10P Publishing

® CrossMark

RECEIVED
11 May 2022

REVISED
9 September 2022

ACCEPTED FOR PUBLICATION
27 September 2022

PUBLISHED
11 October 2022

Phys. Scr. 97 (2022) 115002 https://doi.org/10.1088/1402-4896 /ac955f

Physica Scripta

PAPER

Realistic conversion of single-mode squeezed vacuum state to large-
amplitude high-fidelity Schrodinger cat states by inefficient photon
number resolving detection

Dmitry A Kuts'®, Mikhail S Podoshvedov'>’, Ba An Nguyen**® and Sergey A Podoshvedov"*

! Laboratory of Quantum Light Engineering, South Ural State University (SUSU), Lenin Av. 76, Chelyabinsk, Russia

* Laboratory of Quantum Information Processing and Quantum Computing, South Ural State University (SUSU), Lenin Av. 76,
Chelyabinsk, Russia

Institute of Physics, Kazan Federal University (KFU), 16a Kremlyovskaya St., Kazan, Russia

Thang Long Institute of Mathematics and Applied Sciences (TIMAS), Thang Long University, Nghiem Xuan Yem, Hoang Mai, Hanoi,
Vietnam

Institute of Physics, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

w

E-mail: kuts.phys@gmail.com

Keywords: Schrodinger cat state, photon number resolving detection, single-mode squeezed vacuum state, continuous-variable quantum
computing

Abstract

We theoretically propose an efficient way to generate optical analogs of both even and odd
Schrddinger cat states (SCSs) of large amplitude with high fidelity and reasonable generation rate. The
resources consumed are a single-mode squeezed vacuum state (SMSV) and possibly a single photon or
nothing. We report the generation of even (odd) SCS with amplitude 4.2, fidelity higher than 0.99
with success probability a little more than 10~7 by subtraction of 30(31) photons from SMSV by ideal
photon number detection. In order to reduce the requirements for the sensitivity of photon number
resolving (PNR) detector, we show the implementation of even/odd SCSs with the same
characteristics with two PNR detectors resolving only 15 photons each instead of 30. In the case of
inefficient detector, SCS’s size and its fidelity can be kept close to perfect by using highly transmitting
beam splitter, but at the cost of very dramatic reduction of the success probability. In order to have
certain harmony between the characteristics (large amplitude, high fidelity and acceptable success
probability) in the case of imperfect detection, highly transmitting beam splitters should not be used
and number of the subtracted photons must be reduced to 10(11).

1. Introduction

Quantum mechanics involves a number of thought experiments that, in most cases, are used to show its
weakness in various interpretations. Schrodinger cat states (SCSs) [ 1] serve basis for doubts about the lack of a
clear boundary between the quantum and everyday classical realm. Realization of such bizarre physical objects is
expected to resolve the puzzle, at what degree of macroscopicity, if it exists, the object goes on to be quantum
[2, 3]. In optics, the SCS corresponds to a superposition of coherent states |[+/3) and | — 3) with complex
amplitudes 4 3. Although each of component coherent states is considered to be most classical [4], their
superposition corresponding to SCS is nonclassical. The squared absolute value of amplitude of the component
coherent state | 3|2, which is approximately equal to its mean photon number, is treated as size of the associated
SCS. In this work, for simplicity, we assume (3 to be real positive, so the SCS size can be characterized simply by
0. In order to recognize an optical SCS macroscopic object, its size must be at least much larger than the
quantum uncertainty 1/+/2 of the position observable in the coherent state [5].

In addition to their fundamental importance, the SCSs have high application potentials in teleportation
[6-9], quantum metrology [10], quantum computation [11, 12] as well as quantum information processing with
hybrid entangled states composed of coherent and photonic states [ 13—15]. SCSs, also called coherent-state
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qubits, can be considered to be practical when the coherent components are nearly orthogonal (—3|5) ~ 0
what starts from SCS’s size 3 > 2 [13] thatis regarded as a significant experimental achievement. Within this
context, a number of schemes for generation of optical large-amplitude SCSs in ‘flying’ modes are demonstrated
[16-20]. However, even in best experiments (see, e.g., [20]), the obtained amplitude § = 1.85 of the SCSis not
sufficient for full use of the states in further quantum processing taking into account the insufficiently high
fidelity of the generated states. This is mainly due to the fact that the used experimental methods do not allow
restoring photon number distribution of SCSs with amplitude larger than 2 that must be shifted towards higher
order number states and centered near the Fock state |n) with n ~ | 3|*. Fidelity is another important
characteristic for SCSs to serve as a potential source. It is desirable that the fidelity of the output state will be as
high as possible (ideally >>0.99) in order to be able to efficiently convert coherent states on a balanced beam
splitter like | 3)18), — |v/2 B)110); [7, 11=13]. Nearly-deterministic Bell state measurement (BSM) of entangled
Schrodinger cat states of large amplitude can be realized in the presence of highly efficient photon number
resolving detectors since vacuum contribution (no clicks in both modes) only decreases with increasing
amplitude of the coherent qubit. A complete BSM of entangled coherent state allows efficient implementation of
the controlled-not gate being the cornerstone of quantum algorithms. Otherwise (i.e., the fidelity of the output
state is low), the output photon number distribution may contain unwanted coincidence measurement events
and quantum processing with coherent states may become ineffective.

