
Phys. Scr. 97 (2022) 115002 https://doi.org/10.1088/1402-4896/ac955f

PAPER

Realistic conversion of single-mode squeezed vacuum state to large-
amplitude high-fidelity Schrödinger cat states by inefficient photon
number resolving detection

DmitryAKuts1,2 ,Mikhail S Podoshvedov1,2,3, BaAnNguyen4,5 and SergeyAPodoshvedov1,2

1 Laboratory ofQuantumLight Engineering, SouthUral StateUniversity (SUSU), LeninAv. 76, Chelyabinsk, Russia
2 Laboratory of Quantum Information Processing and Quantum Computing, South Ural State University (SUSU), Lenin Av. 76,
Chelyabinsk, Russia

3 Institute of Physics, Kazan Federal University (KFU), 16aKremlyovskaya St., Kazan, Russia
4 Thang Long Institute of Mathematics and Applied Sciences (TIMAS), Thang Long University, Nghiem Xuan Yem, Hoang Mai, Hanoi,
Vietnam

5 Institute of Physics, VietnamAcademy of Science andTechnology (VAST), 18HoangQuocViet, CauGiay, Hanoi, Vietnam

E-mail: kuts.phys@gmail.com

Keywords: Schrödinger cat state, photon number resolving detection, single-mode squeezed vacuum state, continuous-variable quantum
computing

Abstract
We theoretically propose an efficient way to generate optical analogs of both even and odd
Schrӧdinger cat states (SCSs) of large amplitudewith high fidelity and reasonable generation rate. The
resources consumed are a single-mode squeezed vacuum state (SMSV) and possibly a single photon or
nothing.We report the generation of even (odd) SCSwith amplitude 4.2, fidelity higher than 0.99
with success probability a littlemore than10 7- by subtraction of ( )30 31 photons from SMSVby ideal
photon number detection. In order to reduce the requirements for the sensitivity of photon number
resolving (PNR) detector, we show the implementation of even/odd SCSswith the same
characteristics with two PNRdetectors resolving only15 photons each instead of 30. In the case of
inefficient detector, SCS’s size and itsfidelity can be kept close to perfect by using highly transmitting
beam splitter, but at the cost of very dramatic reduction of the success probability. In order to have
certain harmony between the characteristics (large amplitude, high fidelity and acceptable success
probability) in the case of imperfect detection, highly transmitting beam splitters should not be used
and number of the subtracted photonsmust be reduced to ( )10 11 .

1. Introduction

Quantummechanics involves a number of thought experiments that, inmost cases, are used to show its
weakness in various interpretations. Schrӧdinger cat states (SCSs) [1] serve basis for doubts about the lack of a
clear boundary between the quantum and everyday classical realm. Realization of such bizarre physical objects is
expected to resolve the puzzle, at what degree ofmacroscopicity, if it exists, the object goes on to be quantum
[2, 3]. In optics, the SCS corresponds to a superposition of coherent states ∣ b+ ñand ∣ b- ñwith complex
amplitudes .b Although each of component coherent states is considered to bemost classical [4], their
superposition corresponding to SCS is nonclassical. The squared absolute value of amplitude of the component
coherent state ∣ ∣ ,2b which is approximately equal to itsmean photon number, is treated as size of the associated
SCS. In this work, for simplicity, we assume b to be real positive, so the SCS size can be characterized simply by

.b In order to recognize an optical SCSmacroscopic object, its sizemust be at leastmuch larger than the
quantumuncertainty 1 2/ of the position observable in the coherent state [5].

In addition to their fundamental importance, the SCSs have high application potentials in teleportation
[6–9], quantummetrology [10], quantum computation [11, 12] aswell as quantum information processingwith
hybrid entangled states composed of coherent and photonic states [13–15]. SCSs, also called coherent-state
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qubits, can be considered to be practical when the coherent components are nearly orthogonal ∣ 0b bá- ñ »
what starts from SCS’s size 2b  [13] that is regarded as a significant experimental achievement.Within this
context, a number of schemes for generation of optical large-amplitude SCSs in ‘flying’modes are demonstrated
[16–20]. However, even in best experiments (see, e.g., [20]), the obtained amplitude 1.85b = of the SCS is not
sufficient for full use of the states in further quantumprocessing taking into account the insufficiently high
fidelity of the generated states. This ismainly due to the fact that the used experimentalmethods do not allow
restoring photon number distribution of SCSswith amplitude larger than 2 thatmust be shifted towards higher
order number states and centered near the Fock state ∣nñwith ∣ ∣n .2b~ Fidelity is another important
characteristic for SCSs to serve as a potential source. It is desirable that the fidelity of the output statewill be as
high as possible (ideally 0.99 ) in order to be able to efficiently convert coherent states on a balanced beam
splitter like ∣ ∣ ∣ ∣2 01 2 1 2b b bñ ñ  ñ ñ [7, 11–13]. Nearly-deterministic Bell statemeasurement (BSM) of entangled
Schrödinger cat states of large amplitude can be realized in the presence of highly efficient photon number
resolving detectors since vacuumcontribution (no clicks in bothmodes) only decreases with increasing
amplitude of the coherent qubit. A complete BSMof entangled coherent state allows efficient implementation of
the controlled-not gate being the cornerstone of quantumalgorithms. Otherwise (i.e., thefidelity of the output
state is low), the output photon number distributionmay contain unwanted coincidencemeasurement events
and quantumprocessingwith coherent statesmay become ineffective.

