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Abstract
We consider Anderson localization in the half-filled Anderson–Hubbard model in the presence of
either random on-site interactions or spatially alternating interactions in the lattice. By using
dynamical mean field theory with the equation of motion method as an impurity solver, we
calculate the arithmetically and geometrically averaged local density of states and derive the
equations determining the critical value for the phase transition between metallic, Anderson and
Mott insulating phases. The nonmagnetic ground state phase diagrams are constructed
numerically. We figure out that the presence of Coulomb disorder drives the system toward the
Anderson localized phase that can occur even in the absence of Anderson structural disorder. For
the spatially alternating interactions, we find that the metallic region is reduced and the Anderson
insulator one is enlarged with increasing interaction modulation. Our obtained results are relevant
to current research in ultracold atoms in disordered optical lattices where metal–insulator
transition can be observed experimentally by using ultracold atom techniques.

1. Introduction

In optical lattices, ultracold atoms are similar to electrons in condensed matter physics in the sense that they
can realize model Hamiltonians, such as the Anderson and Hubbard models. Many notable phenomena
have been observed in this regard, for example the Mott transitions in system of bosons and system of
fermions [1, 2] or BEC-BCS crossover [3, 4]. Ultracold atoms have significant advantages over condensed
matter systems, including high controllability of interaction strength, particle number, lattice geometry, and
other parameters. Typical experiments are performed in lattices without disorder. However, disorder in the
laser potential can be introduced in a variety of methods, including employing an optical speckle laser or
superimposing two laser beams with incompatible frequencies [5, 6]. In addition to the control of the
confinement potentials, the interaction between atoms is controlled by means of Feshbach resonances
[7, 8]. Furthermore, the interaction strength between atoms can be changed spatially in Yb174 gas system [9]
as well as its disorder can be generated in a controlled manner in ultracold gases on the verge of a Feshbach
resonance [10, 11]. Although theoretical and practical researches on bosons in optical lattices with random
on-site interactions have been done [10–12], the fermion systems with random local Coulomb repulsion,
have barely been discussed so far. Recently, the disordered Hubbard model with three different disorders
involving the ionic energy, the on-site interaction strength and the hopping amplitude has been proposed
and the influence of each type of disorder on the thermodynamic properties of the system has been studied
[13]. On the other hand, disorder always exists in real materials, but up to now, in most studies, the
disorder was restricted to the random on-site potential while the Coulomb repulsion was supposed to be
the same for all sites. That is hardly justified in real situations and for models with local Coulomb
interactions, such as the Hubbard and/or Anderson–Hubbard models (AHMs), disorder in on-site
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Coulomb interactions should also be taken into consideration when analyzing a random medium that
causes Anderson localization [13–16].

In the half-filled AHM, when a local random potential is included (we will refer to it as Anderson
disorder), the paramagnetic groundstate for arbitrary interaction and disorder strength consists of metallic,
Mott insulator (MI) and Anderson insulator (AI) phases. In addition, the metallic phase is identified for
small values of the on-site interaction U and disorder strength Δ, the Mott insulating state stabilizes with
increasing U, and large Δ favors the Anderson localization [17–19]. Besides Anderson disorder, the
inhomogeneity of charge distribution through background doping and unwanted charged impurities
generates random electron–electron coupling strengths (we refer to it as Coulomb disorder) [13–16].
Therefore, in order to make the model more realistic, we will also consider both sources of disorder, the
Anderson and Coulomb ones, randomly distributed along the lattice. As a result, we consider the
electron–electron interactions to be site-dependent in our study, which means they are assumed to be
random and uniformly distributed or spatially modulated interactions across the lattice. In the half-filled
AHM, we study how Anderson and Coulomb disorders might jointly contribute to the metal–insulator
transition (MIT). In order to solve the problem, we employ the typical medium dynamical mean-field
theory (TMT-DMFT) with geometrical and arithmetical averages over the disorder configurations, which is
a successful method for the MIT on a disordered lattice [17–25]. By selecting appropriate decoupling
schemes, we use the equation of motion technique as an impurity solver, which is a good option for a rapid
and reliable solution [26, 27].