Despite the large number of theoretical proposals for the SCS generation [21-27], implementation of large-
amplitude high-fidelity source of event-ready even/odd SCSs has remained a challenging problem even from a
theoretical point of view. A standard method for the SCSs generation is photon subtraction [16—27] from the
single-mode squeezed vacuum (SMSV) which is a typical nonclassical state containing only even photon
numbers (i.e., state with definite, even, parity). In this method, part of the photons resided in the SMSV is
diverted to detection channel. The redirection of photons by the beam splitter with a high transmittance
coefficient when only a small part of the photons is directed to the measurement mode can significantly reduce
the generation rate, which can be defined as P, - f,, with f, being the operating rate of the optical scheme and
P, is the SCSs generation probability. This third important facet of SCS source can take small values, especially,
in the case of registration of Fock states with a large number of photons in optical setup with high transmission
beam splitter. Therefore, heralded methods need detailed analysis and improvement to brighten its potential in
shaping large-amplitude high-fidelity even/odd SCSs generated with a rate sufficiently high for the subsequent
continuous-variable (CV) quantum computing.

Here, we give a theoretical analysis of large-amplitude high-fidelity even/odd SCSs source capable to work at
high generation rate under ideal conditions. The driving force behind an efficient SCS source is a highly efficient
PNR detector [28, 29]. So, we report the generation of large-amplitude high-fidelity even/odd SCSs (say, those
with 3 =~ 4.2 which we sometimes call bright cats with fidelity higher than 0.99 and success probability ~10~7
in scheme with additional input single photon) by extracting a large number of photons (say, either 30 or 31)
from the SMSV by ideal PNR detectors with quantum efficiency = 1. No restrictions on the beam splitter,
being second most important element after PNR detector, are imposed. We consider the possibility of realizing
even/odd SCSs with similar characteristics by using two beam splitters and two PNR detectors that could
discriminate a smaller (say, 15) number of photons. The parameters of the SCSs generator (amplitude, fidelity,
success probability) obtained in the case of using an ideal PNR detector are perfect ones. They are those that
should be strived for in the practical case, taking into account the imperfection of the measuring technique. The
inefficiency of the detector ( < 1) can significantly reduce the generation rate, however, leaving the amplitude
and fidelity close to perfect if we use a highly transmissive beam splitter. Use of another BS (not highly
transmissive one) can increase the success probability (albeit less than perfect), but can significantly reduce the
fidelity of the output state. This means that maintaining the three parameters of the SCS source at a level close to
perfectis a challenge. To resolve it, we propose the following strategy. To maintain a balance between the three
important characteristics ratherish close enough to perfect, we reduce the number of extracted photons (say, to
10 or 11) when dealing with imperfect PNR detectors.

2. SCSs shaping in the case of ideal detection

We begin by describing ingredients to the optical scheme in figure 1. There are two input modes to the beam
splitter (BS); labeled mode 1 and mode 2 in the figure. The input state to mode 1 is a single-mode squeezed
vacuum (SMSV) state

[SMSV) = Z byl21), (1)
1=0
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Figure 1. The optical scheme used to shape either even or odd Schr&dinger cat states (SCSs). A single-mode squeezed vacuum state
(ISMSV)) is inputted into one path (mode 1) of a beam splitter (BS), while either the vacuum state (|0)) or a single-photon state (|1))
enters the other path (mode 2). Conditioned on the number 7 of photons detected in the output of mode 2, the output |¥®D) of
mode 1 may be shaped, by choosing proper transmittance coefficient of the BS and the squeezing parameter of the |[SMSV), tobe a
desired bright SCS, either |SCS.;) or |SCS_), with high fidelity.

with amplitudes

; )

b — 1 (tanh s )l Jyaen!
A Jcosh s 2 I

where s > 0 is the squeezing parameter of the SMSV state, whereas the input state to mode 2 may be either the
vacuum state |0) or a single-photon state | 1). The SMSV state (1) has a definite parity, which is referred to as
even, since it consists exclusively of Fock states with an even number of photons. Another state with definite even
parity is the even SCS which has the form (1) but the amplitudes differ. Namely, if we denote the even SCS with
amplitude 5 by|SCS,(83)) = |SCS,), then its full expression reads

2

SCS.) = 2N, (8) - exp(—52/2)Y 121), 3)

=0 N 2D!

where N, = (2(1 + exp(—2/3%)))"'/? is the normalization factor and 3 > 0. As an example of the state with
definite odd parity, we may mention the so-called odd SCS denoted by |SCS_(5)) = |SCS_) with its full

expression as

0 B2+
SCS_) = 2N -exp (—3%/2 —_
| ) —(B) - exp(=p*/ ); RS
with the corresponding normalization factor N = (2(1 — exp(—2/3%)))" /2.