Despite the large number of theoretical proposals for the SCS generation [21–27], implementation of large-
amplitude high-fidelity source of event-ready even/odd SCSs has remained a challenging problem even from a
theoretical point of view. A standardmethod for the SCSs generation is photon subtraction [16–27] from the
single-mode squeezed vacuum (SMSV)which is a typical nonclassical state containing only even photon
numbers (i.e., state with definite, even, parity). In thismethod, part of the photons resided in the SMSV is
diverted to detection channel. The redirection of photons by the beam splitter with a high transmittance
coefficient when only a small part of the photons is directed to themeasurementmode can significantly reduce
the generation rate, which can be defined as ·P fsuc or with for being the operating rate of the optical scheme and
Psuc is the SCSs generation probability. This third important facet of SCS source can take small values, especially,
in the case of registration of Fock states with a large number of photons in optical setupwith high transmission
beam splitter. Therefore, heraldedmethods need detailed analysis and improvement to brighten its potential in
shaping large-amplitude high-fidelity even/odd SCSs generatedwith a rate sufficiently high for the subsequent
continuous-variable (CV) quantum computing.

Here, we give a theoretical analysis of large-amplitude high-fidelity even/odd SCSs source capable towork at
high generation rate under ideal conditions. The driving force behind an efficient SCS source is a highly efficient
PNRdetector [28, 29]. So, we report the generation of large-amplitude high-fidelity even/odd SCSs (say, those
with 4.2b  whichwe sometimes call bright cats withfidelity higher than 0.99 and success probability 10 7~ -

in schemewith additional input single photon) by extracting a large number of photons (say, either 30 or 31)
from the SMSVby ideal PNRdetectors with quantum efficiency 1.h = No restrictions on the beam splitter,
being secondmost important element after PNRdetector, are imposed.We consider the possibility of realizing
even/odd SCSswith similar characteristics by using two beam splitters and twoPNRdetectors that could
discriminate a smaller (say, 15)number of photons. The parameters of the SCSs generator (amplitude, fidelity,
success probability) obtained in the case of using an ideal PNRdetector are perfect ones. They are those that
should be strived for in the practical case, taking into account the imperfection of themeasuring technique. The
inefficiency of the detector ( )1h < can significantly reduce the generation rate, however, leaving the amplitude
andfidelity close to perfect if we use a highly transmissive beam splitter. Use of another BS (not highly
transmissive one) can increase the success probability (albeit less than perfect), but can significantly reduce the
fidelity of the output state. Thismeans thatmaintaining the three parameters of the SCS source at a level close to
perfect is a challenge. To resolve it, we propose the following strategy. Tomaintain a balance between the three
important characteristics ratherish close enough to perfect, we reduce the number of extracted photons (say, to
10 or 11)when dealingwith imperfect PNRdetectors.

2. SCSs shaping in the case of ideal detection

Webegin by describing ingredients to the optical scheme infigure 1. There are two inputmodes to the beam
splitter (BS), labeledmode 1 andmode 2 in thefigure. The input state tomode 1 is a single-mode squeezed
vacuum (SMSV) state
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where s 0> is the squeezing parameter of the SMSV state, whereas the input state tomode 2may be either the
vacuum state ∣0ñor a single-photon state ∣1 .ñ The SMSV state (1) has a definite parity, which is referred to as
even, since it consists exclusively of Fock states with an even number of photons. Another state with definite even
parity is the even SCSwhich has the form (1) but the amplitudes differ. Namely, if we denote the even SCSwith
amplitude b by ∣ ( ) ∣SCS SCS ,b ñ º ñ+ + then its full expression reads
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where ( ( ( )))N 2 1 exp 2 2 1 2b= + -+
- / is the normalization factor and 0.b > As an example of the state with

definite odd parity, wemaymention the so-called odd SCS denoted by ∣ ( ) ∣SCS SCSb ñ º ñ- - with its full
expression as
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Ifwe subtract (add) an evennumber of photons from (to) the state (1), then itwill naturally preserve its parity
(i.e., itwill remain even), but itwill be transformed to a statewith a photonnumber distribution different from that
of the initial one. Likewise, subtraction (addition) of an oddnumber of photons from (to) the SMSV state results in
a statewithoddparitywith totally different photonnumber distribution.Tomake use of such properties, let us
first consider possible output states ofmode 1 infigure 1whennothing is inputted intomode2 (formally, it implies
that the input state ofmode 2 is ∣0ñ). Then, after the SMSV state passes through a lossless beam splitter BSwith
t 0> and r 0> the real transmittance and reflectance coefficients transforming creation operators as
a ta ra ,1 1 2 -+ + + a ra ta2 1 2 ++ + + and satisfying the physical condition t r 1,2 2+ = wehave [30]
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Figure 1.The optical scheme used to shape either even or odd Schrӧdinger cat states (SCSs). A single-mode squeezed vacuum state
(∣ )SMSVñ is inputted into one path (mode 1) of a beam splitter (BS), while either the vacuum state (∣ )0ñ or a single-photon state (∣ )1ñ
enters the other path (mode 2). Conditioned on the number n of photons detected in the output ofmode 2, the output ∣ ( )

