 0〉)pnl ,
(15)

which happens with a probability P0,odd = Podd,0.
(v) If nm = nk = 0, then the state |�3〉pnl in eq. (8) is

|�(v)
3 〉pnl = 1

2
(|α√

2, 0, 0〉 + |α√
2, 0, 1〉

+| − α
√

2, 1, 0〉 + | − α
√

2, 1, 1〉)pnl ,
(16)

which happens with a probability P00 = e−4|α|2 .

Step 3. Now, input mode p, which is the mode reflected
from the first BS, to a third BS after which a new
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reflected mode appears which is labelled by q. Thus,
the states (10)–(16) respectively become

|�(i)
4 〉pqnl = 1√

2
(|α, α, 0, 0〉+|−α, −α, 1, 1〉)pqnl ,

(17)

|�(i i)
4 〉pqnl = 1√

2
(|α, α, 0, 0〉−|−α, −α, 1, 1〉)pqnl ,

(18)

|�(i i i)
4 〉pqnl = 1√

2
(|α, α, 0, 1〉+|−α, −α, 1, 0〉)pqnl,

(19)

|�(iv)
4 〉pqnl = 1√

2
(|α, α, 0, 1〉−|−α, −α, 1, 0〉)pqnl

(20)

and

|�(v)
4 〉pqnl = 1

2
(|α, α, 0〉+|−α, −α, 1〉)pqn(|0〉+|1〉)l .

(21)

We see that |�(v)
4 〉pqnl cannot be unitarily transformed

to |�(α)〉pqnl , while

|�(i)
4 〉pqnl = |�(α)〉pqnl ,

|�(i i)
4 〉pqnl = Zl |�(α)〉pqnl ,

|�(i i i)
4 〉pqnl = Xl |�(α)〉pqnl

and

|�(iv)
4 〉pqnl = −Zl Xl |�(α)〉pqnl .

Zl stands for the transformation {|0〉l → |0〉l , |1〉l →
− |1〉l} which can easily be implemented determinis-
tically by a π -phase-shifter Pl(π). Xl stands for the
transformation {|0〉l → |1〉l , |1〉l → |0〉l} which can-
not directly be done on a single-rail qubit, but can
indirectly with a probability of 1/2 with the assistance
of additional resources and operations. Therefore, the
total probability P� for the successful preparation of
the quantum channel |�〉 in eq. (3) is

P� = 3

2
(Peven�=0,0 + Podd,0) = 3

4
(1 − e−4|α|2), (22)

which saturates to 75% for |α| ≥ 1.3. However,
the probabilistic feature of the hybrid entanglement
preparation scheme is not an issue because the state
preparation process is regarded as an off-line procedure.

3. Influence of lossy environment on the quantum
channel

The prepared hybrid pure entangled state |�(i)
4 〉pqnl in

eq. (17) is exactly the desired state |�(α)〉pqnl defined
by eq. (3) which serves as the working quantum chan-
nel to be shared among the four authorised parties to
carry out the two tasks specified in the previous sec-
tion. For convenience, we change the modal labels as
p → 1, q → 2, n → 3 and l → 4, i.e., |�(α)〉pqnl →
|�(α)〉1234 . The modes of such a quantum channel must
be distributed so that Alice receives mode 4,David mode
2, Charlie mode 3 and Bob mode 1. During the modes’
distribution, photon losses occur due to interaction with
the surrounding lossy environment or, in other words,
the quantum channel suffers from dissipation. The dis-
sipation effect can be described, within the framework
of the Born–Markov approximation at zero temperature,
by the master equation [34]

∂ρ1234(t)

∂t
= (J + L)ρ1234(t), (23)

where t is the time of optical environment interaction,
ρ1234(t) is the density matrix of the quantum channel at
time t, while J and L are the Lindblad superoperators
acting on ρ1234(t) as

Jρ1234(t) = γ
∑

i

aiρ1234(t)a
+
i

and

Lρ1234(t) = −γ

2

∑

i

(a+
i aiρ1234(t) + ρ1234(t)a

+
i ai ),

where γ is the decay constant determined by the strength
of quantum channel–environment interaction and ai
(a+

i ) is the annihilation (creation) operator of mode i.
The formal solution of eq. (23) can be represented as

ρ1234(t) = exp[(J + L)t]ρ1234(0), (24)

where ρ1234(t = 0) = |�〉1234 〈�| is the initial pure
state of the quantum channel. Using the above action
rules of J and L we obtain the dissipated density matrix
ρ1234(τ ) as follows:

