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Abstract

Magnetic competition in topological kagome magnets is studied by incorporating the spin—orbit
coupling, anisotropic Hund coupling and spin exchange into a tight-binding electron dynamics in the
kagome lattice. Using the Bogoliubov variational principle we find the stable phases at zero and finite
temperatures. At zero temperature and in the strong Ising-Hund coupling regime, a magnetic
tunability from the out-of-plane ferromagnetism to the in-plane antiferromagnetism is achieved
through a universal property of the critical in-plane Hund coupling. Atlow temperature the out-of-
plane ferromagnetism is stable until a finite crossing temperature. Above the crossing temperature the
in-plane antiferromagnetism is stable, but the magnetization of the out-of-plane ferromagnetism still
survives. This suggests a metastable coexistence of these magnetic phases in a finite temperature range.
Alarge anomalous Hall conductance is observed in the Ising-Hund coupling limit.

1. Introduction

The emergent phases resulting from the interplay between magnetism, correlations and topology are the subject
of intense research interest because of their intriguing properties and substantial interest for spintronic
technologies. The kagome lattice, a two-dimensional network of corner-sharing triangles, offers a versatile
platform to study such phases, because with the special lattice geometry it can host peculiar states including
unconventional magnetism [ 1-3], nontrivial topology [4, 5], flat band [6], Dirac electrons [7], quantum spin
liquids [8]. With the inclusion of electron correlations and spin—orbit coupling (SOC), the kagome lattice
engenders a rich interplay between unconventional magnetism, electron correlations and nontrivial topology.
Recently, experiments observed striking effects including large anomalous Hall effect and unusual magnetic
tunability in magnetic kagome materials [9—13]. In particular, the kagome magnet Co;Sn,S, exhibits an out-of-
plane ferromagnetic (FM) ground state, but at a finite temperature before reaching the paramagnetic (PM) state
an in-plane antiferromagnetism (AFM) appears and coexists with the out-of-plane FM [12, 13]. The
competition between these magnetic phases is tunable through applying either an external magnetic field or
hydrostatic pressure [12, 13].

The present work is motivated by the striking effects observed in the kagome magnets, and in particular, the
magnetic competition between the out-of-plane FM and the in-plane AFM [9-13]. We propose a minimal
model, which can qualitatively describe the observed effects. The model is generally applied to the family of
kagome magnets, but we particularly focus on the Cos;5n,S, magnet. Because the magnetic Co atoms form a
kagome lattice in the xy-plane, the proposed model is built on the two-dimensional kagome lattice. It describes a
system of itinerant electrons coupled with localized spins. The coupling is essentially an anisotropic Hund one.
In addition, the model also includes the SOC of itinerant electrons, and an anisotropic spin exchange (SE)
between the localized spins. The Hund coupling can generate the double exchange processes between itinerant
electrons and localized spins, and as a result a long-range magnetic ordering may be established [14, 15]. The
anisotropic SE on the kagome lattice can induce a magnetic competition between out-of-plane and in-plane
magnetic orderings of the localized spins [ 1-3]. As a consequence, the double exchange processes also depend on
the magnetic competition. The interplay between the Hund coupling and the SE in the presence of the SOC

©2021 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/2053-1591/ac433c
https://orcid.org/0000-0001-9579-3936
https://orcid.org/0000-0001-9579-3936
mailto:minhtien@iop.vast.vn
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1591/ac433c&domain=pdf&date_stamp=2021-12-24
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1591/ac433c&domain=pdf&date_stamp=2021-12-24
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

10P Publishing Mater. Res. Express 8 (2021) 126101 T-MT Tran etal

(b)

(a)
e e o o
AN '\Q/' ‘\G/ s

D
Vo,

— <

Figure 1. (a) Kagome lattice. The arrows on bonds mean the sign v;; = 1 of the SOC. ® is the flux penetrating each triangle. The green
dotted rhombus is the 3 x 3 unit cell. (b) Out-of-plane EM state. (c) & (d) In-plane 1 x 1and /3 x +/3 AFM states, respectively. The
signs £ indicate the spin chirality y = %1 of each triangle. The lattice parametera = 1.

