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General one-loop contributions to the decay amplitudes H → νl ν̄lγ are presented, consider-
ing all possible contributions of additional heavy vector gauge bosons, fermions, and charged
(and also neutral) scalar particles appearing in the loop diagrams. Moreover, the results can be
applied directly when extra neutrinos (apart from three ones in the standard model) are taken
into account in final states. Analytic results are expressed in terms of Passarino–Veltman scalar
functions which can be evaluated numerically using LoopTools. In the standard model frame-
work, these analytical results are generated and cross-checked with previous computations. We
find that our results are well consistent with these computations. Within the standard model
limit, phenomenological results for the decay channels are also studied using the present input
parameters at the Large Hadron Collider. Lastly, the calculation is also applied to the Two Higgs
Doublet Model framework as another example.
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1. Introduction

Searching for all decay modes of the standard model-like (SM-like) Higgs boson is one of the main
purposes of the High Luminosity Large Hadron Collider (HL-LHC) [1,2] as well as Future Lepton
Colliders [3], because the partial decay widths of the Higgs boson contain an important information
for testing the nature of Higgs sector. Among the Higgs decay modes, the channels of H → invisible
particles [4–10] and H → γ plus invisible particles [11,12] are greatly of interest, for the following
reasons. First, these decay processes can be measured at the LHC [4–6,8,11,12]. Therefore, they
could be used for verifying the SM at higher energy regions. On the other hand, there exist many
theories beyond the standard models (BSM) in which new invisible particles rather than neutrinos
are proposed. In addition, many new heavy particles that are absent from the SM may exchange in
the loop diagrams of the aforementioned decay channels. As a result, the decay widths of H → νl ν̄lγ

could provide an useful tool for controlling the SM background as well as constraining new physical
parameters.

One-loop formulas for H → νl ν̄lγ within the SM framework have been computed in Ref. [13].
Besides that, an independent model for investigating Higgs decay to a photon and invisible particles
has been proposed in Ref. [14]. The decay channel of Higgs to a photon and the light vector gauge
bosons which they belong to U (1) extension of the SM has also considered in Ref. [15]. In a next-to-
minimal supersymmetry (SUSY) framework, Higgs decay to a photon plus a pair of lightest SUSY
particles was studied in Ref. [16]. In Ref. [16], the decay process was used to probe dark matter
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as well as constraining SUSY parameters. The supersymmetry-breaking scale has been examined
through the Higgs decay to a photon and gravitinos in [17].

In this article, we present general one-loop formulas for the decay H → νl ν̄lγ . The results are valid
for many BSMs; new heavy vector bosons, fermions, and scalar particles predicted by these models
are considered in the loop diagrams. Moreover, the calculations can be extended directly when the
extra neutrinos (rather than 3 in SM) are taken into account in final states. Analytic results are
expressed in terms of Passarino–Veltman (PV) scalar functions which can be computed numerically
using the package LoopTools. The calculations are also verified numerically by checking the
ultraviolet (UV) finiteness of the results. We find that the results are in good stability when varying
UV cutoff parameters. The results are then applied to the case of the SM and the decay widths are
generated and cross-checked with the previous computations. Our results in this work are in good
agreement with the previous references. All physical results for the decay channels within the SM
are examined using the present input parameters at the LHC. Lastly, the calculation is also applied
to the Two Higgs Doublet Model (THDM) framework [18]. The phenomenological analysis for the
decay processes in several BSMs are referred to our next papers.

The results of this work can be applied to calculate one-loop contributions of new particles predicted
by well-known BSMs constructed previously, for example, many popular SM extensions that include
only new charged scalars such as THDM [18]. In the SUSY model, new loop contributions come
from charged Higgs bosons, superpartners of leptons and gauge bosons. One-loop contributions from
new charged gauge bosons may appear in many electroweak gauge extensions such as the left–right
models (LR) constructed from SU (2)L × SU (2)R × U (1)Y [19–21], the 3-3-1 models (SU (3)L ×
U (1)X ) [22–28], the 3-4-1 models (SU (4)L × U (1)X ) [28–33], etc. These one-loop contributions
may be significant in the amplitudes of the mentioned decay processes. Phenomenological results
for the decay processes in the above models will be very interesting for further studies, which will
be our future projects.

The layout of the paper is as follows: In Sect. 2, we briefly present the one-loop tensor reduction
method. Detailed calculations for one-loop contributions to H → νl ν̄lγ are also presented in this
section, as are the applications of this work to the SM and THDM. Conclusions and outlook are
detailed Sect. 3. In the appendices, Feynman rules and couplings involved in the decay processes
are shown. Further, checks for the calculation are discussed and we also briefly review THDM in
the appendices.