The paper is organized as follows. The models and our theoretical method are presented in section 2. In
section 3, the averaged local density of states (LDOS) and phase diagrams are derived and discussed. In the
final section, we close the paper with a short summary.

2. Models and method

The Hamiltonian of AHM reads

H = −t
∑
〈ij〉σ

(a†iσajσ + h.c.) +
∑

iσ

(εi − μ)niσ +
∑

i

Ui

[
ni↑ni↓ −

1

2
(ni↑ + ni↓)

]
, (1)

where aiσ(a†iσ) is the annihilation (creation) operator of an electron at site i with spin σ, niσ = a†iσaiσ and μ

denote the local electron number operator and the chemical potential, respectively, t is the hopping integral
for nearest neighbor sites. The local energies εi follow a box probability distribution

P(εi) =
1

Δ
Θ(Δ/2 − |εi|), (2)

where Θ is the Heaviside function, Δ denotes the Anderson disorder strength.
In our paper we consider two types of site-dependent Coulomb repulsion Ui:

(a) Ui is assumed as random and uniformly distributed within the interval [U − δ/2; U + δ/2], i.e.:

P̃(Ui) =
1

δ
Θ(δ/2 − |Ui − U|), (3)

where U is the mean value of the on-site interaction, δ is the Coulomb disorder strength. Here, we only
consider the repulsive interaction, Ui � 0, from which U � δ/2.

(b) Ui is spatially alternating interactions in a bipartite lattice, i.e. Ui = Us in the sublattice s(= A, B).

Within the DMFT [20, 28], the Hamiltonian (1) is mapped onto an effective Anderson model as follows

Himp =
∑
σ

(εi − μ)niσ + Ui

[
ni↑ni↓ −

1

2
(ni↑ + ni↓)

]
+
∑

kσ

εkc+kσckσ

+
∑

kσ

(Vkc+kσaiσ + V∗
k a+iσckσ). (4)

Here ckσ (c+kσ) annihilates (creates) an auxiliary bath electron with spin σ, Vk and εk the hybridization
matrix element and the dispersion relation of the bath electrons, respectively. We use the equations of
motion method [22, 27, 28] as an impurity solver for the effective Anderson model (4). We restrict our
study to the nonmagnetic case at half-filling, for which 〈ni↑〉 = 〈ni↓〉 = 〈ni〉/2 and μ = 0. By decoupling the
equations of motion at second order, the impurity Green function can be approximated as follows
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Figure 1. Phase diagram of the half-filled AHM for different Coulomb disorder strengths (solid line) compared with the δ = 0
case (dash lines). M, AI, MI and LS stand for metal, AI, MI and localized states in the Mott gap, respectively. Energy scale: W = 1.

G(ω, εi, Ui) =
1 − 〈ni〉/2

ω − εi + Ui/2 − ηi(ω) + Uiηi(ω)[ω − εi − Ui/2 − 3ηi(ω)]−1

+
〈ni〉/2

ω − εi − Ui/2 − ηi(ω) − Uiηi(ω)[ω − εi + Ui/2 − 3ηi(ω)]−1
, (5)

where ηi(ω) is the hybridization function, which describes the coupling of lattice site i with all other sites of
the system within the DMFT. Here, Ui = Us, ηi(ω) = ηs(ω) if i ∈ s-sublattice for the case of spatially
alternating interactions, while ηi(ω) is site-independent for the case of random interactions. In the
non-disorder limits, εi = 0, Ui = U, equation (5) is the recovery of the (full) Hubbard III approximation of
the Hubbard model at half-filling [29].

For each ionic energy εi and on-site Coulomb interaction Ui, the LDOS is given as

ρ(ω, εi, Ui) = − 1

π
Im G(ω, εi, Ui). (6)

From equation (6), one can calculate the arithmetically and geometrically averaged LDOS. We note that
while the arithmetically averaged LDOS describes both extended and localized states, the geometrically one
takes into account only the extended states of continuum part of the spectrum. At the Mott–Hubbard MIT,
the arithmetically averaged LDOS shows an open gap at the band center whereas the geometrically one
vanishes when the system is going through an Anderson transition. Thus, one can explore both types of
MITs by evaluating averaged LDOS [20–24, 26].