could intriguingly impact on the magnetic competition and the topology of the system. We will use the
Bogoliubov variational principle to find the stable phases resulting from the interplay [ 16, 17]. The Bogoliubov
variational principle selects the phase with lowest free energy among a phase family of a proposed phase ansatz.
We find indeed a magnetic competition between the out-of-plane FM and the in-plane AFM. The magnetic
competition occurs across a magnetic tunability, which is achieved through a universal property of the critical
coupling. Atlow temperature the out-of-plane FM is stable until a crossing temperature, above which the in-
plane AFM is stable. However, the out-of-plane FM magnetization does not vanish in the in-plane AFM phase.
This suggests a metastable coexistence of the out-of-plane FM and the in-plane AFM in a finite temperature
range. In the Ising-Hund coupling limit, a large anomalous Hall conductance is also observed at the magnetic
phase transition.

The plan of the present paper is as follows. In section 2 we describe the proposed model. The numerical
results are presented in section 3. Section 4 is the conclusion.

2. Model

The kagome magnets have a layered crystal structure with stacked quasi-two-dimensional kagome layers
[10-13]. We focus on the two-dimensional kagome lattice, where the magnetic atoms are located in the kagome
lattice sites (see figure 1). For instance, in the Co3Sn,S, magnet, the magnetic Co atoms form the kagome lattice
in the xy-plane. Magnetism of Co atoms can be realized through their localized spins located in the kagome
lattice sites, reflecting strong correlations of the Co 3d orbitals in the Mott regime [18, 19]. In general, the SE
between the localized spins can be anisotropic [3]. Itinerant electrons come from the Sn 5p orbitals. The itinerant
electrons are coupled with the localized spins through an anisotropic Hund coupling. The Hamiltonian
describing the kagome magnets reads

H=-t) ci,cjg —ix Dy z/ijc,-taszs,cjs/
(ij),o (ij)s:s"
- X haSteloter — X0 LSS, m
()

i,a,ss’

where c;; (¢io) is the creation (annihilation) operator for electron with spin o at site i. (1, j) denote the nearest-
neighbor lattice sites. ¢ is the hopping parameter. The SOC is introduced through the direction-dependent
hopping and Ais its strength. The sign v;; = 4-1 when the hopping of the SOC is counterclockwise (clockwise).

o “is the Pauli matrix (o« = x, y, z). The first two terms in Hamiltonian (1) describes the band structure of
itinerant electrons in the presence of their SOC. They are essentially the Kane-Mele model on the kagome lattice,
and would describe a Z, topological insulator [20]. S;* is the a-component of localized spin at lattice site 7, and
without loss of generality it is renormalized that S} = 1. h,, is the a-component of the Hund coupling between
the itinerant and localized electrons. ], is the SE between the nearest-neighbor localized spins in the a-direction.
In general, we consider the case where the Hund coupling and the SE are isotropic in plane h, = h, = h,,,
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J=J, = — ), butanisotropic out of plane h, = h,, J, = J,. Note that the SE in plane ], and out of plane J, have
the opposite signs [3]. The Hund coupling essentially describes the double exchange processes between itinerant
electrons and localized spins [14, 15]. As widely adopted in the studies of magnetic materials, we will treat the
localized spins classically [14, 15,21-32].In addition, we omit the nearest-neighbor interactions between
itinerant electrons and localized spins. They would be weaker than the local Hund coupling. In the double-
exchange processes, the Hund coupling is dominant and the localized spins are ordered to minimize the kinetic
energy. The nearest-neighbor interactions may impact on the magnetic ordering, but not significantly at least in
the mean-field approximation. The SE part of Hamiltonian in (1) is just the Heisenberg XXZ model [1, 2]. For
classical spins the XXZ model produces a magnetic phase transition from the out-of-plane FM to an in-plane
magnetic state at J,, = 2], [1-3]. In the out-of-plane FM all spins are parallel to the z-axis, while in the in-plane
states, they are all in the xy-plane. The in-plane states are macroscopically degenerate. Any state with all spins
pointing along one of three directions mutually oriented at 120° can be the ground state [1, 2]. We will refer
them as in-plane 120° states. These in-plane states resemble the set of the ground states of the three-state Potts
model [33]. However, the thermal or quantum fluctuations can remove the macroscopic degeneracy[1, 2]. As
we will see later, the in-plane Hund coupling can also remove the degeneracy even when the spins are classical.
The model in the Ising-Hund coupling limit h,,, = 0 was previously proposed [3].