ρ1234(τ ) = 1

2
{[|τα〉1〈τα| ⊗ |τα〉2〈τα|

⊗|0〉3〈0| ⊗ |0〉4〈0|
+Cτ 2|τα〉1〈−τα| ⊗ |τα〉2〈−τα|
⊗|0〉3〈1| ⊗ |0〉4〈1|
+Cτ 2| − τα〉1〈τα| ⊗ | − τα〉2〈τα|
⊗|1〉3〈0| ⊗ |1〉4〈0|
+| − τα〉1〈−τα| ⊗ | − τα〉2〈−τα|
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⊗(τ 2 |1〉3 〈1| + (1 − τ 2) |0〉3 〈0|)
⊗(τ 2 |1〉4 〈1| + (1 − τ 2) |0〉4 〈0|)}, (25)

where C = e−4(1−τ 2)α2
and τ = e−γ t/2. Note that τ =

1 when γ t = 0 (i.e., when γ = 0 or/and t = 0),

while τ → 0 when γ t → ∞ ( e.g., when γ is finite but
t → ∞). That is, for a fixed γ, τ is varying from 1 to 0 as
time is evolving from t = 0 to t = ∞. So, as inspected
from eq. (25), the dissipation reduces amplitudes of the
coherent-state modes 1 and 2 from ±α to ±τα and, at
the same time, transits the one-photon state |1〉 〈1| of
the single-rail modes 3 and 4 into the zero-photon one
|0〉 〈0| (note that such a photon loss of the single-rail
qubits does not kick the qubits out off their qubit spaces
and can be looked upon as a bit-flip error that could be
corrected by a quantum error-correction code). In the
following, to account for the dissipation effect, we shall
use as the state of the working quantum channel the
mixed state ρ1234(τ ), eq. ( 25), rather than the pure one
|�〉1234, eq. (3).

4. Hybrid-controlled teleportations

Here, by hybrid-controlled teleportations we mean the
remote transfer, by means of local operations and
classical communication, of an unknown quantum infor-
mation encoded in DV states at Alice’s station to the
quantum information encoded in CV states at Bob’s sta-
tion and vice versa, in such a way that the teleportation
either in the Alice-to-Bob direction or in the Bob-to-
Alice one is supervised by a number of DV and CV
controllers. In this work, we consider two controllers:
one (Charlie) is working with DV states while the other
(David) with CV ones. As for the DV participants (Alice
and Charlie), we assume that they work with the so-
called single-rail logic, i.e., the qubit is a superposition
of the zero-photon state |0〉 , representing the logical
value zero, and the one-photon state |1〉 , representing
the logical value one. Contrary to Alice and Charlie, Bob
and David (the CV participants) are assumed to work
with the encoding such that the qubit is a superposition
of two coherent states |±α〉 of which |−α〉 represents the
logical value zero and |α〉 represents the logical value
one.

4.1 Controlled teleportation from a single-rail qubit
to a coherent-state qubit

This is the first task mentioned in §2. Suppose that Alice
has a single-rail qubit A in an unknown state |ψDV〉A =
(a |0〉 + b |1〉)A and she needs to teleport |ψDV〉A to
Bob through a lossy environment so that Bob receives a
coherent-state qubit of the form

|ψCV(τα)〉1 = N (a |τα〉 + b |−τα〉)1. (26)

Note that state (2) is characterised by ±α but state
(26) by ±τα. This is because the initially prepared pure
quantum channel state ρ1234(0) = |�(α)〉1234 〈�(α)|
has been decohered to be the mixed state ρ1234(τ )

given in eq. (25), i.e., the initial amplitudes ±α of
the coherent states are reduced to ±τα at the time the
task begins. Also, due to the dissipation, the normal-
isation factor in (26) is changed accordingly, namely,
N = N (a, b, α) = (1 + 2Re(a∗b)e−2α2

)−1/2 →
N = N (a, b, τα) = (1 + 2Re(a∗b)e−2τ 2α2

)−1/2. The
total state of Alice’s DV qubit plus the dissipated quan-
tum channel is ρAρ1234(τ ) with ρA = |ψDV〉A 〈ψDV|.
In order to perform the hybrid-controlled teleportation
in the Alice-to-Bob direction, each of the four parties
should act properly as shown in figure 2.

Alice’s actions. As a teleporter, Alice uses the optical
device BSA4 to mix mode A and mode 4, then counts the
photon numbers of those modes by two photodetectors
DA and D4. Let the numbers of the counted photons
respectively be nA and n4, then in terms of the dissipated
quantum channel ρ1234(τ ), state of the remaining modes
1, 2 and 3 is of the form

ρ123(τ )

= A4〈nA, n4|BSA4[ρAρ1234(τ )]BS+
A4|nA, n4〉A4

PnA,n4

(27)

with

PnA,n4

= Tr
{|nA, n4〉A4〈nA, n4|[BSA4[ρAρ1234(τ )]BS+

A4]
}

(28)

the probability of co-counting nA photons in mode A
and n4 photons in mode 4. After knowing the values of
nA and n4, Alice, through an insecure yet reliable clas-
sical communication channel, publishes their values for
Bob’s later use. Note that each of mode A and mode
4 contains up to one photon and the beam-splitter is
balanced so that there will be only five possible combi-
nations of the values of {nA, n4}, which are {nA, n4} =
{0, 0}, {0, 1}, {1, 0}, {0, 2} and {2, 0}.
David’s actions. As a CV controller, David uses a pho-
todetector D2 to count the photon number in his mode 2,