2. Calculation

Detailed calculations for one-loop contributions to H → νl ν̄lγ are presented in this section. We first
briefly describe the one-loop tensor reduction method in the following subsection. General analytic
results and physical results of the decay processes are then shown in the next subsections.

2.1. Method

In this calculation, we follow the tensor reduction method developed in Ref. [34]. Following this
technique, tensor one-loop integrals with N -external lines can be decomposed into scalar functions
with N ≤ 4. The approach will be explained briefly in the following paragraphs.

First, one-loop one-, two-, three- and four-point tensor integrals with rank P are defined:

{A; B; C; D}μ1μ2···μP = (μ2)2−d/2
∫

ddk

(2π)d
kμ1kμ2 · · · kμP

{D1; D1D2; D1D2D3; D1D2D3D4} . (1)

2/24

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/10/103B07/6381590 by guest on 25 O

ctober 2021



PTEP 2021, 103B07 K. H. Phan et al.

In this formula, Dj (j = 1, · · · , 4) are the inverse Feynman propagators which are given as

Dj = (k + qj)
2 − m2

j + iρ, (2)

where qj =
j∑

i=1
pi, pi are the external momenta and mj are internal masses in the loops. Dimensional

regularization is performed in the space–time dimension d = 4 − 2ε. The parameter μ2 plays the
role of a renormalization scale. If the numerators of the integrands in Eq. (1) become 1, we have
scalar one-loop one-, two-, three- and four-point integrals [34] (they are called the A0, B0, C0 and
D0 functions). We then present the explicit reduction formulas for one-loop one-, two-, three- and
four-point tensor integrals up to rank P = 3 as follows [34]:

Aμ = 0, (3)

Aμν = gμνA00, (4)

Aμνρ = 0, (5)

Bμ = qμB1, (6)

Bμν = gμνB00 + qμqνB11, (7)

Bμνρ = {g, q}μνρB001 + qμqνqρB111, (8)

Cμ = qμ1 C1 + qμ2 C2 =
2∑

i=1

qμi Ci, (9)

Cμν = gμνC00 +
2∑

i,j=1

qμi qνj Cij, (10)

Cμνρ =
2∑

i=1

{g, qi}μνρC00i +
2∑

i,j,k=1

qμi qνj qρk Cijk , (11)

Dμ = qμ1 D1 + qμ2 D2 + qμ3 D3 =
3∑

i=1

qμi Di, (12)

Dμν = gμνD00 +
3∑

i,j=1

qμi qνj Dij, (13)

Dμνρ =
3∑

i=1

{g, qi}μνρD00i +
3∑

i,j,k=1

qμi qνj qρk Dijk . (14)

The short notation [34] {g, qi}μνρ is used as follows in the above relations: {g, qi}μνρ = gμνqρi +
gνρqμi + gμρqνi . The scalar coefficients A00, B1, · · · , D333 in the right-hand sides of the above equa-
tions are so-called PV functions [34]. Analytic formulas of the PV functions are well-known and
they have been implemented into LoopTools [35] for numerical computations.

2.2. General one-loop contributions to H → νl ν̄lγ

General one-loop contributions to H (p) → νl(q1)ν̄l(q2)γ (q3) arbitrarily beyond the SMs are calcu-
lated in this subsection. One-loop Feynman diagrams involving the decay processes in the unitary
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gauge can be grouped into several classes shown in the following paragraphs. For an on-shell external
photon, the ward identity is implied. As a result, we apply the relation qν3ε

∗
ν = 0 for simplifying

the amplitudes, where qν3, ε∗ν are the momentum and the polarization vector of the external photon,
respectively. Kinematic invariant variables involved in the decay processes are included:

p2 = M 2
H , q2

1 = q2
2 = q2

3 = 0,

q12 = q2 = (q1 + q2)
2 = 2q1 · q2, q13 = 2q1 · q3, q23 = 2q2 · q3. (15)

The general one-loop amplitude which obeys the structure of the Lorentz invariance can be
decomposed as follows [36]:

Aloop =
2∑

k=1

{
[qμ3 qνk − gμνq3 · qk ]ū(q1)(Fk ,RγμPR + Fk ,LγμPL)v(q2)

}
ε∗ν . (16)

In this equation, all form factors are computed as follows:

Fk ,L/R = FTrig
k ,L/R + FBox

k ,L/R (17)

for k = 1, 2. Each form factor in (16) will be contributed to by different kind of particles such as
vector bosons Vi, charged scalar particles Si and fermions fi exchanging in loop diagrams. These
particles appear in many BSMs, the Feynman rules of which are collected in Table C.1; all their
couplings are generalized as in Table C.2. After using them to write down all one-loop contributions
to the decay amplitudes, the Package-X [37] will be used to contract all Dirac traces in the general
dimension d. The analytic formulas of all one-loop contributions will then be decomposed into one-
loop tensor integrals. In this step, the above tensor reduction method is employed to transform all
tensor integrals into scalar functions included in the form factors Fk ,L/R. Finally, they are collected
as functions of the well-known PV scalar coefficients [34,35].

2.2.1. One-loop triangle diagrams
We are going to present the calculation in detail. We first arrive at the contributions of one-loop
triangle diagrams by exchanging vector bosons Vi, Vj in the loop (seen Fig. 1).

By applying one-loop tensor reduction method in the previous subsection, the form factors are
expressed in terms of PV-functions as follows:

FTrig
k ,L |Vi ,Vj =

∑
Vi ,Vj

gHViVj gL
V 0

k νl ν̄l

32π2M 2
Vi

M 2
Vj
(q2 − M 2

V 0
k

+ i�V 0
k
MV 0

k
)

×
{[

eQgV 0
k ViVj

(M 2
H + M 2

Vi
+ M 2

Vj
)+ 2gV 0

k AViVj
(M 2

H − M 2
Vi
)
]
B11(M

2
H , M 2

Vj
, M 2

Vi
)

+
[
eQgV 0

k ViVj
(M 2

H − M 2
Vi

+ 3M 2
Vj
)− 2gV 0

k AViVj
M 2

Vj

]
B1(M

2
H , M 2

Vj
, M 2

Vi
)

+ 2M 2
Vj

[
eQgV 0

k ViVj
− gV 0

k AViVj

]
B0(M

2
H , M 2

Vj
, M 2

Vi
)

+ 2gV 0
k AViVj

[
M 2

H B111 + B00 + 2B001

]
(M 2

H , M 2
Vj

, M 2
Vi
)

+ 4eQgV 0
k ViVj

M 2
Vj

(
3M 2

Vi
+ M 2

Vj
− q2

)
C0(0, q2, M 2

H , M 2
Vj

, M 2
Vj

, M 2
Vi
)
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Fig. 1. One-loop triangle diagrams with exchanging vector bosons Vi,j particles in the loop.

+ 2eQgV 0
k ViVj

[
M 2

H (M
2
Vi

+ M 2
Vj

− q2)+ (4d − 6)M 2
Vi

M 2
Vj

+ M 4
Vi

+ M 4
Vj

− q2(M 2
Vi

+ M 2
Vj
)
]
(C22 + C12)(0, q2, M 2

H , M 2
Vj

, M 2
Vj

, M 2
Vi
)

+ 2eQgV 0
k ViVj

[
M 2

H (M
2
Vi

+ M 2
Vj

− q2)+ (4d − 6)M 2
Vi

M 2
Vj

+ 3M 4
Vj

− M 4
Vi

+ q2(M 2
Vi

− 3M 2
Vj
)
]
C2(0, q2, M 2

H , M 2
Vj

, M 2
Vj

, M 2
Vi
)

}
, (18)

FTrig
k ,R |Vi ,Vj = FTrig

k ,L |Vi ,Vj (g
L
V 0

k νl ν̄l
→ gR

V 0
k νl ν̄l

). (19)

We note that the form factors follow the relation FTrig
k ,L/R = FTrig

1,L/R = FTrig
2,L/R, and FTrig

k ,R |Vi ,Vj can be

obtained directly by replacing gL
V 0

k νl ν̄l
→ gR

V 0
k νl ν̄l

in FTrig
k ,L |Vi ,Vj (as shown in Eq. 18).