If we subtract (add) an even number of photons from (to) the state (1), then it will naturally preserve its parity
(i.e., it will remain even), but it will be transformed to a state with a photon number distribution different from that
of the initial one. Likewise, subtraction (addition) of an odd number of photons from (to) the SMSV state results in
a state with odd parity with totally different photon number distribution. To make use of such properties, let us
first consider possible output states of mode 1 in figure 1 when nothing is inputted into mode 2 (formally, it implies
that the input state of mode 2 is |0)). Then, after the SMSV state passes through a lossless beam splitter BS with
t > 0and r > 0 thereal transmittance and reflectance coefficients transforming creation operators as

a," — ta;” — ray’, a,” — ra;” + ta;,” andsatisfying the physical condition 2 + r? = 1, we have [30]

|21 + 1), 4)

BS12(ISMSV);10),) = > b BS12(121)1]0))
1=0

B . [@t+ m))!
X, Tam (go Pt \/ e '2">l) |2m),

o~ ([ Qk + m + D)
I S SR B i i AL DY .
mgo Jem +1)! (;) et \/ 2k + 1! 12k + 1>1) 12m + 1), ®)
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Depending on the parity of the measurement outcome in the output mode 2, i.e., whether an even or an odd
number of photons is detected by PNR detector [28, 29] in figure 1, the output state of mode 1 differs. If the
detector finds an even photon number n = 2m, then the following conditional state is outputted

YOy — [© ot (2(m + k))!
| Z bagi+ a0 [2k)

Z JNQM A+ m)
R e

where the normalization factor L{% is derived to become L{?) = \/cosh s t27/y™/ ZC2m | z(m) — g2mz /dy2m

with Z = Z(y) = Z® = 1//1 — 4y? and y = t? tanh s5/2. By definition, the parameter y can take values in
therange 0 < y < 0.5inthe case of s > 0. The limiting values of the parameter y can be taken in the case of
either s = O or t = 0 (y = 0) whichis not of interest and in the case of t = 1and s — oo (y = 0.5) going
beyond the scope of physical consideration. The success probability to generate the state (6) is

_ $2)2m _ 2\2m o om
po U= L (1= 2W o, )
2m)!L;,, coshs\ t? (2m)!

J@n + 1)2n + 2)...2(n + m)|2n), (6)

with the superindex ‘(0) indicating the case when the input mode 2 is the vacuum state | 0). Otherwise, ifan odd
photon number n = 2m + 1isfound, then the output state of mode 1 reads

2(m + k + 1))!
7o =L Dokt m tk(—2k+1
| 2m+1> 2m+ll;) 2(k+m+1) 2k + 1! | >

oo

7 L2+ m + 1)!
ZGm+n nZ:: (n+ m+ 1)! V@ +2)@n +3).. 201+ m + D20 + 1), ®)

with the normalization factor L{)), | = /cosh s (¢2)"+1/,/y?"+1Zm+1 and the success probability

2 2y2m+1 2\2m+1 2mt1
o _ B —yemh g (l—t) Y emen,
t2

@m+1) = B Qm + 1!

)
2m + 1)!L2 cosh s
(2m+1)

The physical condition Z:: 0(P2<23 + P{9, ) = lis guaranteed as can be directly checked. Obviously, the
conditional state in equation (6) is even while that in equation (8) is odd. Roundly speaking, the parity of the
output state (6) and the original input SMSV state (1) are the same, but their expansion amplitudes (i.e., their
photon number distribution) are not. Also for the output state (8), its parity changes compared with that of the
original input SMSV state (1) and its distribution in photon numbers is totally different. Moreover, the
amplitudes b, of the original SMSV change to by i) (bak+m-+1)) due to the redistribution of photons by the
BS. The proximity between the output states and the even/odd SCSs is evaluated by the fidelities

F) (B) = | (SCS, | UE) Pand F{5),(B) = | (SCS_ | W), ) , respectively.

The output states | U'?), with n = 2m or n = 2m + 1, depend on the squeezing parameter s of the input
squeezed state, the transmittance coefficient ¢ of the BS and the detection outcome n, while the target states
|SCS..) depend only on £3. So, the fidelities F*’ depend on all the parameters s, t, nand (3, but the probabilities
P depend only on s, t and 1. We display in figures 2(a) and (b) our numerical simulation for the dependence
on (3 and 1 of the fidelity maximalized over s and t, i.e., F% (8, n) = max; F©(3, n, s, t).For fixed nand (3
program calculates the value of the fidelity on the grid chosen and looks for the maximum value of F) (3, n).
Such maximum values of the fidelity appear as a smooth curve with the following behaviors: for a given n the
maximalized fidelity decreases with increasing 3 and for a given 3 it increases with increasing 7. Generally, an
arbitrarily high value of the fidelity with a desired value of § can be obtained if 7 is large enough. For example, as
seen from figures 2(a) and (b), a fidelity greater than or equal to 0.99 for § > 2 isachievable for n > 10.
Subtraction of smaller numbers of photon would lead to the generation of the even/odd SCSs state of amplitude
B < 2[16-20]. Itis also observed that for a given 7 there is a value of amplitude 5% (1) such that the
maximized fidelity is higher than 0.99 for 3 < 3%, (1) but falls down rather quickly for 3 > 3%, (n). The
value of 580;9(71) itself grows with increasing #: for instance, B%e(30) = 3.1 > BY,(12) = 2. Although values
of the parameters (s, t)can be determined that make the fidelities maximal, these maximalizing parameters are
largely scattered, i.e., they appear very different even with a slight variation in 3. This feature leads to a significant
spread in the output state’s generation probability as shown by colored symbols in figures 2(c) and (d) that
correspond to figures 2(a) and (b), respectively. The probability distributions in figures 2(c) and (d) look like
structureless swarms.