(i) Random on-site interactions. The arithmetic and geometric mean of the LDOS can be evaluated by

ρarith(ω) =

∫
dU

∫
dε P(ε)P̃(U)ρ(ω, ε, U), (7)

ρgeom(ω) = exp

[∫
dU

∫
dε P(ε)P̃(U) ln ρ(ω, ε, U)

]
. (8)

The Green function corresponding ρα(ω), where α stands for either ‘geom’ or ‘arith’, is evaluated by the
Hilbert transform

Gα(ω) =

∫
dω′ ρα(ω′)

ω − ω′ . (9)

We use a semicircular density of states, which corresponds to an infinite-coordination Bethe lattice
ρ0(ε) = 4

√
1 − 4(ε/W)2/(πW) with bandwidth W. The self-consistent condition for the DMFT scheme is

then given by
η(ω) = W2G(ω)/16. (10)
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Figure 2. Arithmetically (geometrically) averaged LDOS with δ = 0, 1.0, 1.5 and 2.1 for U = 2.0,Δ = 3.0 in upper (lower)
panel. Coulomb disorder drives the system from a correlated metal to the AI upon increasing δ.

To numerically solve the DMFT equations (5)–(10), which allows us to get the arithmetically and
geometrically averaged LDOS, the site occupation at zero temperature 〈ni〉 is determined self-consistently as
follows

〈ni〉 = 2

∫ 0

−∞
ρ(ω, εi, Ui)dω. (11)

Next, we derive the linearized DMFT equations. It is to be noticed that at the half-filling, the groundstate
properties can be determined by the averaged LDOS at the band center (ω = 0). In addition, the Green
function at the band center is purely imaginary, Gα(0) = −iπρα(0). Note that in the vicinity of the MIT
region ρα(0) approaches zero, one can find the critical value for the phase transition from a metallic state to
the Mott insulating state or to Anderson localized state by linearizing the DMFT equations [18, 22, 27]. The
linearized DMFT equations with arithmetic and geometric means, which determine the boundary curves
between metallic and insulating phases, are obtained as

1 =
W2

16Δδ

∫
dU

∫
dε Y(ε, U), (12)

1 =
W2

16
exp

[
1

Δδ

∫
dU

∫
dε ln Y(ε, U)

]
, (13)

where

Y(εi, Ui) =
ε2

i + 3U2
i /4 + 2εiUi(1 − 〈ni〉)
[ε2

i − U2
i /4]2

. (14)

(ii) Spatially alternating interactions. The arithmetically and geometrically averaged LDOS for
s-sublattice can be now is given by

ρs,arith(ω) =

∫
dε P(ε)ρ(ω, ε, Us), (15)

ρs,geom(ω) = exp

[∫
dε P(ε) ln ρ(ω, ε, Us)

]
. (16)

The Green function for s-sublattice is obtained by corresponding Hilbert transform. Then using the same
non-interacting DOS, the self-consistent condition now is taken the form

ηs(ω) = W2Gs̄(ω)/16, (17)

where s̄ = B, A if s = A, B.
By an argument analogous to that used for the deriving of the linearized DMFT equations for the

random on-site interactions, we get

1 =
W2

16
exp[Igeom(UA, UB,Δ)], (18)
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Figure 3. Same as in figure 2 but U = 1.5,Δ = 1.35. Coulomb disorder drives the system from localized states inside the Mott
gap toward the metallic phase upon increasing δ.

Figure 4. Phase diagram of the system in the absence of Anderson disorder (Δ = 0) as a function of δ and U − δ/2. Localized
states inside the Mott gap (LS) and AI phases appear in the presence of Coulomb disorder.

where

Igeom(UA, UB,Δ) =
1

2Δ

∫
dεi ln[YA(εi)YB(εi)] (19)

for the linearized DMFT with geometric mean, and

1 =
W2

16
Iarith(UA, UB,Δ), (20)

where

Iarith(UA, UB,Δ) =
1

Δ

[∫
dεi YA(εi)

∫
dεi YB(εi)