We next take into account the attributions of one-loop triangle graphs in which a boson Vi and two
charged scalar particles Sj are internal lines (as shown in Fig. 2). Applying the same procedure, the
form factors read:

FTrig
k ,L |Vi ,Sj =

∑
Vi,Sj

eQgHViSj gV 0
k ViSj

gL
V 0

k νl ν̄l

8π2M 2
Vi
(q2 − M 2

V 0
k

+ i�V 0
k
MV 0

k
)

×
{
(M 2

Sj
− M 2

Vi
− M 2

H )
[
C22 + C12

]
(0, q2, M 2

H , M 2
Sj

, M 2
Sj

, M 2
Vi
)

+ (M 2
Sj

+ M 2
Vi

− M 2
H ) C2(0, q2, M 2

H , M 2
Sj

, M 2
Sj

, M 2
Vi
)

}
, (20)

FTrig
k ,R |Vi ,Sj = FTrig

k ,L |Vi ,Sj (g
L
V 0

k νl ν̄l
→ gR

V 0
k νl ν̄l

). (21)
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Fig. 2. One-loop triangle diagrams with a vector boson Vi and two scalar bosons Sj exchanging in the loop.

Fig. 3. One-loop triangle diagrams with two vector bosons Vj and a scalar boson Si in the loop.

In addition, we have two vector bosons Vj and a charged scalar Si exchanging in one-loop triangle
diagrams (as described as in Fig. 3). In the same manner as the above procedure, the form factors
FTrig

k ,L/R are presented as functions of PV coefficients:

FTrig
k ,L |Si ,Vj =

∑
Si ,Vj

eQgHSiVj gV 0
k SiVj

gL
V 0

k νl ν̄l

16π2M 2
Vj
(q2 − M 2

V 0
k

+ i�V 0
k
MV 0

k
)

×
{
(M 2

H − M 2
Si

+ M 2
Vj
)
[
C22 + C12 + C2

]
(0, q2, M 2

H , M 2
Vj

, M 2
Vj

, M 2
Si
)

+ 2M 2
Vj

[
C2 + C0

]
(0, q2, M 2

H , M 2
Vj

, M 2
Vj

, M 2
Si
)

}
, (22)

FTrig
k ,R |Si ,Vj = FTrig

k ,L |Si ,Vj (g
L
V 0

k νl ν̄l
→ gR

V 0
k νl ν̄l

). (23)

Further, we also mention the attributions of one-loop bubble and triangle diagrams with both charged
scalar bosons Si, Sj in the loop (as depicted in Fig. 4). The result for the form factors FTrig

k ,L/R reads

FTrig
k ,L |Si ,Sj =

∑
Si ,Sj

eQgHSiSj gV 0
k SiSj

gL
V 0

k νl ν̄l

4π2(q2 − M 2
V 0

k
+ i�V 0

k
MV 0

k
)

[
C22 + C12 + C2

]
(0, q2, M 2

H , M 2
Sj

, M 2
Sj

, M 2
Si
),

(24)
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Fig. 4. One-loop bubble and triangle diagrams with all charged scalar bosons Si,j internal lines.

Fig. 5. Feynman triangle diagrams with fermion fi/j particles exchanging in the loop.

FTrig
k ,R |Si ,Sj = FTrig

k ,L |Si ,Sj (g
L
V 0

k νl ν̄l
→ gR

V 0
k νl ν̄l

). (25)

Lastly, we also have fermions exchanging in the loop of the triangle Feynman diagrams which are
depicted in Fig. 5. The form factors FTrig

k ,L/R for fermion fi/j contributions can be expressed as follows:

FTrig
k ,L |fi ,fj =

∑
fi ,fj

eQf N f
C gL

V 0
k νl ν̄l

16π2(q2 − M 2
V 0

k
+ i�V 0

k
MV 0

k
)

×
{
(gL

Hfifj + gR
Hfifj )(g

L
V 0

k fifj
+ gR

V 0
k fifj
)

×
[
2(mfi + mfj )

(
C22 + C12

)
(0, q2, M 2

H , m2
fj , m2

fj , m2
fi)
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Fig. 6. One-loop box diagrams with Vi, Vj exchanging in the loop.

+ (mfi + 3mfj )C2(0, q2, M 2
H , m2

fj , m2
fj , m2

fi)+ mfj C0(0, q2, M 2
H , m2

fj , m2
fj , m2

fi)
]

+ (gR
Hfifj − gL

Hfifj )(g
R
V 0

k fifj
− gL

V 0
k fifj
)

×
[
2(mfj − mfi)

(
C22 + C12

)
(0, q2, M 2

H , m2
fj , m2

fj , m2
fi)

+ (3mfj − mfi)C2(0, q2, M 2
H , m2

fj , m2
fj , m2

fi)+ mfj C0(0, q2, M 2
H , m2

fj , m2
fj , m2

fi)
]}

,

(26)