The tight-binding part of Hamiltonian (1) can be rewritten as

Hosu = — 3 tijeChCjos )
(o

where tji, = t + iv;o\A = rexp(£i®/3)withr = \/t* + X,and ® = 3arg(t + i)). In the following we use

r =1 as the energy unit. The quantity ® can be interpreted as a magnetic flux penetrating each triangle of the

kagome lattice (see figure 1(a)). It (P = 0, 7) induces topologically nontrivial band structure [4, 5]. When the

Hund coupling is included, its interplay with the SOC can emerge topological magnetic phases [31, 32].

Hamiltonian (2) is just the spin version of the quantum anomalous Hall model, which is obtained from the

double exchange model in the strong Hund coupling limit [4]. The Hall conductivity C, of electrons with spin &

in unit ¢*/h can be calculated by the Kubo formula

1 Il (kal j,|kb) (kb|j |ka)]
Neab (Exa — Ew)?

where j, is the current operator in a-direction, [ka) and Ey, are the normalized eigenstate and eigenvalue of the
Bloch Hamiltonian of electrons with spin o, f (x) is the Fermi—Dirac distribution function, and Nis the number
of lattice sites. At zero temperature T = 0, C, is just the invariant number of the first Chern class over the
Brillouin torus [34, 35]. Hamiltonian (2) for each spin component has three bands separated by two gaps [4].
The insulating state occurs at fillings n, = 1/3,2/3,and C, = 0. At these fillings the charge Hall conductivity
oYy = (e? / h)3_, C, vanishes, whereas the spin Hall conductivity o5, = (e? / h)y>, 0C, is quantized. This is
exactly the quantum spin Hall (QSH) effect proposed in the Z, topological insulators [20]. In the present work,
we focus on the halffillingn = Y’ ,n, = 1, because in order to establish the double exchange processes, itinerant
electrons need to be movable in the lattice.

(f (BExa) — f (Ew))> (3)

a

3. Numerical results

We will perform variational calculations to find the stable phases. The variational principle is based on the
Bogoliubov inequality

Q< Qy + <H - Htr>tr = Q: 4)

where (2, €2,, are the grand potentials corresponding to the ensembles defined by the studied H and trial H,,
Hamiltonians, respectively [16, 17]. The thermodynamical average is taken over the trial ensemble. Minimizing
() in equation (4) one would find the stable phases of the studied system.

3.1. Zero temperature

At zero temperature T = 0, ) = E — unN, where j is the chemical potential, E and 7 are the ground-state
energy and the electron filling of the trial state. In calculating the ground state energy and the electron filling, we
use the two-dimensional tetrahedron method to calculate the integration over the Brillouin zone [36]. We
consider different trial states, and in particular, the out-of-plane FM state, the in-plane 120° states and the
canted 120° states that are generated by the configurations of localized spins within the 3 x 3 unit cell. The

3 x 3 unit cell contains 27 lattice sites (see figure 1(a)). Within it there are 120 different 120° configurations
oflocalized spins in the xy-plane [1]. Among these spin configurations, the 1 x 1and the /3 x /3 AFM

ones are most prominent. These AFM states are depicted in figures 1(c), (d). They are defined within the