To get rid of such structureless swarms of success probabilities, we optimize the experimental parameters.
Contour lines of the fidelities for the state | W'{)) in figure 3(a) clarify the optimization procedure. So, the high
fidelities F\” (3, n, s, t) > 0.99 occupy a narrow area (highlighted in blue) stretching from top to bottom on
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Figure 3. Isolines versus experimental parameters (s, t): a) for the scheme without an initial single photon and (b) for the scheme with
initial single photon. A curved isoline 0.99 (dark blue bent line) going from high values of s to small values of s in a high-transmission
beam splitter is observed (a). This isoline explains the swarm distribution in figures 2(c) and (d). To obtain a regular behavior of the
success probability in figures 2(h) and (i), it is necessary to find (s, #)p,,p, (black point) on this isoline stripe providing Py, unlike

(s, t)rig (red point) providing Fy.x and (s, £)prop = (5, ¢)rig- The isolines in (b) converge to one point (blue point), which ensures the
initially regular behavior of the success probability in figures 2(c) and (d).

the (s, t) plane. Choosing values of (s, t) from a given curved stripe provides fidelity close to the maximum
E© > 0.99 but the corresponding probabilities in equation (7) may differ very much. Within this stripe, one
can find values of (s, t) denoted by (s, )z that provide the highest possible fidelity shown in figures 2(a) and
(b). Yet, within the same stripe one can also find values of (s, ¢) denoted by (s, t)p,, that provide the maximum
success probabilities. These values do not match (s, t)gig = (5, t)prop- Visually, the difference is shown by two
dotsin figure 3(a): one in red for (s, #)g;; and the other in black for (s, #)p,.p. Finally, if we are interested only in
obtaining maximum fidelities, then we have curves in figures 2(a) and (c). If we are interested in a more practical
case with both sufficiently high fidelity and highest possible success probability, then we refer to figures 2(e) and
(h). Note that fidelities F{) > 0.99 are also observed for small values of the squeezing amplitude s in the case of a
high-transmission beam splitter (figure 3(a)), which, nevertheless, can sharply reduce the success probability
which is not practical Concerning generation of an odd SCS, analogical curved stripe corresponding to the
fidelity EY 1 = 0.99 is also observed. The plots in figures 2(b) and (d) are made for those (s, t)g;; that provide
maximum fidelity, while figures 2(g) and (i) correspond to (s, t)py,, with maximum success probability and
fidelity greater than 0.99. The optimization procedure over probability allows one to observe a more regular
pattern in figures 2(h) and (i) which exhibit the following properties. For a given 3 the optimized probability
decreases with increasing 7 no matter # is even or odd. However, the dependence of the optimized probability
on [ is sensitive to both the value of (3 itselfand the parity of n: when (3 is small, e.g., § < 2, it decreases
(increases) with increasing ( for a given even (odd) #, but when [ islarge, e.g. § > 2, it saturates to a certain
n-dependent value despite of the further increase in 3.

In order to achieve a higher fidelity for a larger value of 3, consider the case when a single photon is inputted
into mode 2 in figure 1. Then, the mixing of the SMSV state and the single photon on the BS results in [30]

BS1»(ISMSV)i|1),) = lez(z by [21) |1) ) Z byBS12(121)1[1),)

=0 =0

r[i byt 2k + 1 |2k + 1>1) 0),
k=
o~ i em)! <2<k+m)>!( 2kt 192 )
42
tn1Z::1 @2m — 1)! (kz%b m m 2 12k + 1)1 | [2m2),

= r@m 41 Q(k + m))! 2k
+tmz—:o(2—m)!(zh R e et o) R S

—
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Since the parity of a single-photon state is transparently odd, registration of an even number of photons n = 2m
in mode 2 outputs in mode 1 a state of odd parity of the form

e 2(k + m))! 2k + 112
Ty = LS o2k ( 1-— — |12k + 1), 11
| 2m> 2m1§ 2(k+m) (Zk + 1), m tz | > ( )
)

where L{}) is the normalization factor, which occurs with the probability

2mt(1 — )21

P =
@m — DILY)?

(12)

with the exception of n = 0, while in equation (11) the superindex (1)’ indicates that the singe-photon state | 1)
is inputted into mode 2. Otherwise, if an odd number of photons n = 2m + 1is detected in mode 2, the output
state of mode 1 has an even parity of the form

> [k + m))! 2k r?
oy =W Backs 25 ( 1— — ||2k), 13
W oms1) 2m+1§ 2(k+m) (2k)! 2m+ 162 |2K) (13)

with L{})_ | the corresponding normalization factor and the probability of this event is

T
(2m) !L2(r12+1

(14)

Of course, Zf:: o(PZ(fln) + Py +1) = lasshould be. The proximity of the output states (11) and (13) to the odd

(4) and even (3) SCSs, respectively, is characterized by the fidelity F{!) = | (SCS_| ¥})) |*and
= + , respectively, which 1s completely determine: the set of experimental initia
)y = | (SCS{| W) 1,) P, respectively, which is completely determined by the set of experimental initial

parameters (s, ), the size 3 of the target SCS and the measurement outcome n € {2m, 2m + 1}. We
numerically plot the dependences of maximum values of the fidelities F,, () and F.) (3) in figures 4(a) and
(b), respectively. Similar to figures 2(a) and (b), both Fz(,ln) +1(8)and Fz(,lﬂ) (B) increase with the detected number of
photons for a given 3, but decrease with increasing 3 for a given measurement outcome n € {2m, 2m + 1}.1t
is noticed here that the value of amplitude 343, (1) from which the maximized fidelity starts to fall down below
0.99 is larger than the corresponding value 3%, (1) in the case when the vacuum state |0) is inputted into mode
2. For example, from figures 4(a) and (b) in comparison with figures 2(a) and (b), one sees that