FTrig
k ,R |fi ,fj = FTrig

k ,L |fi ,fj (gL
V 0

k νl ν̄l
→ gR

V 0
k νl ν̄l

). (27)

2.2.2. One-loop box diagrams
We turn our attention to all one-loop box Feynman diagrams contributing to the decay processes.
First, one-loop four-point Feynman diagrams having Vi, Vj in the loop (as described in Fig. 6) are
performed. The form factors FBox

k ,L/R with k = 1, 2 are then given by

FBox
1,L |Vi ,Vj =

∑
Vi ,Vj

eQgHViVj gL
Vilνl

gL
Vjlνl

16π2M 2
Vi

M 2
Vj

×
{
(M 2

H + M 2
Vi

+ M 2
Vj
)
[
(C22 + C12)(0, q12, M 2

H , M 2
Vi

, M 2
Vi

, M 2
Vj
)

+ (C22 + C12)(q12, 0, M 2
H , M 2

Vi
, M 2

Vj
, M 2

Vj
)
]
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+ (M 2
H + 3M 2

Vi
− M 2

Vj
)
[
C2(0, q12, M 2

H , M 2
Vi

, M 2
Vi

, M 2
Vj
)

+ C2(q12, 0, M 2
H , M 2

Vi
, M 2

Vj
, M 2

Vj
)
]

+ (2M 2
Vi

− 2M 2
Vj
)C1(q12, 0, M 2

H , M 2
Vi

, M 2
Vj

, M 2
Vj
)

+ 2M 2
Vi

[
C0(0, q12, M 2

H , M 2
Vi

, M 2
Vi

, M 2
Vj
)+ C0(q12, 0, M 2

H , M 2
Vi

, M 2
Vj

, M 2
Vj
)
]

+ m2
l

[
(C22 + C12 + C2)(0, 0, q13, m2

l , m2
l , M 2

Vj
)

− (C22 + C12 + C2)(0, 0, q13, m2
l , M 2

Vj
, M 2

Vj
)
]

+
[
m2

l (M
2
H + M 2

Vi
+ M 2

Vj
)+ (2d − 4)M 2

Vi
M 2

Vj

]
×
[
(D33 + D23)(0, 0, 0, M 2

H ; q12, q13, M 2
Vi

, m2
l , M 2

Vj
, M 2

Vj
)

+ (D33 + D23 + D13)(0, 0, 0, M 2
H ; q23, q12, M 2

Vi
, M 2

Vi
, m2

l , M 2
Vj
)

− (D33 + D23)(0, 0, 0, M 2
H ; q23, q13, M 2

Vi
, m2

l , m2
l , M 2

Vj
)
]

+
[
m2

l (M
2
H + 3M 2

Vi
− M 2

Vj
)+ (2d − 8)M 2

Vi
M 2

Vj

]
×
[
D3(0, 0, 0, M 2

H ; q12, q13, M 2
Vi

, m2
l , M 2

Vj
, M 2

Vj
)

+ D3(0, 0, 0, M 2
H ; q23, q12, M 2

Vi
, M 2

Vi
, m2

l , M 2
Vj
)

− D3(0, 0, 0, M 2
H ; q23, q13, M 2

Vi
, m2

l , m2
l , M 2

Vj
)
]

+
[
2m2

l (M
2
Vi

− M 2
Vj
)− 4M 2

Vi
M 2

Vj

]
D2(0, 0, 0, M 2

H ; q12, q13, M 2
Vi

, m2
l , M 2

Vj
, M 2

Vj
)

+ 2m2
l M 2

Vi

[
D0(0, 0, 0, M 2

H ; q12, q13, M 2
Vi

, m2
l , M 2

Vj
, M 2

Vj
)

+ D0(0, 0, 0, M 2
H ; q23, q12, M 2

Vi
, M 2

Vi
, m2

l , M 2
Vj
)

− D0(0, 0, 0, M 2
H ; q23, q13, M 2

Vi
, m2

l , m2
l , M 2

Vj
)
]}

, (28)

FBox
1,R |Vi ,Vj = FBox

1,L |Vi ,Vj (g
L
Vilνl

→ gR
Vilνl

; gL
Vjlνl

→ gR
Vjlνl

), (29)

FBox
2,L |Vi ,Vj = FBox

1,L |Vi ,Vj ({q13, q23} → {q23, q13}), (30)

FBox
2,R |Vi ,Vj = FBox

2,L |Vi ,Vj (g
L
Vilνl

→ gR
Vilνl

; gL
Vjlνl

→ gR
Vjlνl

). (31)

We find that analytic results for the above form factors are given up to D33-coefficient functions.
The reason for that fact can be explained as follows. Although tensor one-loop box integrals with
rank P ≥ 4 appear in each Feynman diagram in Fig. 6, we find that these terms are cancelled out
after summing all diagrams. Consequently, the amplitudes are only decomposed up to one-loop box
integrals with rank P = 2.