with the outcome n2 to be also publicly announced for
Bob’s later use. Note that because mode 2 is a coherent
state, n2 ∈ {0, 1, 2, ..., ∞} and can be classified as even
and odd, i.e., n2 = {even,odd}.
Charlie’s actions. As a DV controller, Charlie first
applies a Hadamard gate on her mode 3, then uses a pho-
todetector D3 to count the mode’s photon number n3,
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Figure 2. Scheme for controlled teleportation from a
single-rail qubit to a coherent-state qubit using the
dissipated quantum channel ρ1234(τ ) in eq. (25). BS
denotes a beam-splitter, which acts on two modes as
BSxy(π/4) = exp[π(a+

x ay − a+
y ax )/4]. The solid line

labelled 1 (2, 3, 4 and A) represents mode 1 (2, 3, 4 and A).
D2, D3, DA and D4 are photodetectors to count the photon
numbers in the corresponding modes. The dashed lines rep-
resent the numbers n2, n3, nA and n4 of the detected photons.
H is the Hadamard gate. U = X or X Z conditioned on the
detected numbers of photons.

which she also discloses for Bob’s later use. Note that
n3 ∈ {0, 1} because mode 3 is a DV state spanned only
by two number-states |0〉 and |1〉. Here the Hadamard
gate for photonic single-rail quantum logic is non-trivial.
A direct application of the Hadamard gate is impossi-
ble, but with photon counters and ancillae it turns out to
be possible, yet succeeds very rarely [35]. However, it
can be shown that use of photon counters and ancillae
in combination with the adaptive phase measurements
technique [32] allows the Hadamard gate to succeed half
of the time. Assuming that the Hadamard gate is suc-
cessfully applied, state of mode 1 at Bob’s station after
the actions of Alice, Charlie and David, is projected onto

ρ1(τ ) = 23〈n2, n3|H3ρ123(τ )H+
3 |n2, n3〉23

Qn2,n3

(29)

with

Qn2,n3 = Tr{|n2, n3〉23〈n2, n3|[H3ρ123(τ )H+
3 ]} (30)

the probability of co-counting n2 and n3 photons in mo-
des 2 and 3, respectively.

Bob’s actions. As a receiver, Bob is the last one who
should carry out some appropriate operation to recon-
struct state ρ1(τ ) in eq. (29) to be a state closest to the
desired state in eq. (26). As a rule, Bob has to make use
of all the publicly published measurement outcomes nA,
n4, n3 and n2 which may appear in 20 different combi-
nations of {nA, n4, n3, n2}. In order to figure out which
combination of {nA, n4, n3, n2} is useful and which is
not, we write down the explicit expression of ρ1(τ ) in
eq. (29) as

ρ1(τ ) = (δ0nAδ1n4δ0n3 + δ1nAδ0n4δ1n3)ρ
(1,n2)
1 (τ )

+ (δ1nAδ0n4δ0n3 + δ0nAδ1n4δ1n3)ρ
(2,n2)
1 (τ )

+ δ0nAδ0n4(δ0n3 + δ1n3)ρ
(3)
1 (τ )

+ (δ0nAδ2n4 + δ2nAδ0n4)(δ0n3 + δ1n3)ρ
(4)
1 (τ ),

(31)

where

ρ
(1,n2)
1 (τ ) = L(n2)(τ ){|b|2|τα〉1〈τα|

+ (−1)n2Cτ 2(a∗b|τα〉1〈−τα|
+ ab∗| − τα〉1〈τα|)
+ [|b|2(1 − τ 2) + |a|2τ 2]| − τα〉1〈−τα|}

(32)

with

L(n2)(τ ) = [|b|2(2 − τ 2) + |a|2τ 2

+ (−1)n2Cτ 2(a∗b + b∗a)e−2α2τ 2]−1, (33)

ρ
(2,n2)
1 (τ ) = ρ

(1,n2+1)
1 (τ ), (34)

ρ
(3)
1 (τ ) = |τα〉1〈τα| + (1 − τ 2)| − τα〉1〈−τα|

2 − τ 2 (35)

and

ρ
(4)
1 (τ ) = | − τα〉1〈−τα|. (36)

Clearly, from the above formulae, the measurement out-
comes associated with the last two lines in eq. (31) are
useless because neither ρ

(3)
1 (τ ) of eq. (35) nor ρ

(4)
1 (τ )

of eq. ( 36) contain informative parameters a and b, i.e.,
all the information to be teleported is totally lost. We
have thus to deal only with the measurement outcomes
associated with the first two lines in eq. (31 ).

Analysing eq. (32) indicates that when n2 is even and
τ = 1 (the environment is dissipationless) ρ

(1,n2)
1 (τ )

reduces to

ρ
(1,even)
1 (τ = 1) = [1 + 2Re(a∗b)e−2α2]−1{|b|2|α〉1〈α|

+ (a∗b|α〉1〈−α| + ab∗| − α〉1〈α|)
+ |a|2| − α〉1 〈−α|}

= X |ψCV(α)〉1 〈ψCV(α)| X, (37)

from which it follows that

|ψCV(α)〉1 〈ψCV(α)| = Xρ
(1,even)
1 (τ = 1)X. (38)

In eqs (37) and (38) |ψCV(α)〉 is the CV qubit state
defined in (2) and X denotes the so-called X -gate act-
ing on coherent states as X |±τα〉 = |∓τα〉. Such an
X -gate is nothing else but the π -phase-shift operation
which is easily implemented by the phase-shifter P(π).
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Equality (38) tells us that the target state, ρ(T )
1 (τ ), which

is obtained by means of the hybrid controlled teleporta-
tion across the lossy environment at Bob’s station should
be

ρ
(T )
1 (τ ) = Xρ

(1,even)
1 (τ )X. (39)

Now looking closer at the first two lines of eq. (31)
we recognise that if the combinations of measure-
ment outcomes {nA, n4, n3, n2} = {0, 1, 0, even} or
{1, 0, 1, even} or {1, 0, 0, odd} or {0, 1, 1, odd} then
ρ1(τ ) reduces toρ

(1,even)
1 (τ ) = ρ

(2,odd)
1 (τ )=Xρ

(T )
1 (τ )X.