1 x landthe /3 x /3 unit cells. They are distinguishable by the vector chirality of each lattice triangle
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Figure 2. The grand potential 2 — Qpyy measured from that of the out-of-plane FM state at zero temperature T = 0 and half filling for
(a) canted spin states with the polar angle f and a fixed h,; (b) in-plane states (6 = 7/2). The blue (red) lines are the grand potential for
thein-plane 1 x 1 (/3 x ~/3) AFM state. Other model parameters: h, = 6, ], = 1, Ty =40 =m/3.
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Figure 3. The critical line h;"y via (h, + 2J, — J,) athalffilling and flux ® = 7/3. The ground state is the out-of-plane FM when
hy < h},,and the in-plane AFM when hy, > h,. The dotted line is the asymptotic b, = h, + 2], — Jy.

X=[2/331(S; x S, + S, x S5 + S5 X ;) = e, Y, which s parallel to the z-axis (e, is the unit vector of the z-
axis). The 1 x 1 AFM has the uniform chirality y = 1, whereas the +/3 x /3 AFM has the staggered chirality

X = =+ 1. The canted 120° states are the non-coplanar spin states, in which all localized spins have the same polar
angle 6, and their projections in the xy-plane form the in-plane 120° states. The canted state with § = 0 is actually
the out-of-plane FM one. When 0 = 7/2, the canted states are the in-plane 120° states.

In figure 2(a) we plot the grand potential of all canted 120° states, defined within the 3 x 3 unit cell. It shows
that the grand potential is minimal at either f = 0 or § = /2, or equivalently, the ground state is either the out-
of-plane FM or the in-plane 1 x 1 AFM. Note that the in-plane /3 x /3 AFM has a higher grand potential.
The in-plane AFM experimentally observed in CosSn,S; isthe 1 x 1 one[12, 13]. Figure 2(b) also shows a
transition from the out-plane FM to the in-plane 1 x 1 AFM states when the in-plane Hund coupling h,, varies.
The magnetic phase transition occurs at a critical value hjy. When h,, < h;';, the out-of-plane FM is stable, and
when h,, > h;’;, thein-plane 1 x 1 AFM is stable, because their grand potential has a lowest value. We have also
checked the finding with other variational configurations of localized spins.

The phase diagram is summarized in figure 3. In the regime of strong Ising-Hund coupling (h, > 3) we
observed that the critical value h;ky isa universal function of Ah, = h, + 2], — ], in the sense that h;';, is
independent on details of ., J, ], but their combination Ah,, as shown in figure 3. The critical line h;ﬁ,(Ahz)

approaches the asymptotic h;’;, = Ah, atlarge Ah,. The universal property of h;’;,(AhZ) suggests the equivalence
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Figure 4. The electron filling # and the spin components of the Hall conductivity C, in unit e*/h via the chemical potential ju at zero
temperature T = 0 in the Ising-Hund coupling limit &, = 0. Model parameters h, = 6, ® = 7/3.

between the Hund coupling and the SE, as well as between their out-of-plane and in-plane components in the
magnetic competition. Due to the universal property, the magnetic phase transition from the out-of-plane FM
to the in-plane AFM states is tunable through tuning the components of either the Hund coupling or the SE.
This also allows us to drop the SE in studying the magnetic phase transition when h, is strong. Without the SE,
the many-body local methods such as the dynamical mean field theory can safely be used [37]. Actually, the SE
can be generated by the Hund coupling through the Ruderman-Kittel-Kasuya-Yosida mechanism, and it is
already implicitly present in the models having the Hund coupling [38—40]. The universal function h;ﬁ,(Ahz)
also implies us that the kagome magnets with strong Ising-Hund coupling form a common family of materials,
where the magnetic phase transition from out-of-plane to the in-plane magnetisms is flexibly tunable and does
not depend on specific values of the Hund coupling and the SE aslong as A h, is fixed. The magnetic tunability
observed in Co;Sn,S, suggests that this kagome magnet has a strong anisotropic Hund coupling and may belong
to the suggested family of materials [12, 13]. Experiments also observed that CosSn,S, in the FM phase exhibits
unconventional critical behaviors, which suggest an anomalous magnetic state below the FM critical
temperature [41]. The anomalous magnetic state may be relevant to the flexible magnetic tunability between the
out-of-plane FM and the in-plane AFM phases.