]1/2

(21)

for the linearized DMFT with arithmetic mean. Here

Ys(εi) =
ε2

i + 3U2
s /4 + 2εiUs(1 − 〈ni〉)
[ε2

i − U2
s /4]2

, (22)

where 〈ni〉 is given by equation (11) with replacing Ui by Us.
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Figure 5. Arithmetically (geometrically) averaged LDOS in the band center ω = 0 for both s-sublattices with r = 1.0, 0.8, 0.5 as
a function of U for Δ = 1.0 in upper (lower) panel. Both ρA,arith(0),ρB,arith(0) as well as both ρA,geom(0),ρB,geom(0) simultaneously
vanish at the critical values of U.

Figure 6. Phase diagram of the half-filled AHM with spatially alternating interactions for different values of r = 0.5, 0.8
compared with r = 1. M, AI and MI stand for metal, AI, and disordered MI, respectively.

3. Results and discussion

In this section, we choose W = 1 as the energy unit and study the phase diagrams of the system obtained
from the DMFT equations presented in the previous section. The LDOS is calculated for different values of
parameters in order to explore the allowed states of the system. The ground state will be investigated from
the obtained values of ρarith and ρgeom as follows: (1) ρarith(0) 
= 0 and ρgeom(0) 
= 0 indicate a metallic
phase; (2) ρarith(0) = 0, ρgeom(0) = 0 and

∫
ρgeom(ω)dω 
= 0 give a Mott insulating phase; (3)∫

ρgeom(ω)dω = 0 specifies an Anderson localized phase; (4) ρarith(0) 
= 0, ρgeom(0) = 0 and∫
ρgeom(ω)dω 
= 0 specify localized states inside the Mott gap. We note that the criterion of the Mott

insulating phase in the Anderson–Hubbard or Anderson–Falicov–Kimball models at half-filling within
TMT-DMFT studies is not exactly the same. For example, it is the quasi-particle weight drops to zero for all
sites in [19]; ρgeom(0) = 0 and

∫
ρgeom(ω)dω 
= 0 in [18, 20, 23], where this is referred to as a disordered MI

(gapped phase); ρgeom(0) = 0,
∫
ρgeom(ω)dω 
= 0 and 〈ni〉 = 1 for all sites in [32]. To clarify the effect of

Coulomb disorder on the phase diagram, in this work we distinguish the Mott insulating phase (with a gap
observed in both averaged LDOS, i.e. true Mott gap) from localized states inside the Mott gap (with a gap
observed only in the geometrically averaged one) [33]. All these phases can occur for different sets of U, Δ,
and other parameters resulting in a rich phase diagram.
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Figure 7. Arithmetically (geometrically) averaged LDOS for both s-sublattices for Δ = 1.0, UB = 1.0 and for different values of
r = 0.5, 0.8 and 1.0 in upper (lower) panel. In the case of small Δ the spatial modulation interactions can enhance the localized
states inside the Mott gap.

(i) Random on-site interactions. Figure 1 depicts the U −Δ nonmagnetic phase diagrams of the
half-filled AHM for various Coulomb disorder strengths. The system can be in a metallic phase, a MI,
localized states inside the Mott gap or an Anderson localization phase. It should be noted that the metallic
domain and the Mott insulating domain are only connected when δ is zero. In the presence of Coulomb
disorder, δ 
= 0, one can see that the metallic domain and the Mott insulating domain is separated by the
localized states inside the Mott gap. The extended states (metallic region) and the true band gap are no
longer connected as the localized states are in between. If the Coulomb disorder increases, the metallic and
Mott insulating regions shrink, whereas the Anderson localized region is enlarged. When the Coulomb
disorder reaches its maximum, δ = 2U, the Mott insulating region disappears, and the system enters either
a metallic, Anderson localized phase or localized states inside the Mott gap. When δ = 2U, the Coulomb
strength Ui at a given site will range from 0 to 2U; thus, when taking the arithmetic average, there will
always be a distribution from non-interacting electrons (Ui = 0) that prevents the establishment of a Mott
insulating phase. The situation will change for all other δ < 2U values because Ui at a given site will now
take its value from U − δ/2 > 0 to U + δ/2, which dismisses the metallic state and causes the Mott gap to
rise as U increases. Both Anderson disorder and Coulomb disorder support Anderson localization and
prevent the metallic phase as well as the MI from being established. But only Coulomb disorder can
suppress the Mott insulating completely. In addition to the narrowing of the metallic and MI regions, the
presence of Coulomb disorder gives rise to a new region where the system is in a localized state. That is the
region where the Anderson localization is found without the Anderson structural disorder (Δ = 0).