This means that ρ
(T )
1 (τ ) = Xρ

(1,even)
1 (τ )X, i.e., the

target state can be reconstructed from ρ
(1,even)
1 (τ ) or

ρ
(2,odd)
1 (τ ) by applying the X -gate on mode 1. As the
X -gate implementation on coherent states is determin-
istic, the probability for this event to occur, in terms of
the probabilities PnA,n4 and Qn2,n3 defined in eqs (28)
and (30), reads as

PX =1

2
[P0,1

(

Q0,even + Q1,odd
)

+ P1,0
(

Q1,even + Q0,odd
)]

=1

8
[|b|2(2 − τ 2) + |a|2τ 2

+ Cτ 2(a∗b + b∗a)e−2τ 2α2], (40)

where the factor 1/2 in the first line of eq. (40) accounts
for the probability of Charlie’s successful application
of the Hadamard gate. Otherwise, if the combina-
tions of measurement outcomes {nA, n4, n3, n2} =
{0, 1, 0, odd} or {1, 0, 1, odd} or {1, 0, 0, even} or {0, 1,

1, even}, then ρ1(τ ) reduces to ρ
(1,odd)
1 (τ ) = ρ

(2,even)
1

(τ ) = X Zρ
(T )
1 (τ )Z X. This implies that to obtain the

target state ρ
(T )
1 (τ ), Bob should apply on ρ

(1,odd)
1 (τ )

or ρ
(2,even)
1 (τ ) the X Z -gate, where the so-called Z -gate

transforms |±τα〉 to ± |±τα〉 . The problem is that for
coherent states that constitute an over-complete set of
states, implementation of such Z -gate is difficult. To
circumvent the difficulty, one may approximate the gate
by utilising the displacement operator [36] or by trick-
ily resorting to teleportation-assisted techniques [37] or
by subtracting one photon from the coherent state [38].
Anyway, implementation of the Z -gate on a coherent
state is non-deterministic. On an average, two attempts
are needed per Z -gate, i.e., the probability of successful
application of the Z -gate is 50% (see also ref. [37] ).
Hence, this event happens with the probability

PXZ =1

4
[P0,1

(

Q0,odd + Q1,even
)

+ P1,0
(

Q1,odd + Q0,even
)]

= 1

16
[|b|2(2 − τ 2) + |a|2τ 2

− Cτ 2(a∗b + b∗a)e−2τ 2α2], (41)

where the factor 1/4 in the first line of eq. (41) accounts
for the probability of both Charlie’s successful appli-
cation of the Hadamard gate and Bob’s successful
application of the Z -gate. The total success probabil-
ity PDV→CV for teleporting the single-rail qubit state
|ψDV〉A of eq. (1) to the target CV qubit state ρ

(T )
1 (τ ) of

eq. (39) is given by

PDV→CV =PX + PXZ

= 1

16
[3(|b|2(2 − τ 2) + |a|2τ 2)

+ Cτ 2(a∗b + b∗a)e−2τ 2α2]. (42)

The fidelity FDV→CV between the obtained tar-
get state ρ

(T )
1 (τ ) in eq. (39) and the intended one

|ψCV(τα)〉1 in eq. (26) is mathematically determined
by

FDV→CV = 1〈ψCV(τα)|ρ(T )
1 (τ )|ψCV(τα)〉1

= N 2(a, b, τα)L(even)(τ ){|b(b+ae−2τ 2α2
)|2

+((1 − τ 2)|b|2 + τ 2|a|2)|(be−2τ 2α2 + a)|2
+2Cτ 2Re[ab∗(ae−2τ 2α2+b)(a∗+b∗e−2τ 2α2

)]}.
(43)

4.2 Controlled teleportation from a coherent-state
qubit to a single-rail qubit

In this subsection, we deal with the second task for-
mulated in §2. Now Bob plays the role of a tele-
porter holding a coherent-state qubit in the CV state
|ψCV(τα)〉B = N (a |τα〉+b |−τα〉)B with parameters
a and b unknown to him. Bob’s task is to securely trans-
fer to Alice the DV state of a single-rail qubit of the
form |ψDV〉4 = (a |0〉 + b |1〉)4. The actions of the four
parties in this case are shown in figure 3.