n
0,1Y ñof

mode 1may be shaped, by choosing proper transmittance coefficient of the BS and the squeezing parameter of the ∣SMSV ,ñ to be a
desired bright SCS, either ∣SCS ñ+ or ∣SCS ,ñ- with highfidelity.
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Depending on the parity of themeasurement outcome in the outputmode 2, i.e., whether an even or an odd
number of photons is detected by PNRdetector [28, 29] infigure 1, the output state ofmode 1 differs. If the
detector finds an even photon number n m2 ,= then the following conditional state is outputted
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with ( ) ( )Z Z y Z y1 1 40 2º = = -/ and y t stanh 2.2= / By definition, the parameter y can take values in
the range y0 0.5  in the case of s 0.> The limiting values of the parameter y can be taken in the case of
either s 0= or t 0= ( )y 0= which is not of interest and in the case of t 1= and s  ¥ ( )y 0.5= going
beyond the scope of physical consideration. The success probability to generate the state (6) is

⎜ ⎟⎛
⎝

⎞
⎠

( )
( )! ( )!

( )( ) ( )P
t

m L s

t

t

y

m
Z

1

2

1

cosh

1

2
7m

m

m

m m
m

2
0

2 2

2
2

2

2

2 2
2=

-
=

-

with the superindex ‘( )0 ’ indicating the case when the inputmode 2 is the vacuum state ∣ ⟩0 .Otherwise, if an odd
photon number n m2 1= + is found, then the output state ofmode 1 reads
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+ is guaranteed as can be directly checked. Obviously, the
conditional state in equation (6) is evenwhile that in equation (8) is odd. Roundly speaking, the parity of the
output state (6) and the original input SMSV state (1) are the same, but their expansion amplitudes (i.e., their
photon number distribution) are not. Also for the output state (8), its parity changes comparedwith that of the
original input SMSV state (1) and its distribution in photon numbers is totally different.Moreover, the
amplitudes b k2 of the original SMSV change to ( )( ) ( )b bk m k m2 2 1+ + + due to the redistribution of photons by the
BS. The proximity between the output states and the even/odd SCSs is evaluated by thefidelities

( ) ∣ ∣ ∣( ) ( )F SCSm m2
0

2
0 2b = á Y ñ+ and ( ) ∣ ∣ ∣( ) ( )F SCS ,m m2 1

0
2 1
0 2b = á Y ñ+ - + respectively.

The output states ∣ ( ) ,n
0Y ñ with n m2= or n m2 1,= + depend on the squeezing parameter s of the input

squeezed state, the transmittance coefficient t of the BS and the detection outcome n,while the target states
∣SCS ñ depend only on .b So, thefidelities ( )Fn

0 depend on all the parameters s t, , n and ,b but the probabilities
( )Pn
0 depend only on s, t and n.Wedisplay infigures 2(a) and (b) our numerical simulation for the dependence

on b and n of thefidelitymaximalized over s and t , i.e., ( ) ( )( ) ( )F n F n s t, max , , , .s t nmax
0

,
0b b= For fixed n and b

program calculates the value of the fidelity on the grid chosen and looks for themaximumvalue of ( )( )F n, .max
0 b

Suchmaximumvalues of thefidelity appear as a smooth curvewith the following behaviors: for a given n the
maximalized fidelity decreases with increasing b and for a given b it increases with increasing n.Generally, an
arbitrarily high value of the fidelity with a desired value of b can be obtained if n is large enough. For example, as
seen fromfigures 2(a) and (b), afidelity greater than or equal to 0.99 for 2b  is achievable for n 10.
Subtraction of smaller numbers of photonwould lead to the generation of the even/odd SCSs state of amplitude

2b < [16–20]. It is also observed that for a given n there is a value of amplitude ( )( ) n0.99
0b such that the

maximized fidelity is higher than 0.99 for ( )( ) n0.99
0b b< but falls down rather quickly for ( )( ) n .0.99

0b b The
value of ( )( ) n0.99

0b itself growswith increasing n: for instance, ( ) ( )( ) ( )30 3.1 12 2.0.99
0

0.99
0b b= > = Although values

of the parameters ( )s t, can be determined thatmake the fidelitiesmaximal, thesemaximalizing parameters are
largely scattered, i.e., they appear very different evenwith a slight variation in .b This feature leads to a significant
spread in the output state’s generation probability as shownby colored symbols infigures 2(c) and (d) that
correspond tofigures 2(a) and (b), respectively. The probability distributions infigures 2(c) and (d) look like
structureless swarms.