From the universal property of h;ky(Ahz), one can see that the magnetic phase transition still occurs in the
Ising-Hund coupling limit h,,, = 0, providing J,, with tunability [3]. In this limit, the Bloch Hamiltonian of
itinerant electrons in a fixed configuration of localized spins is diagonal in the spin index. Therefore, the Hall
conductivity can be separated into the spin-component C,, which can still be calculated by the Kubo formula
(3). Both the electron filling and the Hall conductivity are independent of the SE. However, the SE affects the
ground-state energy, and it can drive the magnetic phase transition. In figure 4 we plot the electron filling and the
spin components of the Hall conductivity as a function of the chemical potential at T = 0. It shows that the out-
of-plane FM state has quantized C, = 1 at fillings n = 1/3,2/3,4/3,5/3 and the in-plane AFM has quantized
C, = oatfillings n = 2/3,4/3. Therefore, the charge Hall conductivity 0%, is only quantized in the out-of-plane
FM and vanishes in the in-plane AFM. However, the spin Hall conductivity o7}, is quantized in the in-plane
AFM. Nearby half filling, both the charge and spin Hall conductivities in the out-of-plane FM vanish. However,
the spin Hall conductivity in the in-plane AFM is finite, although it is not quantized. It yields alarge anomalous
spin Hall conductance because */ha ~ 717 Q' cm ™" with typical lattice parameter a ~ 5.4 A [10]. The finite
value of the spin Hall conductivity at half filling results from an interference of two quantum spin Hall
conductivities at fillings # = 2/3 and n = 4/3. This finding indicates that a large anomalous spin Hall
conductance may be observed at half filling in the in-plane AFM.

3.2. Finite temperature
At finite temperature we use the following trial Hamiltonian in the Bogoliubov variational calculation

H, = Htcr + Htsr’ ®)
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Figure 5. (a) The out-of-plane FM and the in-plane 1 x 1 AFM magnetizations M(T) via temperature T. (b) The grand potential
Q — Qpyymeasured from that of the PM state via temperature T. (c) The grand potential 2(6) — €2(0) measured from that of the out-
of-plane FM (f = 0) via temperature T. T is the temperature below which the out-of-plane FM is stable. T¢, and T are the critical
temperatures, where the out-of-plane FM and the in-plane AFM magnetizations respectively vanish. Model parameters h, = 6,
hy=1,].=1,]i, = 4,® = 7/3 and halffilling n = 1.

Hi = —t Z CinCio — 1A Z Vi c; OZiCj — Z Ufcl olicis (6)
(ij)o (irf)ss i,ss’,a
s
H,; = - Z Viasiu’ 7
i,ss’,a
where U; and V; are the local mean fields acting on the itinerant electron and localized spins, respectively. The
trial Hamiltonian (5) disentangles the itinerant electrons and the localized spins in a mean field approximation.