As in the first task, the four parties shared beforehand
the same dissipated quantum channel characterised by
the density matrix ρ1234(τ ) in eq. (25) with the same dis-
tribution of modes. The actions of the controllers Charlie
and David are not changed, but those of Alice and Bob
are. That is, Bob now acts first by superimposing mode
1 and mode B on a BS1B followed by detecting the
photon numbers of the outgoing modes by photodetec-
tors D1 and DB, which register n1 and nB photons,
respectively, with n1, nB ∈ {0, even �= 0, odd}. If the
photon numbers registered by Charlie’s photodetector
D3 and David’s photodetector D2 are n3 ∈ {0, 1} and
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n2 ∈ {even, odd}, respectively, then the quantum chan-
nel collapses to Alice’s mode 4 as

ρ4(τ )

= 321B〈n3, n2, n1, nB |ρ1234B(τ )|n3, n2, n1, nB〉321B

Pn3,n2,n1,nB
,

(44)

where

ρ1234B(τ ) = H3BS1Bρ(τ)1234ρB(τ )BS+
1BH

+
3 , (45)

with

ρB(τ ) = |ψCV(τα)〉B 〈ψCV(τα)|
and

Pn3,n2,n1,nB = Tr{|n3, n2, n1, nB〉321B〈n3, n2, n1, nB |
⊗ ρ1234B(τ )} (46)

the probability of co-registering n3, n2, n1 and nB pho-
tons in modes 3, 2, 1 and B, respectively. Substituting
ρ1234(τ ) in eq. (25) and ρB(τ )=|ψCV(τα)〉B 〈ψCV(τα)|
with |ψCV(τα)〉defined by eq. (26) into eq. (45) and then
into eq. (44) we arrive at

ρ4(τ ) = δ0n3δ0nBρ
(1,n1+n2)
4 (τ ) + δ1n3δ0nBρ

(2,n1+n2)
4 (τ )

+ δ0n3δ0n1ρ
(3,n2+nB)
4 (τ )+δ1n3δ0n1ρ

(4,n2+nB)
4 (τ )

+ δ0nBδ0n1(δ0n3 + δ1n3)ρ
(5)
4 (τ ), (47)

where

ρ
(1,n1+n2)
4 (τ ) = {(|a|2 + |b|2(1 − τ 2))|0〉4〈0|

+ (−1)(n1+n2)Cτ 2(ab∗|0〉4〈1| + ba∗|1〉4〈0|)
+ |b|2τ 2|1〉4〈1|}, n1 �= 0, (48)

ρ
(2,n1+n2)
4 (τ ) = ρ

(1,n1+n2+1)
4 (τ ), (49)

ρ
(3,n2+nB)
4 (τ ) = {(|b|2 + |a|2(1 − τ 2))|0〉4〈0|

+ (−1)(n2+nB)Cτ 2(ba∗|0〉4〈1| + ab∗|1〉4〈0|)
+ |a|2τ 2|1〉4〈1|}, nB �= 0, (50)

ρ
(4,n2+nB)
4 (τ ) = ρ

(3,n2+nB+1)
4 (τ ) (51)

and

ρ
(5)
4 (τ ) =1

2
[(2 − τ 2))|0〉4〈0|

+ Cτ 2(|0〉4〈1| + |1〉4〈0|) + τ 2|1〉4〈1|].
(52)

Since the parameters a and b disappear in ρ
(5)
4 (τ ) of

eq. (52), we disregard the last term in the right-hand
side of eq. ( 47) and concentrate only on the rest of the
terms. As can be examined from eq. (48), when n1 + n2
is even (i.e., either {n1 = even �= 0, n2 = even} or

Figure 3. Scheme for controlled teleportation from a
coherent-state qubit to a single-rail qubit using the
dissipated quantum channel ρ1234(τ ) in eq. (25). BS
denotes a beam-splitter, which acts on two modes as
BSxy(π/4) = exp[π(a+

x ay − a+
y ax )/4]. The solid line

labelled B (1, 2, 3 and 4) represents mode B (1, 2, 3 and 4).
D1, DB , D2 and D3 are photodetectors to count the photon
numbers in the corresponding modes. The dashed lines rep-
resent the numbers n1, nB , n2 and n3 of the detected photons.
H is the Hadamard gate. V = I , X , Z or X Z conditioned on
the detected numbers of photons.

{n1 = odd, n2 = odd}) and τ = 1 (i.e., there is no
dissipation), ρ

(1,n1+n2)
4 (τ ) simplifies to

ρ
(1,even)
4 (τ = 1) =ρ

(2,odd)
4 (τ = 1)

={|a|2|0〉4〈0| + |b|2|1〉4〈1|
+ (ab∗|0〉4〈1| + ba∗|1〉4〈0|)}

= |ψDV 〉4 〈ψDV | . (53)

This suggests that the DV target state ρ
(T )
4 (τ ) at Alice’s

station at a given τ �= 1 should be

ρ
(T )
4 (τ ) = ρ

(1,even)
4 (τ ) = ρ

(2,odd)
4 (τ ). (54)

Having identified the DV target state, we are in the posi-
tion to analyse all the possible happening events condi-
tioned on the measurement outcomes {n3, n2, n1, nB}.
To have an overview, we summarise the results of the
analysis in table 1.