To get rid of such structureless swarms of success probabilities, we optimize the experimental parameters.
Contour lines of thefidelities for the state ∣ ( )

m2
0Y ñ infigure 3(a) clarify the optimization procedure. So, the high

fidelities ( )( )F n s t, , , 0.99n
0 b  occupy a narrow area (highlighted in blue) stretching from top to bottomon
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Figure 2.Dependencies of themaximumvalues offidelities ( )Fn
0 and corresponding probabilities ( )Pn

0 on b and n when (a), (c)
n m2= and (c), (d) n m2 1.= + In (a), (b) the values of s t, are chosen tomaximize thefidelities.With so chosen values of s t, the
probabilities are irregularly scattered, as shown in (c), (d). The quantities in (e), (g), (h), (i) are optimized so that thefidelitymaintains
good enough and the probability becomes highest possible (see text).
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the ( )s t, plane. Choosing values of ( )s t, from a given curved stripe provides fidelity close to themaximum
( )F 0.99n
0  but the corresponding probabilities in equation (7)may differ verymuch.Within this stripe, one

canfind values of ( )s t, denoted by ( )s t, Fid that provide the highest possiblefidelity shown infigures 2(a) and
(b). Yet, within the same stripe one can alsofind values of ( )s t, denoted by ( )s t, Prob that provide themaximum
success probabilities. These values do notmatch ( ) ( )s t s t, , .Fid Prob¹ Visually, the difference is shownby two
dots infigure 3(a): one in red for ( )s t, Fid and the other in black for ( )s t, .Prob Finally, if we are interested only in
obtainingmaximumfidelities, thenwe have curves infigures 2(a) and (c). If we are interested in amore practical
case with both sufficiently high fidelity and highest possible success probability, thenwe refer tofigures 2(e) and
(h). Note that fidelities ( )F 0.99m2

0  are also observed for small values of the squeezing amplitude s in the case of a
high-transmission beam splitter (figure 3(a)), which, nevertheless, can sharply reduce the success probability
which is not practical. Concerning generation of an odd SCS, analogical curved stripe corresponding to the
fidelity ( )F 0.99m2 1

0
+  is also observed. The plots infigures 2(b) and (d) aremade for those ( )s t, Fid that provide

maximumfidelity, whilefigures 2(g) and (i) correspond to ( )s t, Prob withmaximum success probability and
fidelity greater than 0.99.The optimization procedure over probability allows one to observe amore regular
pattern infigures 2(h) and (i)which exhibit the following properties. For a given b the optimized probability
decreases with increasing n nomatter n is even or odd.However, the dependence of the optimized probability
on b is sensitive to both the value of b itself and the parity of n:when b is small, e.g., 2,b < it decreases
(increases)with increasing b for a given even (odd) n, but when b is large, e.g. 2,b  it saturates to a certain
n-dependent value despite of the further increase in .b

In order to achieve a higherfidelity for a larger value of ,b consider the case when a single photon is inputted
intomode 2 infigure 1. Then, themixing of the SMSV state and the single photon on the BS results in [30]
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Figure 3. Isolines versus experimental parameters ( )s t, : a) for the schemewithout an initial single photon and (b) for the schemewith
initial single photon. A curved isoline 0.99 (dark blue bent line) going fromhigh values of s to small values of s in a high-transmission
beam splitter is observed (a). This isoline explains the swarmdistribution in figures 2(c) and (d). To obtain a regular behavior of the
success probability in figures 2(h) and (i), it is necessary to find ( )s t, Prob (black point) on this isoline stripe providing Pmax unlike
( )s t, Fid (red point) providing Fmax and ( ) ( )s t s t, , .Prob Fid¹ The isolines in (b) converge to one point (blue point), which ensures the
initially regular behavior of the success probability infigures 2(c) and (d).
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Since the parity of a single-photon state is transparently odd, registration of an even number of photons n m2=
inmode 2 outputs inmode 1 a state of odd parity of the form
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with the exception of n 0,= while in equation (11) the superindex ‘(1)’ indicates that the singe-photon state ∣1ñ
is inputted intomode 2.Otherwise, if an odd number of photons n m2 1= + is detected inmode 2, the output
state ofmode 1 has an even parity of the form
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+ as should be. The proximity of the output states (11) and (13) to the odd
(4) and even (3) SCSs, respectively, is characterized by thefidelity ∣ ∣ ∣( ) ( )F SCSm m2

1
2
1 2= á Y ñ- and

∣ ∣ ∣( ) ( )F SCS ,m m2 1
1

2 1
1 2= á Y ñ+ + + respectively, which is completely determined by the set of experimental initial

parameters ( )s t, , the size b of the target SCS and themeasurement outcome { }n m m2 , 2 1 .Î + We
numerically plot the dependences ofmaximumvalues of the fidelities ( )( )F m2 1

1 b+ and ( )( )F m2
1 b infigures 4(a) and

(b), respectively. Similar tofigures 2(a) and (b), both ( )( )F m2 1
1 b+ and ( )( )F m2

1 b increase with the detected number of
photons for a given ,b but decrease with increasing b for a givenmeasurement outcome { }n m m2 , 2 1 .Î + It
is noticed here that the value of amplitude ( )( ) n0.99