Coulomb disorder plays an important role in spectral density, as seen in figures 2 and 3 for given values
of Δ and U. The major effect of Coulomb disorder is to drive the system to the Anderson localized phase.
Firstly, the Coulomb disorder δ can drive the system from a metallic phase toward the Anderson localization
when Δ and U are large. In figure 2, we plot the arithmetically (geometrically) averaged LDOS for
U = 2.0,Δ = 3.0 in the upper (lower) panel with δ = 0, 1.0, 1.5, and 2.1. One can see that with increasing
δ the band length of the arithmetically (geometrically) averaged LDOS becomes larger (smaller). In
addition, for small δ(= 0.0, 1.0, 1.5) both arithmetically and geometrically averaged LDOS at the band
center (ω = 0) are finite, which indicates a metallic state. For increasing δ, the natural tendency for
localization is clearly seen. For larger δ(= 2.1) the arithmetically averaged LDOS at the band center
ρarith(0) > 0 but

∫
ρgeom(ω)dω = 0 indicates Anderson localization without a Mott gap. Thus, in this case,

the Coulomb disorder drives the system from a metallic phase to an Anderson localized one. Secondly, the
Coulomb disorder can drive the system from localized states inside the Mott gap toward a metallic phase
when Δ is small and U is large. For example, when δ < 0.70 (δ = 0, for example), the system is in localized
states inside the Mott gap because ρarith(0) 
= 0, ρgeom(0) = 0 and

∫
ρgeom(ω)dω 
= 0, but when

δ > 0.70 (δ = 1.0, 1.5, for examples), the system is in a metallic phase as shown in figure 3 for
U = 1.5,Δ = 1.35. For increasing δ, there is a natural tendency for a metallic state as the gap vanishes.
Therefore, in this case, the Coulomb disorder drives the system from the localized states inside the Mott gap
to a metallic state.

7
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Figure 8. Geometrically averaged LDOS for both sublattice at Δ = 2.0, U = 1.5. In the case of large Δ and U the spatial
modulation interactions can enhance the Anderson localization.

In figure 4, we present the δ, U − δ/2 phase diagram for Δ = 0. It shows that at δ = 0 the system
contains the metallic and Mott insulating phases, but in the presence of Coulomb disorder the localized
states inside the Mott gap arise. Indeed, when δ 
= 0 the solutions of equations (12) and (13) do not give the
same results. Increasing δ leads to a narrowing of the metal regime and a widening of the MI one. For
δ > 2.32 the metal region disappears, and a phase diagram with only insulator regions is obtained. In
strong interaction regime, the metallic states are not available as the system is always gapped regardless of
disorder strength [18, 21]. It is interesting to note that new AI regions that appear in the absence of
Anderson disorder were found in the Bose–Hubbard model [10, 11] as well as in the
Anderson–Falicov–Kimball with random on-site interactions [30], now we for the first time find it in the
AHM with Coulomb disorder.

(ii) Spatially alternating interactions. Equations (18)–(22) must be numerically solved for spatially
alternating interactions. In the absence of the Anderson disorder, Δ = 0, from equation (20) we obtain the
expression for critical interactions in the Hubbard model with spatially alternating interaction
UAUB = 3W2/4, which agrees with result in reference [31]. For the usual AHM with UA = UB our
equations (18)–(21) are reduced to equations (11)–(14) in reference [22].