BRe(B1) ~ 4.2 > SR (31) ~ 3.2and B{R(30) ~ 4.1 > B%(30) ~ 3.1. This means that the use of a single
photon as an input to mode 2 can generate, with high enough fidelity, SCSs of bigger size (i.e., larger value of 3)
compared to the case of inputting the vacuum to mode 2. It is also interesting to note that in contrast to the
previous consideration with the vacuum state inputted into mode 2, now the probabilities P{}) ;(3) and

PV (3) show up as smooth functions of 3 for each given outcome n € {2m, 2m + 1} without any optimization
procedure, as seen in figures 4(c) or (d), respectively. In part, this is due to the fact that the fidelities gradually
converge to one point of maximal fidelity as shown in figure 3(b) (i.e., there is no long stripe of the fidelities
>0.99). Yet, the dependence of the probabilities P\ (3) on 3 and 7 is opposite to that of the fidelities

EV (3). Namely, as it follows from figures 4(a)—(d), F{"” (3) increase but P" (3) decrease with increasing n for
agiven (3, while F,ﬁl) () decrease but PV (3) increase with increasing 3 for a given 1. The plots in figures 4(e),
(g), (h) and (i) show the dependence of s, ¢ on [ which provide the fidelity maximum and corresponding
success probabilities. So, the plots in figures 4(e) and (h) display values of the parameters s and ¢ under which the
plotsin figures 4(a) and 4(c) are obtained. The plots in figures 4(g) and (i) show values of the parameters s and ¢
under which the plots in figures 4(b) and (d) are constructed. There are domains of 3 in which the parameter s
(¢) changes in an abrupt manner as visual from figure 4(h) (figure 4(i)) which is due to the fact that the maximum
value of fidelity disappears in one range of values (s, t) and appears in another. Another explanation maybe as
follows: it may be due to a large step of varying (3. The fact is that the calculations were carried out not at every
point of 3 but only at certain points 3; with some step 6 (8;+1 = B; + 603), which was reflected in a sharp (not
smooth) change in some points of s, ¢. Finally, why the values s, ¢ can change so dramatically at the points,
maybe it is due to action of both reasons: transition to another region and not so small step 63).

Conditioned on the measurement outcomes, the subscripts of the output states amplitudes are shifted
forward by either m (k — k + m) (equations (6), (11),(13))orm + 1(k — k + m + 1) (equation (8)). This
displaces the original SMSV distribution (1) towards Fock states with larger photon numbers, finally becoming
uniform distribution, thatis byx > bygr1y V kbut byr ~ bygr1y = 0 for k > 1.Inaddition, each of
amplitudes by ) (b2 k+m-+ 1)) Teceives an extra factor that may amplify them. If one chooses the values of (s, ¢)
in an appropriate way, then the photon number distributions of the conditioned state and the target even/odd
SCSs can coincide with fidelity >0.99 despite small discrepancy between generated and target probabilities (see
figure 5). The maximum discrepancy in the probabilities d,,, with subscript 7 indicating on Fock state |n), is
dio = 0.032906 (top left plot), d;; = 0.031252 (top right plot), dis = 0.023296 (lower left plot) and
di7 = 0.05161 (lower right plot). Discrepancy can affect the fidelity of the transformation of the coherent states
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Figure 5. Comparison of Fock state distributions in conditional and target even/odd SCSs. The maximum calculated discrepancy in
the probabilities is d;y = 0.032906 (difference of probabilities in state | 10) for top left distribution), which is sufficient for the states
under consideration to coincide with fidelity larger than or equal to 0.99.

onbalanced BS: BS 5(|£8)1|8)2) = |£+/2 8)110),and BS,»(|£8)1|F8)2) = |0)1|F+/2 3)2, but can be
significantly reduced with choice of the experimental parameters providing fidelity very close to 1.

3. Generation of even/odd SCSs by using two PNR detectors

Above, we considered the possibility of creating an even/odd SCS generator by subtracting a number of photons
by one PNR detector. The registration of a large number (30, 31) of photons imposes serious requirement on the
detector sensitivity, which can be difficult to implement at the current level of technology development. To
reduce the requirement for PNR detector to discriminate the number of photons, consider extension of the
optical scheme in figure 6, where the original SMSV passes through two beam splitters BS,, and BS;3 with
parameters (#;, r) and (¢, 1,), respectively. Reflected photons from BS;, (second mode) and BS; 5 (third mode)
are monitored with two PNR detectors. Then, depending on the number of registered photons by two PND

detectors (1, n;), the conditioned state | ¥

(0,0)
n,m

) is generated. Using the previously developed approach, we have

1

v cosh s

§§13§§12(|SMSV>1|0>2|0>3) =
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Figure 6. Optical scheme for generating even/odd SCSs by means of two beam splitters and two PNR detectors able to distinguish a
smaller number of photons compared to PNR detector in figure 1. SCSs can be generated in case of coincidence detection of (n, ;)
photons.