1b fromwhich themaximized fidelity starts to fall downbelow
0.99 is larger than the corresponding value ( )( ) n0.99

0b in the case when the vacuum state ∣0ñ is inputted intomode
2. For example, from figures 4(a) and (b) in comparisonwithfigures 2(a) and (b), one sees that

( ) ( )( ) ( )31 4.2 31 3.20.99
1

0.99
0b b>  and ( ) ( )( ) ( )30 4.1 30 3.1.0.99

1
0.99
0b b>  Thismeans that the use of a single

photon as an input tomode 2 can generate, with high enough fidelity, SCSs of bigger size (i.e., larger value of b)
compared to the case of inputting the vacuum tomode 2. It is also interesting to note that in contrast to the
previous considerationwith the vacuum state inputted intomode 2, now the probabilities ( )( )P m2 1

1 b+ and
( )( )P m2

1 b showup as smooth functions of b for each given outcome { }n m m2 , 2 1Î + without any optimization
procedure, as seen infigures 4(c) or (d), respectively. In part, this is due to the fact that the fidelities gradually
converge to one point ofmaximal fidelity as shown infigure 3(b) (i.e., there is no long stripe of the fidelities

0.99 ). Yet, the dependence of the probabilities ( )( )Pn
1 b on b and n is opposite to that of the fidelities

( )( )F .n
1 b Namely, as it follows fromfigures 4(a)–(d), ( )( )Fn

1 b increase but ( )( )Pn
1 b decrease with increasing n for

a given ,b while ( )( )Fn
1 b decrease but ( )( )Pn

1 b increase with increasing b for a given n.The plots infigures 4(e),
(g), (h) and (i) show the dependence of s t, on b which provide the fidelitymaximumand corresponding
success probabilities. So, the plots infigures 4(e) and (h) display values of the parameters s and t under which the
plots infigures 4(a) and 4(c) are obtained. The plots infigures 4(g) and (i) show values of the parameters s and t
underwhich the plots infigures 4(b) and (d) are constructed. There are domains of b inwhich the parameter s
(t ) changes in an abruptmanner as visual fromfigure 4(h) (figure 4(i))which is due to the fact that themaximum
value offidelity disappears in one range of values ( )s t, and appears in another. Another explanationmaybe as
follows: itmay be due to a large step of varying .b The fact is that the calculations were carried out not at every
point of b but only at certain points ib with some step db ( ),i i1b b db= ++ whichwas reflected in a sharp (not
smooth) change in some points of s t, . Finally, why the values s t, can change so dramatically at the points,
maybe it is due to action of both reasons: transition to another region and not so small step db).

Conditioned on themeasurement outcomes, the subscripts of the output states amplitudes are shifted
forward by either m ( )k k m + (equations (6), (11), (13)) or m 1+ ( )k k m 1 + + (equation (8)). This
displaces the original SMSVdistribution (1) towards Fock states with larger photon numbers, finally becoming
uniformdistribution, that is ( )b b kk k2 2 1> "+ but ( )b b 0k k2 2 1~ »+ for k 1. In addition, each of
amplitudes ( )( ) ( )b bk m k m2 2 1+ + + receives an extra factor thatmay amplify them. If one chooses the values of ( )s t,
in an appropriate way, then the photon number distributions of the conditioned state and the target even/odd
SCSs can coincidewith fidelity 0.99 despite small discrepancy between generated and target probabilities (see
figure 5). Themaximumdiscrepancy in the probabilities d ,n with subscript n indicating on Fock state ∣n ,ñ is
d 0.03290610 = (top left plot), d 0.03125211 = (top right plot), d 0.02329618 = (lower left plot) and
d 0.0516117 = (lower right plot). Discrepancy can affect thefidelity of the transformation of the coherent states
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Figure 4.Dependencies of themaximumvalues offidelities ( )Fn
1 and corresponding probabilities ( )Pn

1 on b and n when (a), (c)
n m2 1= + and (c), (d) n m2 .= The dependences of s (e) and t (h) on b provide thefidelities and probabilities in (a), (c), while the
dependences of s (g) and t (i) on b provide the fidelities and probabilities in (b), (d). Sharp changes in s and t (and partly in fidelity)
are associatedwith the transition of themaximumvalues of thefidelity fromone range of parameters ( )s t, to another.
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on balanced BS: (∣ ∣ ) ∣ ∣BS 2 012 1 2 1 2b b b ñ  ñ =  ñ ñ and (∣ ∣ ) ∣ ∣BS 0 2 ,12 1 2 1 2b b b ñ ñ = ñ ñ  but can be
significantly reducedwith choice of the experimental parameters providing fidelity very close to 1.