Table 1 shows that to obtain the target state ρ
(T )
4 (τ ),

Alice needs to (i) do nothing in cases #1, #2, #3, #4,
(ii) implement an Z -gate in cases #5, #6, #7, #8, (iii)
implement an X -gate in cases #9, #10, #11, #12 and (iv)
implement an X Z -gate in cases #13, #14, #15, #16. As
commented in §2, for single-rail qubits, the Z -gate is
trivial while the X -gate is non-trivial but can be done
with a probability of 1/2. The total success probability
of the hybrid controlled teleportation from |ψCV(τα)〉
to |ψDV〉 is then

PCV→DV = 1

2

∑

k=0,1

∑

l=even,odd

∑

m=even�=0,odd
(

Pk,l,m,0 + 1

2
Pk,l,0,m

)

, (55)
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Table 1. The collapsed state of ρ4(τ ) in eq. (47) conditioned on the 16 possible cases of the measurement outcomes
{n3, n2, n1, nB}. The states ρ

( j,even)
4 (τ ), ρ

( j,odd)
4 (τ ) with j = 1, 2, 3, 4 and ρ

(T )
4 (τ ) are given in eqs (48)–(51) and (54),

respectively.

Case # n3 n2 nB n1 ρ4(τ )

1, 2 0, 0 even, 0, 0 even �= 0, ρ
(1,even)
4 (τ )

odd odd = ρ
(T )
4 (τ )

3, 4 1, 1 even, 0, 0 odd, ρ
(2,odd)
4 (τ )

odd even �= 0 = ρ
(T )
4 (τ )

5, 6 0, 0 even, 0, 0 odd, ρ
(1,odd)
4 (τ )

odd even �= 0 Zρ
(T )
4 (τ )Z

7, 8 1, 1 even, 0, 0 even �= 0, ρ
(2,even)
4 (τ )

odd odd = Zρ
(T )
4 (τ )Z

9, 10 0, 0 even, even �= 0, 0, 0 ρ
(3,even)
4 (τ )

odd odd = Xρ
(T )
4 (τ )X

11, 12 1, 1 even, odd, 0, 0 ρ
(4,odd)
4 (τ )

odd even �= 0 = Xρ
(T )
4 (τ )X

13, 14 0, 0 even, odd, 0, 0 ρ
(3,odd)
4 (τ )

odd even �= 0 X Zρ
(T )
4 (τ )Z X

15, 16 1, 1 even, even �= 0, 0, 0 ρ
(4,even)
4 (τ )

odd odd = X Zρ
(T )
4 (τ )Z X

with Pn3,n2,n1,nB given by eq. (46). In the above formula
the common factor 1/2 stands for the probability of the
Hadamard gate implementation on mode 3 and the other
factor 1/2 inside the parentheses for implementation of
the X -gate on mode 4. Calculating analytical expres-
sions of Pn3,n2,n1,nB in (46) and substituting them into
eq. (55), we get explicitly

PCV→DV = 3

8

1 − e−2τ 2α2

1 + 2Re(a∗b)e−2τ 2α2 . (56)

The fidelity between the obtained target state ρ
(T )
4 (τ )

and the intended state (1) is

FCV→DV = 4〈ψDV|ρ(T )
4 (τ )|ψDV〉4

=|a|4 + τ 2|b|4 + (1 − τ 2 + 2Cτ 2)|a|2|b|2.
(57)

5. Discussion

As it should be, in the absence of photon losses the
mixed state ρ1234(τ ) in eq. (25) of the quantum channel
is simplified to a pure state ρ1234(τ = 1) = |�〉1234〈�|,
with |�〉1234 given in eq. (3). So the fidelity FDV→CV
of teleportation from a single-rail qubit to a coherent-
state qubit is equal to 1. In the opposite limit, when
total photon loss occurs, the quantum channel is com-
pletely dissipated, i.e., ρ1234(τ ) becomes ρ1234(τ =

0) = |0, 0, 0, 0〉1234 〈0, 0, 0, 0|. In the same limit (i.e.,
τ → 0) the to-be-teleported CV state (26) also becomes
the vacuum one |0〉1. Since in this limit all the modes are
disentangled from each other, what is done with modes
2, 3, 4 and A does not have any influence on the state of
mode 1, which remains in |0〉1. Hence, the correspond-
ing fidelity is formally also equal to 1, as in the case of
no photon losses (‘formally’ because such a unit fidelity
is just due to the mathematical definition but the target
state contains no information at all of the intended state,
i.e., it is useless physically). As fidelity cannot exceed
1, in the course of dimensionless time γ t evolving from
γ t = 0 to ∞ (tantamount to τ varying from 1 to 0)

there must exist a minimum fidelity. Such behaviour of
time-dependent fidelity is in fact observed by the numer-
ical calculation. We illustrate this in figure 4 where the
fidelity FDV→CV for a particular case of teleporting the
DV equally-weighted state (|0〉 + |1〉)/√2 to an even
Schrödinger cat state N (|τα〉+ |−τα〉) is plotted vs. γ t
for several values of α. For a given α, as time moves
the fidelity is first quickly decreasing to reach a mini-
mum value, then slowly increasing to saturate to 1 for a
large enough period of time (say, for t ≥ 10/γ ). Also
visualized is the fact that the smaller the value of α the
shallower the bottom of the fidelity curve.