Z Z Clomtm, [V 12m) | 2y )3
m= 0m1
- Z Z Cz(omoz)mﬂ \11(20m0)2m1+1> [2m); | 2my + 1)3
m= Oml , (15)
- Z Z Cz(fn‘?l 2y | (z(inoll,m)lIZm + 1)212m)s
m= 0m1
+ Z Z C2(m+1 2my+1 |lI}2m+1 2m1+1>1|2m + 1>2|2m1 + 1>
m=0 m,

where amplitudes of the state are the following:

CE0, = (/1) (/)2 (y"yy /2 [ @m) | 2mmy) 1)\ Z 20 mD) (),
CO0, = (1 /8)2(ry /1) L (ymy V2 [ J@m) L 2my + 1)) ([ ZCemtm+D (3,
C% 1 = (/62" ()t Py 2ym [ J2m 4 D1 2my)!) (| Z@0m D (y)
CIn a1 = (/)P (1 /1) 2t L (ym 12yt /2 ) [om + 1)1(2my + 1))/ Z@+m+D) (1) and intro-

duced even states become

~ n \/(2(11 + m + my))!
weo) ) — - (n+m+ m)!

2m,2my/ T

Jen + 1)@2n + 2)...2(n + m + my)|2n)

7 @im—+m) ()

S V@ + m o+ m + D) J@n + DQ@2n +2)...2(n + m + my + 1)[2n)
n=0 n+m+ m + 1)! (16)

l (2m+) 1,2m +1>
[ Z Q2(m+m+1) ()/)

and odd CV states

0,0 _ 0,0
|\I/(2m )2m1+1> - |\Ij(2mll 2m1>

JQn + m+ m + 1))!
Jy—lzn A ——— JCn +2)2n + 3)...2(n +m+ m + 1)2n + 1) )

[7@Gm+mi+ 1) () ’

where y, = yt3. Here, the subscript (1, ;) indicates the number of detected photons in the second and third
auxiliary modes, and the subscript (0, 0) shows that vacuum states are used in input auxiliary modes. Success

probabilities to generate the heralded states in equations (16) are the following: P{0,, = |C5%9, 2,
0,0 0,0 2 p(0,0 0, 2
PZ(m 2)m1+1 ICZ(m,2)m1+1| > P2m+)l,2m| = |C2(m+)1,2m1| and P2m+l 2my+1 = |C2m+l am11°> respectively. Compar-

ing the states with those in equations (6), one can see that the difference between them is only in different values
of the parameters y and y,. Despite the difference in the parameters, one can choose values (t, t,, s) that would
provide the same fidelity as in figures 2, 4 between the measurement-induced states (16) and even/odd SCSs
(equations (3), (4)). The use of two PNR detectors makes it possible to reduce the requirements for the sensitivity
of the detectors to recognize the number of incoming photons. For example, if the SCS generator is configured
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to implement an even high-amplitude SCS by subtraction of 30 photons, then it can be implemented using the
optical setup in figure 6, where each of the PNR detectors measures only 15 photons.

4. Case of imperfect detection

So far we have considered the perfect PNR detection when the quantum efficiency 7 is 1. In reality,

PNR detectors are imperfect whose efficiency, though can be very close to 1, remains less than 1,i.e., < 1
[28,29]. We model the imperfect detector by placing the fictitious beam splitter of transmissivity 7 before
the perfect detector which is responsible for the loss of some of the unregistered photons to derive the
positive-operator values measure (POVM) element of the PNR detector with imperfect detection efficiency
1 < 1.Forexample, for n = 2m: Thy () = >~ Citn ™ (1 — m>|2(m + x)) (2(m + x)|+
220:0 sz(,’ﬁlﬂ)ﬂnzm (1 — p)>*FY2(m + x) + 1)(2(m + x) + 1|. Finally, we can compute the fidelity

between pg% = tp(p@IL,,(n)) being the density matrix, conditioned by measurement of 2m photons, where tr,

stands for trace operation in second mode and p©® = (BS;5(| SMSV)110),)) (BS;»(| SMSV);|0),))* is the density
matrix of the original SMSV and vacuum transformed by BS, and target even SCS

oo (L= —tH™
© x=0  (2x)! L1

(ISCS+) (SCS..)) = — YRy .
DAl (1 PR 2(m+x))

x=0  (2x)! L3 v Qx4+ DL3mix41

| (SCS+1 WG i0) I

2(m+x)

FO = tr(p (18)

2m

where tr for trace operation in first mode. Using the equation (18), for  suchthat 1 — 1 < 1, one can decompose the
fidelity over PNR detector inefficiency 1 — #: Fz(?,z n) = F2<9,3 =010 -0 - 77)&(21),1 + @1 - 77)232(21),2 + ...), where
Gy = 20 = L3, /L3 &0, = (1 = 12L3, /2L 341y QU L3 /Ly + | (SCSLIWE), 1)) P/1 (SCSWE)) P — 1.
Making use of the relation by 11y = tanh's \/(k + m + 0.5)/(k + m + 1) by(x+m), one can evaluate the ratio
L}/ Lz(f,,)_zH < (tanh 5)? ({n) + (m + 1)?), that enables to construct the lower bound (LB) restricting the fidelity in
the case of imperfect photon number detection

EQ () > FQm =11 — (1 — mt2A — ) (tanh s)> ((n) + (m + 1)?), (19)

with () the average number of photons in the state | U{?)). The inequality (19) is valid in the case of at least
t > 0.4 to provide gz(fn) > gz(gf ,» otherwise, the contribution of gz(?n) , will be comparable with one of gz(gj Ll
should be noted that the range of values ¢ < 0.4 is incompatible with the generation of high-amplitude (G > 2)

even SCS. Similar expression for the even SCS (3) fidelity can be derived

FETI’V)H»I(??) > Féiiﬂ(?? =1

2(m + 1)

2
-(1 — (1 — nt*( — t»)(tanh 5)2( ) ((n) + 4m(1 + m))), (20)
2m + 1

where (1) is average number of photons in the state | ¥'%}) . ) and g2(iln) > gz(’ln) 1, inthecaseof £ > 0.4.