3.Generation of even/odd SCSs by using twoPNRdetectors

Above, we considered the possibility of creating an even/odd SCS generator by subtracting a number of photons
by one PNRdetector. The registration of a large number (30, 31) of photons imposes serious requirement on the
detector sensitivity, which can be difficult to implement at the current level of technology development. To
reduce the requirement for PNRdetector to discriminate the number of photons, consider extension of the
optical scheme infigure 6, where the original SMSVpasses through two beam splitters BS12 and BS13 with
parameters ( )t r,1 1 and ( )t r, ,2 2 respectively. Reflected photons from BS12 (secondmode) and BS13 (thirdmode)
aremonitoredwith two PNRdetectors. Then, depending on the number of registered photons by two PND
detectors ( )n n, ,1 the conditioned state ∣ ( )

n n,
0,0

1
Y ñ is generated. Using the previously developed approach, we have

(∣ ∣ ∣ )
s

BS BS SMSV 0 0
1

cosh
13 12 1 2 3ñ ñ ñ = 

Figure 5.Comparison of Fock state distributions in conditional and target even/odd SCSs. Themaximumcalculated discrepancy in
the probabilities is d 0.03290610 = (difference of probabilities in state ∣10ñ for top left distribution), which is sufficient for the states
under consideration to coincide withfidelity larger than or equal to 0.99.
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where y yt .1 2
2= Here, the subscript ( )n n, 1 indicates the number of detected photons in the second and third

auxiliarymodes, and the subscript ( )0, 0 shows that vacuum states are used in input auxiliarymodes. Success
probabilities to generate the heralded states in equations (16) are the following: ∣ ∣( ) ( )P C ,m m m m2 ,2

0,0
2 ,2

0,0 2
1 1
=

∣ ∣( ) ( )P C ,m m m m2 ,2 1
0,0

2 ,2 1
0,0 2

1 1
=+ + ∣ ∣( ) ( )P Cm m m m2 1,2

0,0
2 1,2

0,0 2
1 1
=+ + and ∣ ∣( ) ( )P C ,m m m m2 1,2 1

0,0
2 1,2 1

0,0 2
1 1

=+ + + + respectively. Compar-
ing the states with those in equations (6), one can see that the difference between them is only in different values
of the parameters y and y .1 Despite the difference in the parameters, one can choose values ( )t t s, ,1 2 that would
provide the samefidelity as in figures 2, 4 between themeasurement-induced states (16) and even/odd SCSs
(equations (3), (4)). The use of two PNRdetectorsmakes it possible to reduce the requirements for the sensitivity
of the detectors to recognize the number of incoming photons. For example, if the SCS generator is configured

Figure 6.Optical scheme for generating even/odd SCSs bymeans of two beam splitters and twoPNRdetectors able to distinguish a
smaller number of photons compared to PNRdetector infigure 1. SCSs can be generated in case of coincidence detection of ( )n n, 1

photons.
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to implement an even high-amplitude SCS by subtraction of 30 photons, then it can be implemented using the
optical setup infigure 6, where each of the PNRdetectorsmeasures only 15 photons.

4. Case of imperfect detection

So farwe have considered the perfect PNRdetectionwhen the quantum efficiency h is 1. In reality,
PNRdetectors are imperfect whose efficiency, though can be very close to 1, remains less than 1, i.e., 1h <
[28, 29].Wemodel the imperfect detector by placing the fictitious beam splitter of transmissivity h before
the perfect detector which is responsible for the loss of some of the unregistered photons to derive the
positive-operator valuesmeasure (POVM) element of the PNRdetector with imperfect detection efficiency

1.h < For example, for n m2 := ( ) ( ) ∣ ( ) ( )∣( )C m x m x1 2 2m x m x
m m x

2 0 2
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+ Finally, we can compute the fidelity
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2r r h= P being the densitymatrix, conditioned bymeasurement of m2 photons, where tr2
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12 1 2 12 1 2r = ñ ñ ñ ñ +  is the density

matrix of the original SMSV and vacuum transformed by BS, and target even SCS
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where tr for traceoperation infirstmode.Using the equation (18), for h such that1 1,h-  one candecompose the
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Makinguseof the relation ( ) ( )( ) ( )b s k m k m btanh 0.5 1 ,k m k m2 1 2= + + + ++ + +/ onecanevaluate the ratio
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e
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2 2 2< á ñ + ++/ that enables to construct the lowerbound (LB) restricting thefidelity in

the caseof imperfectphotonnumberdetection
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with ná ñ the average number of photons in the state ∣ ( ) .m2
0Y ñ The inequality (19) is valid in the case of at least

t 0.4> to provide ( ) ( )g g ,
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0 otherwise, the contribution of ( )g

m2 ,2
0 will be comparable with one of ( )g .

m2 ,1
0 It

should be noted that the range of values t 0.4< is incompatible with the generation of high-amplitude ( )2b 
even SCS. Similar expression for the even SCS (3)fidelity can be derived
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where ná ñ is average number of photons in the state ∣ ( )
m2 1
1Y ñ+ and ( ) ( )g g

m m2 1,1
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1

+ + in the case of t 0.4.>
There are two strategies for realizing even SCSs by imperfect PNRdetection. Thefirst strategy is based on the

use of highly transmitting BS, since the LB tends to ( )( )F 1m2 1
1 h =+ in the limit of t 1 (figure 7)when only a

small fraction of the input photons can be deflected into themeasurementmode (visually, this can be explained
usingfigure 3(a) if we trace the curved contour ending at point t 1= ) and thefidelity of the output state is almost
the same as perfect ( ( ) ( ) ( ) ( ))( ) ( ) ( ) ( )F F F F1 , 1 .m m m m2