For teleportation in the opposite direction, i.e., from
a coherent-state qubit to a single-rail one, a different
behaviour of fidelity is observed. Although FCV→DV =
1 at γ t = 0, it is not so in the long-time limit. Actually,
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Figure 4. The fidelity of controlled teleportation from a
single-rail qubit in the specific state (|0〉 + |1〉)/√2 to the
even Schrödinger cat state N (|τα〉 + |−τα〉) as a function of
the scaled dimensionless time γ t with α = 1 (red dash–dot-
ted curve), α = 2 (blue dashed curve), α = 3 (orange solid
curve) and α = 5 (black dotted curve).

Figure 5. The fidelity of controlled teleportation from the
even Schrödinger cat state N (|τα〉 + |−τα〉) to a single-rail
qubit in the specific state (|0〉 + |1〉)/√2 as a function of the
scaled dimensionless time γ t with α = 1 (red dash–dotted
curve), α = 2 (blue dashed curve), α = 3 (orange solid curve)
and α = 5 (black dotted curve).

in the limit of γ t → ∞ (tantamount to τ → 0) the
DV intended state at Alice’s station is intact, |ψDV〉 =
a |0〉+b |1〉, in spite of full disentanglement of the quan-
tum channel: all its modes turn out to be the vacuum
states. Thus, the squared overlap between the vacuum
state of mode 4 and the intended state |ψDV〉 is taken as
the corresponding fidelity, which is mathematically cal-
culated to be equal to |a|2. Since |a|2 < 1 for the general
DV state, the fidelity FCV→DV, unlike FDV→CV, may
not experience a minimum. This is reflected in figure 5
which displays the fidelity FCV→DV vs. γ t for teleport-
ing an even Schrödinger cat state N (|τα〉 + |−τα〉)
to the single-rail state (|0〉 + |1〉)/√2. Figure 5 shows
that for a given α the fidelity FCV→DV starts from 1
at γ t = 0, then quickly decreases as γ t grows without
dropping below 1/2 but saturates to that minimum value
for t ≥ 2/γ. The rate of decrease of fidelity grows with
increasing α.

Now we notice the issue that, unlike teleportation in
lossless environments, where both the success probabil-
ity and fidelity are independent of the input states, here

the dissipation effect gives rise to their dependence on
the informative parameters a and b of the state to be
teleported. Of interest is then the average over all pos-
sible values of the input parameters. Recalling that a
and b are bound by the constraint |a|2 + |b|2 = 1 and
a quantum state is physical up to a global phase factor,
we can adopt the following parametrisation a = cos θ

and b = eiϕ sin θ , with 0 ≤ θ ≤ π/2 and 0 ≤ ϕ ≤ 2π .
Assuming a uniform probability density, (2π)−1, for ϕ

distribution and that for θ distribution is sin(2θ), the
average of any function f (θ, ϕ) is given by [39].

f (θ, ϕ) = 1

2π

∫ 2π

0
dϕ

∫ π/2

0
f (θ, ϕ) sin(2θ)dθ. (58)

By virtue of formula (58) and using eqs (42) and
( 56) we explicitly derive the corresponding average suc-
cess probabilities as

PDV→CV = 3

16
(59)

and

PCV→DV = 3(1 − e−2τ 2α2
) arctanh(e−2τ 2α2

)

8e−2τ 2α2 . (60)

As for the average fidelities, the averaging integration
(58) for FDV→CV of eq. (43) is hardly to be taken analyt-
ically to obtain an explicit expression for FDV→CV. So
we shall numerically calculate it. As for FCV→DV, eq.
(57) for it is quite simple and the averaging integration
is straightforward yielding

FCV→DV = 1

2
+ 1

6
τ 2(1 + 2e−4(1−τ 2)α2

). (61)

For easy comparison, we plot in the same figure (fig-
ure 6) both the average fidelities FDV→CV and FCV→DV
as functions of γ t for four different values of α. Qual-
itatively, the fidelities behave much like those for the
particular case with a = b = 1/

√
2 (or the same ϕ = 0

and θ = π/4) shown in figures 4 and 5. That is, for a
given α, FDV→CV suffers a minimum before approach-
ing 1, while FCV→DV monotonically decreases and
asymptotically tends to its lowest value of 1/2, which
is the average value of FCV→DV(γ t → ∞) = cos2(θ).

Remarkably, for all values of α, FDV→CV is greater than
FCV→DV during the entire time evolution. Furthermore,
for small values of α (say, α = 0.5 as in figure 6a) quan-
tum teleportation from single-rail qubit to coherent-state
qubit always outperforms the corresponding classical
teleportation whose best fidelity is 2/3 (represented by
a dashed horizontal line in figure 6). For bigger values of
α (e.g., α = 1, 2 and 5 as in figures 6b, 6c and 6d, respec-
tively) there may exist a ‘window of time’ within which
FCV→DV < 2/3, i.e., quantum teleportation turns out
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(a) (b)

(c) (d)

Figure 6. The average fidelity of controlled teleportation
from a single-rail qubit to a coherent-state qubit (blue dash—
dotted curves) and from a coherent-state qubit to a single-rail
qubit (red solid curves) as a function of the scaled dimension-
less γ t with (a) α = 0.5, (b) α = 1, (c) α = 2 and (d) α = 5.
The back horizontal dashed line at 2/3 is the best achievable
classical fidelity.