In order to present our numerical results for spatially alternating interactions, we set UB = U and
r = UB/UA using the spatial modulation parameter r : 0 � r � 1. Figure 5 depicts arithmetically
(geometrically) averaged LDOS in the band center with ω = 0 for both sublattices with r = 1.0, 0.8, and 0.5
as a function of U for fixed Δ = 1.0. One can see that both ρA,arith(0), ρB,arith(0) as well as both
ρA,geom(0), ρB,geom(0) simultaneously vanish at the phase transition. It is well established that in the Hubbard
model with spatially alternating interactions both ρA,arith(0), ρB,arith(0) simultaneously vanish at the Mott
MIT [34–36]. This feature is nevertheless kept in the system in the presence of disorder, as shown above.
Furthermore, both ρA,geom(0), ρB,geom(0) also simultaneously vanish at the Anderson MIT. It means that for
a fixed r a single phase transition occurs in the system when the disorder and interaction strengths reach
their critical values.

The nonmagnetic groundstate phase diagram, the main result of our investigation for spatially
alternating interactions, is shown in figure 6 for different values of r = 0.5, 0.8 and 1.0. In this phase
diagram we do not distinguish the Mott insulating phase from localized states inside the Mott gap one, but
simply refer them to a disordered MI. Our result in the limit r = 1 is generally in agreement with those
discovered from other TMT-DMFT [19, 22–24] and from the statistical DMFT [37]. For 0 < r < 1 three
different phases (metal, MI and AI) can be seen in the phase diagram as r = 1, but their regions are
changed. In the case Δ = 0 and fixed UB, the smaller r means the larger UA = UB/r and the easier it is to
localize the system. Our calculations show that this is still true for small Δ(Δ < Δc(U = 0) = e/2) and any
given value of U, and that it is also true for large U when Δ is larger. As a result, the metallic region is
reduced, and the AI region is enlarged by decreasing the spatial modulation parameter r. It is worth noting
that the MI phase is not observed in the system for any UA when r = 0, because there is no interaction in
the B-sublattice. In this case, what phase (metallic or AI) the system is in depends only on the Anderson
disorder Δ.

8
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To illustrate our main results, we calculate the arithmetically (geometrically) averaged LDOS for both
sublattices for Δ = 1.0, U = 1.0 and for different values of r = 0.5, 0.8 and 1.0 in upper (lower) panel. As
can be seen from figure 7, for r = 1 and 0.8 the system is metal (both averaged LDOS in the band center is
different from zero), while r = 0.5 it turns to a disordered MI phase (the arithmetically averaged LDOS in
the band center is finite, the geometrically averaged one is zero and

∫
ρgeom(ω)dω 
= 0). Thus, in the case of

small Δ the spatial modulation interactions enhance the gapped phase. However, for larger Δ and U the
spatial modulation interactions can enhance the Anderson localization as shown in figure 8, where for
Δ = 2.0 and U = 1.5 the system is in the metallic phase for r = 1 and 0.8, but it turns to a AI for r = 0.5.

4. Conclusions

In summary, we studied the solutions of the half-filled AHM with site-dependent local interactions. The
two simplest types of site-dependent interactions considered in the presence paper are the random and
uniformly distributed one and the spatially alternating one in the lattice. We found the averaged LDOS
within dynamical mean field theory with the EOM as an impurity solver using arithmetic and geometric
means. In the case of random and uniformly distributed interactions, we showed that Coulomb disorder
has the main effect of driving the system from a metallic state to the Anderson localized phase, and the
Anderson localized states appear even in the absence of Anderson structural disorder. It is worth noting that
our result is obtained using the TMT-DMFT with an approximation to the equation of motion as an
impurity solver. Thus, more sophisticated many body approaches need to be formulated and applied to give
a better understanding of this phenomenon. We also found that, as the Coulomb disordered strengths
increase, the metallic and MI regions are reduced. For the spatially alternating interactions, in the limit
r = 0, we figured out that the system behaves like an Anderson model independent of UA. The different
phases (correlated metal, disordered MI, and AI) are found for 0 < r < 1, but their regions are changed: the
metallic region is reduced, while the AI region is enlarged as r decreases. Our findings are relevant to
current research in ultra-cold quantum gases and mixtures in optical lattices. We expect that some of our
theoretical predictions will be experimentally tested in ultra-cold quantum gases and mixtures in optical
lattices in the near future because now the spectral functions of ultracold atoms in disordered potentials can
be measured [38].
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