0
2

0
2 1

1
2 1

1h h h h@ = @ =+ + But a sufficiently high fidelity in
figure 7 is accompaniedwith an extremely low success probability of order of 10 18- and evenmuch less, which is
far frompractical needs. Such generation events become quite rare as the probability to detect n photons has the
order r .n Another strategy does not use highly transmitting BS and is associatedwith a decrease in the number n
of the subtracted photons. It can bemore practical, since it also reduces the requirements to PNRdetector to
distinguish less numbers of photons, for example, 10 or 11 photons instead of 30. To choose such ( )s t, one
should descend along the bent line into the region of larger values of t and smaller values of s (see figure 3(a))).
Graphs confirming the legitimacy of the strategy are shown infigure 8, where the dependences of the success
probabilities (on the left side) and corresponding them fidelities (on the right side) on the transmittance t for
different values of the quantum efficiencies [29] are shown. The LBs in equations (19), (20) are of one order
which leads to approximately similar with those infigure 8 dependences of the success probability and fidelity on
the transmittance t. For example, it is possible to realize an even SCS of the amplitude 2.5b = withfidelity
greater than 0.98 andwith success probability about 10 11- by extracting11photons by PNRwith 0.98.h =
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Decomposing the odd fidelities over small parameter 1 ,h- one gets LB
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for the state in equation (11). The inequalities (21) and (22) are valid for t 0.4> to ensure the predominance of
contribution of thefirst order in (1 h- ) over those of all the higher orders. As in the case of generating even
SCS, the range of values t 0.4< does not allow generating odd SCS of larger amplitude ( 2b  ). The LB can take
almost zero value in the case of high transmission BS ( )t 1 and ( ) ( )( ) ( )F F 1m m2 1

0
2 1

0h h@ =+ + but such a choice
may not be particularly successful as itmay lead to a substantial decrease in the success probability as well as a
departure from idealfidelity for odd SCS (see the point ofmaximumfidelity infigure 3(b)). BSwith
transmittance t 1 2> / can be in area of interest. Analysis of the data shows that the values of the BS
transparency can be chosen in the range t1 2 0.9< </ to provide acceptable generation rate. To keep the
fidelity high one can also refuse to extract a large number of photons and limit to smaller number (say 10 or 11)
of detected photons by inefficient PNRdetector. So, in the case of extracting 11 photons by PNRdetector with
efficiency 0.98,h = an odd SCS of amplitude 2.5b = withfidelity of about 0.97 and success probability of
order 10 10- can be generated in a schemewith empty input secondmode.Odd SCS of amplitude 3b = with
fidelity about 0.98 andwith success probability of order 10 12- can be realized in a schemewith additional single
photon by subtracting 10 photons by inefficient PNRdetector with quantum efficiency 0.98.h =

Another factor that can degrade the fidelity of the output state is the presence of the background photons
whosemean number of photons in the optical regime at room temperature is approximately 10 .20- Influence of
the environmental photons and quantum inefficiency of the PNRdetector can bemodeled by using two
fictitious beam splitters, each of which is responsible for the corresponding degrading factor. Photons reflected
by thefictitious BS are regarded as photon loss. Thermal statewith somemean number of photons can be treated
as input in environmentalmode. Themathematical consideration of the POVMoperators with the two
fictitious BS is complex and is beyond the scope of the study.Nevertheless, an estimate of the effect of
background photons on the decrease of thefidelity of the output state can bemade. Sincewe use decomposition
of the fidelity over small parameter 1 ,thh- where thh is a transmittance of ‘thermal’fictitious BS, comparable
to1 ,h- we can note the following. Themaximumadditional contribution to the fidelity estimate can only
come from the outcomewith n 1- initial photons and one environmental photon redirected into the
measurementmodewith a probability proportional to 1 .thh- In the process of the decomposition of the
fidelity over parameters 1 h- and 1 ,thh- these two contributions are summedup. The contribution of the

Figure 7.Dependence of thefidelity on the amplitude of the even SCS generated by the imperfect PNRdetectorwith corresponding
quantum efficiency h and confirming estimation of the LB in equation (19). The dependences are directly calculated from
equation (18). High transmission beam splitter should be usedwhich drastically reduces the generation rate.
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environmental photons, at least, does not exceed one from the action of an inefficient PNRdetector. Since the
probability of the background photon at the requiredwavelength is very small, it significantly reduces the
contribution of the environmental photon to the amount bywhich the outputfidelity decreases.