There are two strategies for realizing even SCSs by imperfect PNR detection. The first strategy is based on the
use of highly transmitting BS, since the LB tends to Fi.), ;(1 = 1) in thelimitof t — 1 (figure 7) when only a
small fraction of the input photons can be deflected into the measurement mode (visually, this can be explained
using figure 3(a) if we trace the curved contour ending at point + = 1) and the fidelity of the output state is almost
the same as perfect (Fso) () = F\o) (n = 1), F{}) () = F), 1(n = 1)). Butasufficiently high fidelity in
figure 7 is accompanied with an extremely low success probability of order of 10~18 and even much less, which is
far from practical needs. Such generation events become quite rare as the probability to detect n photons has the
order r". Another strategy does not use highly transmitting BS and is associated with a decrease in the number n
of the subtracted photons. It can be more practical, since it also reduces the requirements to PNR detector to
distinguish less numbers of photons, for example, 10 or 11 photons instead of 30. To choose such (s, t) one
should descend along the bent line into the region of larger values of t and smaller values of s (see figure 3(a))).
Graphs confirming the legitimacy of the strategy are shown in figure 8, where the dependences of the success
probabilities (on the left side) and corresponding them fidelities (on the right side) on the transmittance ¢ for
different values of the quantum efficiencies [29] are shown. The LBs in equations (19), (20) are of one order
which leads to approximately similar with those in figure 8 dependences of the success probability and fidelity on
the transmittance ¢. For example, it is possible to realize an even SCS of the amplitude 5 = 2.5 with fidelity
greater than 0.98 and with success probability about 107! by extracting 11 photons by PNR with ) = 0.98.
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Figure 7. Dependence of the fidelity on the amplitude of the even SCS generated by the imperfect PNR detector with corresponding
quantum efficiency 7 and confirming estimation of the LB in equation (19). The dependences are directly calculated from
equation (18). High transmission beam splitter should be used which drastically reduces the generation rate.

Decomposing the odd fidelities over small parameter 1 — 7, one gets LB

o) O m-pf1-aq_nl=>
Fya () > Fypp(n= D1 — (1 —n) " (n) | (21)
for the state in equation (8) and
2
D) > Fn = 1)(1 —a-pls tz)(zm - 1) <n>), @)
t 2m

for the state in equation (11). The inequalities (21) and (22) are valid for ¢ > 0.4 to ensure the predominance of
contribution of the firstorder in (1 — 7)) over those of all the higher orders. As in the case of generating even
SCS, the range of values ¢ < 0.4 does not allow generating odd SCS of larger amplitude (3 > 2). The LB can take
almost zero value in the case of high transmission BS (t — 1) and F{*) = EQ _1(n = 1)butsuch a choice
may not be particularly successful as it may lead to a substantial decrease in the success probability as well as a
departure from ideal fidelity for odd SCS (see the point of maximum fidelity in figure 3(b)). BS with
transmittance ¢ > 1/+/2 canbe in area of interest. Analysis of the data shows that the values of the BS
transparency can be chosen in the range 1/+/2 < t < 0.9 to provide acceptable generation rate. To keep the
fidelity high one can also refuse to extract a large number of photons and limit to smaller number (say 10 or 11)
of detected photons by inefficient PNR detector. So, in the case of extracting 11 photons by PNR detector with
efficiency = 0.98, an odd SCS of amplitude 3 = 2.5 with fidelity of about 0.97 and success probability of
order 107! can be generated in a scheme with empty input second mode. Odd SCS of amplitude 3 = 3 with
fidelity about 0.98 and with success probability of order 10~!2 can be realized in a scheme with additional single
photon by subtracting 10 photons by inefficient PNR detector with quantum efficiency n = 0.98.

Another factor that can degrade the fidelity of the output state is the presence of the background photons
whose mean number of photons in the optical regime at room temperature is approximately 10~2°. Influence of
the environmental photons and quantum inefficiency of the PNR detector can be modeled by using two
fictitious beam splitters, each of which is responsible for the corresponding degrading factor. Photons reflected
by the fictitious BS are regarded as photon loss. Thermal state with some mean number of photons can be treated
as input in environmental mode. The mathematical consideration of the POVM operators with the two
fictitious BS is complex and is beyond the scope of the study. Nevertheless, an estimate of the effect of
background photons on the decrease of the fidelity of the output state can be made. Since we use decomposition
of the fidelity over small parameter 1 — 7),,, where 7, is a transmittance of ‘thermal’ fictitious BS, comparable
to1l — n, we can note the following. The maximum additional contribution to the fidelity estimate can only
come from the outcome with n — 1 initial photons and one environmental photon redirected into the
measurement mode with a probability proportional to 1 — 7. In the process of the decomposition of the
fidelity over parameters 1 — nand1 — 7, these two contributions are summed up. The contribution of the
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Figure 8. Dependencies of the success probabilities (left side) and fidelities (right side) of the output states in optical scheme with
exclusively input SMSV state on transmittance ¢. The states are realized with inefficient PNR detectors with different quantum
efficiencies.

environmental photons, at least, does not exceed one from the action of an inefficient PNR detector. Since the
probability of the background photon at the required wavelength is very small, it significantly reduces the
contribution of the environmental photon to the amount by which the output fidelity decreases.