Figure 7. The average success probability of controlled tele-
portation from a coherent-state qubit to a single-rail qubit as
a function of the scaled dimensionless γ t with α = 0.5 (red
dash-dotted curve), α = 1 (blue dashed curve), α = 2 (orange
solid curve) and α = 5 (black dotted curve). The average suc-
cess probability from a single-rail qubit to a coherent-state
qubit is constant and represented by a purple horizontal line
at 3/16.

worse than classical one. Concerning quantum telepor-
tation from coherent-state qubit to single-rail qubit it is
better than classical one only for a short initial duration
of time as FCV→DV quickly becomes smaller than 2/3
and remains so later on. This qualitative property holds
independent of α. Yet, quantitatively, a larger value of
α narrows the initial time duration of the advantage of
quantum over classical teleportation.

The average success probabilities are displayed in
figure 7. While quantum teleportation from single-rail

qubit to coherent-state qubit succeeds with a con-
stant probability PDV→CV = 3/16, quantum tele-
portation from coherent-state qubit to single-rail will
succeed with a probability PCV→DV which is sub-
ject to α and can be made greater than PDV→CV.

For example, if α is quite small then PCV→DV <

PDV→CV all the time (see the curve with α = 0.5
in figure 7). Nevertheless, when α is getting big-
ger, PCV→DV may become greater than PDV→CV
for not too large γ t. The interval of γ t in which
PCV→DV > PDV→CV widens with increasing α,

as seen from the curves with α = 1, 2 and 5 in
figure 7.

6. Conclusion

In conclusion, we have first suggested a scheme to
prepare an appropriate hybrid four-party pure entan-
gled state of the form (3), which after the sharing
process among the four authorised parties through a
lossy environment is dissipated and becomes a mixed
one as given in eq. (25). We then use this mixed
state as the working quantum channel to perform
controlled teleportations between a single-rail and a
coherent-state qubits. Because of the dissipation effect,
the teleportations’ fidelities and success probabilities
are state-dependent. So we calculate their averages
which are state-independent. With respect to the aver-
age fidelity, teleportation from a single-rail qubit to
a coherent-state qubit always outperforms that in the
opposite direction from a coherent-state qubit to a
single-rail qubit. However, it turns other way around
with respect to the average success probability which
is constant for teleportation from a coherent-state qubit
to a single-rail qubit but rather flexible in terms of α in
the opposite direction. The α-dependence specifically
appears in macroscopic superpositions/entanglements
and here it causes quite subtle affects. For instance,
an increase in α lowers the average fidelities (see
figures 4–6) but rises the average success probabil-
ity (as seen from figure 7). It is worthy to note that
single-rail encoding is particularly interesting due to
its natural interconvertibility between different phys-
ical systems such as atomic, mechanical and opti-
cal systems. The single-rail qubit can also be seam-
lessly converted into other qubit formats, for example,
polarisation qubits [40]. This means that the hybrid
entanglement between a coherent state and a polari-
sation qubit state can be generated from the hybrid
entanglement between coherent states and single-rail
states.

The idea of controlled teleportations within a DV
[41] as well as a CV [42] homogeneous network was
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put forward before. Here this idea is deployed to the
case of a heterogeneous network. The choice of two
controllers of different abilities as in this paper is not
accidental. In fact, it matters. One may think of Alice
and Charlie (Bob and David) as belonging to the same
company working with DV (CV) toolkits and Charlie
(David) is the boss of Alice (Bob). It would be biased in
favour of the DV (CV) company if only Charlie (David)
supervises the task. So, to ensure a fair affair for the
two companies, both Charlie and David should oper-
ate as equal-right controllers: declining cooperation of
either of them prevents completion of the hybrid tele-
portation tasks. However, their powers might not be
identical. Our protocols would work better for larger
values of α because then |〈+α| − α〉| = exp(−2|α|2)
gets smaller and for a sufficiently large α, say, α ≥ 2
the states |+α〉 and | − α〉 become orthogonal to each
other which serve very well as two basis vectors of a
two-dimensional space. A large value of α also slows
down the rate at which | ± τα〉 tends to |0〉 when τ

tends to 0 making the protocols more robust against the
decoherence. The coherent-state qubit in eq. (2) with
a large value of α can be produced by several tech-
niques thanks to advanced quantum technology (see,
e.g., [43–45]). Our proposed schemes would work well
beyond the ideal regime because practical non-ideal
issues such as decoherence due to lossy environment
and effect due to detector inefficiency have been taken
into account. We plan in a subsequent work, to analyse
in detail the power of each of the controllers (the DV
one as well as the CV one) in these particular hybrid
teleportation protocols by calculating the fidelity that is
obtained without the cooperation of one controller or
the other. We also intend to study other types of DV
and CV encodings as well as possible hybrid DV–CV
encodings and try to devise ways of controllable trans-
fer of quantum information contained in those various
encodings within complex heterogeneous quantum net-
works.
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