5.Discussion

Ability to generate large-amplitude and high-fidelity coherent superpositions is important for scalable
continuous-variables quantum computation and quantum information processing but the preparation of the
qualitative even/odd SCSs remains a challenging task.We have proposed and analyzed a simple and efficient

Figure 8.Dependencies of the success probabilities (left side) andfidelities (right side) of the output states in optical schemewith
exclusively input SMSV state on transmittance t .The states are realizedwith inefficient PNRdetectors with different quantum
efficiencies.
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way to generate large-amplitude even/odd SCSswith highfidelity and an acceptable for practical use generation
rate using irreducible number of the optical elements. Original SMSV state as one of certain parity is used for
shaping even/odd SCSs. Using SMSVmakes sense since extracting any number of photons in an
indistinguishablemanner preserves the parity of the output state, leaving output either even or odd. The
generationmechanism is based on the redistribution of the photon states by eliminating the contributions of the
vacuumand the lower-photon states, which have a larger weight in the initial SMSVdistribution and increasing
the contribution of themultiphoton states corresponding to ∣ ∣n .2b~ Themechanism is provided by
subtracting a certain number of photons in an indistinguishablemannerwhen information aboutwhich initial
Fock state of the SMSV contributed to themeasurement outcome is lost. Calculations show that SMSVwith a
squeezing of 5 to 15dB already achievable in experiments can be used. It can also be argued that the use of
additional non-Gaussian resource (input single photon)makes it possible to improve such a nonclassical light
source by at least two indicators (size of the generated superposition and itsfidelity), while leaving the third
indicator (generation rate)within the acceptable range. Such generator of the even/odd SCSswith ideal PNR
detector ( )1h = would have perfect values of all three characteristics (size, fidelity and generation rate) and be
ready for quantumoptical computing [7, 11]. The use of plots infigures 2 and 4makes it possible to select perfect
values for the size, fidelity and the success probability, as well as those input parameters that provide them. So,
even/odd SCSs of amplitude 4.2b = withfidelity higher than 0.99 can be generatedwith success probability a
littlemore than10 7- with perfect photon number resolving detection in a schemewith input single photon. If
the requirements to the size of the SCS are reduced, say to 3, then the probability of generationwithfidelity 0.99
can come close 10 4- in the case of subtracting 15 photons in a setupwith an input single photon.Note that
highest efficiency of spontaneous parametric down conversion (SPDC) is on the order of 1 pair down converted
photons per 106 pumping photons inwaveguides. In the sense, the perfect values of the success probability are
comparable and even greater than the probability of generation of down converted photons, whichmakes it
possible to attribute them to reasonable. Such event-ready coherent superposition resourcemay become ideal
for further CVquantum information processing.

The ability of the PNRdetector to discriminate large (like either 30 or 31) photon states can be challenge. To
reduce the requirements for the PNRdetector to resolve large Fock states, an extension of the initial optical setup
can be used. It involves twoBSs and PNRdetectors with a lower sensitivity to the number ofmeasured photons.
In the setup infigure 6, generation of target even/odd SCSs is possible in the case of simultaneous registration of
a certain number of photons by several PNRdetectors.We show that even/odd SCSs can be generated
independently of themeasured outcomes infigure 6, but the parameters of the experimental setupmust be
changed from the original version infigure 1. In general, the optical scheme infigure 6 can be extended to a
larger number of optical elements (additional BSs, PNRdetectors) if one PNRdetector is not able to distinguish
the required number of photons. The analysis of the quantitative characteristics of an extended optical setup
with several PNRdetectors requires separate consideration.

Using an imperfect detector with 1h < can significantly spoil the perfect values of the SCS source. The
resulting expressions for the fidelity allow us to estimate the contribution of various parameters to its decrease.
In the case of significant subtraction of the number of photons fromoriginal SMSV, say 30 or 31, values of size
andfidelity almost sufficiently close to perfect can be achieved in schemewith highly transmissive beam splitter,
but at the expense of a sharp decrease in the success probability. The SCSs generation rate can be significantly
reduced in order ofmagnitude by 10 18- and evenmuch less since only an insignificant part of the photons can be
trapped tomeasurementmode. To keep all the characteristics at a level somewhat close but nevertheless less
perfect, it is required to use beam splitter with transmittance coefficient in a certain range t1 2 0.9< </ and
to reduce the number of extracted photons to either 10 or 11 instead of either 30 or 31. Reduction in the number
of subtracted photons reduces the values of size andfidelity but allows us to circumvent a drastic decrease of the
generation rate therebymaintaining concord between all three characteristics bymeasurement by inefficient
PNRdetector. Reducing the number of the subtracted photonsmakes it possible to achieve an increase in the
success probability up to about10 8- for smaller size 3b < andfidelity 0.99.<

In general, subtracting a large number of photons from the SMSV is a promisingmethod for even/odd SCS
generation in the presence of a highly efficient PNRdetector. The generation rate would be improved by the
progress in quality of PNRdetection the ability of which to discriminate the number of incoming photons as
accurately as possible becomes a decisive factor in the creation of a practical generator of even/odd SCSs of large
amplitude. Another possible way to improve the characteristics of the even/odd SCSs generator with input
SMSV is related to fragmentation of large Fock state into a smaller number of photonswith their subsequent
registration by several PNRdetectors that requires a separate study. The developed approach can be applicable to
other photon states used in auxiliarymodes such as arbitrary Fock states,finite superpositions, and evenCV
states of certain parity. Understanding the issues can give further progress in quantum state engineering of even/
odd SCSs.
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