In order to describe both the out-of-plane FM and the in-plane AFM phases, the following ansatzs for the local
mean fields at the 3 sites of the triangles in the kagome lattice

Z, = MZ(T)(g sin 6, f% sin @, cos 9), (8)
7, = MZ(T)(g sin 0, —%sin 0, cos 9), ©)
Z; = Mz(T)(0, sinf, cos6), (10)

are used. Here Z indicates the local mean fields U V, and 6 is the polar angle of the mean fields. The ansatz gives
the out-of-plane FM when 6 = 0, and the in-plane 1 x 1 AFM when 6 = 7/2. When 6 = 0, 7/2, it describes the
canted 120° spin structure, the projection of which in the xy-plane forms the in-plane AFM. Both local mean
fields acting on the itinerant electron and localized spins have the same ansatz, but with different amplitudes
MAT), reflecting the effect of the strong Hund coupling [14]. A mean-field solution is obtained by minimizing
the variational {2 in the Bogoliubov inequality (4) with respect to My(T) and M(T)
o =0, o =0. (11)

oMy OMy
Once the mean-field solution is found, the magnetization is calculated by M(T) = |(S)|.

In figure 5 we plot the variational solutions for the out-of-plane FM and the in-plane AFM phases at half
filling. It shows that below a crossing temperature T*, where the grand potentials of the out-of-plane FM and of
the in-plane AFM phases are equal, the out-of-plane FM phase has alower grand potential, therefore it is stable
in the temperature range T < T*. However, at the crossing temperature T* the magnetization M(T) of the out-
of-plane FM ordering does not vanish. When temperature increases, it decreases and vanishes at the critical
temperature T¢; > T°. The AFM phase is stable from the crossing temperature T* until the critical temperature
Ty > Tey. Attemperature T > T, the PM phase is stable. In the temperature range T* < T < T¢y, the AFM
phase is stable, but the magnetization of the out-of-plane FM ordering is still finite. We interpret this
temperature range as the region of metastable coexistence of the out-of-plane FM and the in-plane AFM phases.
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Figure 6. Phase diagram at finite temperature. Model parameters h,=6, h,, = 1,], = 1,® = 7/3 and halffilling n = 1.

A recent muon-spin rotation study observed the coexistence of the in-plane AFM and the out-of-plane FM
orderings in a finite temperature range [ 12, 13]. The phase transition from the out-of-plane FM to the in-plane
AFM occurs at the crossing point T*, which is infinitely degenerate, as can be seen in figure 5(c). At the crossing
point, any canted phase with any # has the same grand potential. Therefore, the magnetic phase transition is
continuous, although the order parameter does not vanish. Without such infinitely degenerate crossing point,
the phase transition from out-of-plane to in-plane magnetism would abruptly occur. The two critical
temperatures of the FM and the AFM orderings were also detected by experiments [12, 13]. In undoped
Co35n,S,, Ty and T, are close that the experimental measurements of the out-of-plane and the in-plane
magnetizations did not detect their difference [42]. However, there is a signal of suppression of the out-of-plane
FM magnetization at temperature T [42]. In doped case, the critical temperatures T, and T are significantly
distinct [13]. A typical phase diagram at finite temperature is plotted in figure 6. There is a finite region of ],
where the ground state is the out-of-plane FM, but when temperature increases the metastable FM phase
coexists with the in-plane AFM phase. When the magnetization of the out-of-plane FM vanishes, the in-plane
AFM phase is stable until the PM phase is reached. The magnetic competition and the phase transition between
the FM and the AFM phases were also observed in perovskite manganites at some dopings, where the FM
magnetization is suppressed at the Neel temperature [43].

4, Conclusion

We have studied the interplay between the SOC, the Hund coupling and the SE in the kagome lattice. It causes
the magnetic competition between the out-of-plane FM and the in-plane AFM orderings. The magnetic
competition qualitatively describes striking effects observed in the kagome magnets, including the magnetic
tunability, the large anomalous Hall conductance, the coexistence of the out-of-plane FM and the in-plane AFM
orderings in a finite temperature range. At finite temperature the magnetic phase transition is continuous
although the order parameter does not vanish. In the present work, quantum corrections to the mean field
solution are not considered yet. They may generate topological magnetic excitations, which may impact on the
interplay between the SOC, the Hund coupling and the SE. We leave this problem for a further study.
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