5. Discussion

Ability to generate large-amplitude and high-fidelity coherent superpositions is important for scalable
continuous-variables quantum computation and quantum information processing but the preparation of the
qualitative even/odd SCSs remains a challenging task. We have proposed and analyzed a simple and efficient
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way to generate large-amplitude even/odd SCSs with high fidelity and an acceptable for practical use generation
rate using irreducible number of the optical elements. Original SMSV state as one of certain parity is used for
shaping even/odd SCSs. Using SMSV makes sense since extracting any number of photons in an
indistinguishable manner preserves the parity of the output state, leaving output either even or odd. The
generation mechanism is based on the redistribution of the photon states by eliminating the contributions of the
vacuum and the lower-photon states, which have a larger weight in the initial SMSV distribution and increasing
the contribution of the multiphoton states corresponding to n ~ |3|*. The mechanism is provided by
subtracting a certain number of photons in an indistinguishable manner when information about which initial
Fock state of the SMSV contributed to the measurement outcome is lost. Calculations show that SMSV with a
squeezing of 5 to 15dB already achievable in experiments can be used. It can also be argued that the use of
additional non-Gaussian resource (input single photon) makes it possible to improve such a nonclassical light
source by at least two indicators (size of the generated superposition and its fidelity), while leaving the third
indicator (generation rate) within the acceptable range. Such generator of the even/odd SCSs with ideal PNR
detector ( = 1) would have perfect values of all three characteristics (size, fidelity and generation rate) and be
ready for quantum optical computing [7, 11]. The use of plots in figures 2 and 4 makes it possible to select perfect
values for the size, fidelity and the success probability, as well as those input parameters that provide them. So,
even/odd SCSs of amplitude 5 = 4.2 with fidelity higher than 0.99 can be generated with success probability a
little more than 10~7 with perfect photon number resolving detection in a scheme with input single photon. If
the requirements to the size of the SCS are reduced, say to 3, then the probability of generation with fidelity 0.99
can come close 10~ in the case of subtracting 15 photons in a setup with an input single photon. Note that
highest efficiency of spontaneous parametric down conversion (SPDC) is on the order of 1 pair down converted
photons per 10° pumping photons in waveguides. In the sense, the perfect values of the success probability are
comparable and even greater than the probability of generation of down converted photons, which makes it
possible to attribute them to reasonable. Such event-ready coherent superposition resource may become ideal
for further CV quantum information processing.

The ability of the PNR detector to discriminate large (like either 30 or 31) photon states can be challenge. To
reduce the requirements for the PNR detector to resolve large Fock states, an extension of the initial optical setup
can be used. It involves two BSs and PNR detectors with a lower sensitivity to the number of measured photons.
In the setup in figure 6, generation of target even/odd SCSs is possible in the case of simultaneous registration of
a certain number of photons by several PNR detectors. We show that even/odd SCSs can be generated
independently of the measured outcomes in figure 6, but the parameters of the experimental setup must be
changed from the original version in figure 1. In general, the optical scheme in figure 6 can be extended to a
larger number of optical elements (additional BSs, PNR detectors) if one PNR detector is not able to distinguish
the required number of photons. The analysis of the quantitative characteristics of an extended optical setup
with several PNR detectors requires separate consideration.

Using an imperfect detector with 77 < 1 can significantly spoil the perfect values of the SCS source. The
resulting expressions for the fidelity allow us to estimate the contribution of various parameters to its decrease.
In the case of significant subtraction of the number of photons from original SMSV, say 30 or 31, values of size
and fidelity almost sufficiently close to perfect can be achieved in scheme with highly transmissive beam splitter,
but at the expense of a sharp decrease in the success probability. The SCSs generation rate can be significantly
reduced in order of magnitude by 10~ !® and even much less since only an insignificant part of the photons can be
trapped to measurement mode. To keep all the characteristics at a level somewhat close but nevertheless less
perfect, it is required to use beam splitter with transmittance coefficient in a certain range 1/+/2 < ¢ < 0.9 and
to reduce the number of extracted photons to either 10 or 11 instead of either 30 or 31. Reduction in the number
of subtracted photons reduces the values of size and fidelity but allows us to circumvent a drastic decrease of the
generation rate thereby maintaining concord between all three characteristics by measurement by inefficient
PNR detector. Reducing the number of the subtracted photons makes it possible to achieve an increase in the
success probability up to about 10~® for smaller size 3 < 3 and fidelity <0.99.

In general, subtracting a large number of photons from the SMSV is a promising method for even/odd SCS
generation in the presence of a highly efficient PNR detector. The generation rate would be improved by the
progress in quality of PNR detection the ability of which to discriminate the number of incoming photons as
accurately as possible becomes a decisive factor in the creation of a practical generator of even/odd SCSs of large
amplitude. Another possible way to improve the characteristics of the even/odd SCSs generator with input
SMSV is related to fragmentation of large Fock state into a smaller number of photons with their subsequent
registration by several PNR detectors that requires a separate study. The developed approach can be applicable to
other photon states used in auxiliary modes such as arbitrary Fock states, finite superpositions, and even CV
states of certain parity. Understanding the issues can give further progress in quantum state engineering of even,/
0dd SCSs.
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