We next consider one-loop box diagrams with Vi, Sj in the loop. In order to get the symmetry of
FBox

k ,L/R which follow the relation

FBox
1,L/R|Vi ,Sj = FBox

2,L/R|Vi ,Sj ({q13, q23} → {q23, q13}), (32)
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Fig. 7. Feynman box diagrams for Vi,j, Si,j in the loop.

we should consider the 6 diagrams shown in Fig. 7 and Fig. 8 together. This is because the coupling
of charged scalar S±

i to lν̄l (and to l̄νl) take different forms (seen Table C.2 for more detail).
The form factors FBox

k ,L/R are then presented as follows:

FBox
1,L |Vi ,Sj =

∑
Vi ,Sj

eQml gHViSj gR
Sjlνl

gL
Vilνl

16π2M 2
Vi

×
{
(M 2

H − M 2
Sj

+ M 2
Vi
)
[
(D33 + D23 + D13)(0, 0, 0, M 2

H ; q23, q12, M 2
Vi

, M 2
Vi

, m2
l , M 2

Sj
)

− (D33 + D23 + D13)(0, 0, 0, M 2
H ; q23, q12, M 2

Sj
, M 2

Sj
, m2

l , M 2
Vi
)

− (D33 + D23)(0, 0, 0, M 2
H ; q12, q13, M 2

Vi
, m2

l , M 2
Sj

, M 2
Sj
)

+ (D33 + D23)(0, 0, 0, M 2
H ; q12, q13, M 2

Sj
, m2

l , M 2
Vi

, M 2
Vi
)

− (D33 + D23)(0, 0, 0, M 2
H ; q23, q13, M 2

Vi
, m2

l , m2
l , M 2

Sj
)

− (D33 + D23)(0, 0, 0, M 2
H ; q23, q13, M 2

Sj
, m2

l , m2
l , M 2

Vi
)
]

+ (M 2
H − M 2

Sj
+ 3M 2

Vi
)
[
D3(0, 0, 0, M 2

H ; q23, q12, M 2
Vi

, M 2
Vi

, m2
l , M 2

Sj
)

− D3(0, 0, 0, M 2
H ; q12, q13, M 2

Vi
, m2

l , M 2
Sj

, M 2
Sj
)

− D3(0, 0, 0, M 2
H ; q23, q13, M 2

Vi
, m2

l , m2
l , M 2

Sj
)
]
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Fig. 8. Feynman box diagrams for Vi,j, Si,j in the loop.

+ (M 2
H − M 2

Sj
− M 2

Vi
)
[
D3(0, 0, 0, M 2

H ; q12, q13, M 2
Sj

, m2
l , M 2

Vi
, M 2

Vi
)

− D3(0, 0, 0, M 2
H ; q23, q12, M 2

Sj
, M 2

Sj
, m2

l , M 2
Vi
)

− D3(0, 0, 0, M 2
H ; q23, q13, M 2

Sj
, m2

l , m2
l , M 2

Vi
)
]

+ 2M 2
Vi

[
D0(0, 0, 0, M 2

H ; q23, q12, M 2
Vi

, M 2
Vi

, m2
l , M 2

Sj
)

− D0(0, 0, 0, M 2
H ; q23, q13, M 2

Vi
, m2

l , m2
l , M 2

Sj
)

− (D2 + D0)(0, 0, 0, M 2
H ; q12, q13, M 2

Vi
, m2

l , M 2
Sj

, M 2
Sj
)

− D2(0, 0, 0, M 2
H ; q12, q13, M 2

Sj
, m2

l , M 2
Vi

, M 2
Vi
)
]

− 3
[
(C22 + C12 + C2)(0, 0, q13, m2

l , m2
l , M 2

Sj
)

+ (C22 + C12 + C2)(0, 0, q13, m2
l , M 2

Sj
, M 2

Sj
)
]

+ (C22 + C12 + C2)(0, 0, q13, m2
l , m2

l , M 2
Vi
)

− (C22 + C12 + C2)(0, 0, q13, m2
l , M 2

Vi
, M 2

Vi
)

}
, (33)

FBox
1,R |Vi ,Sj = FBox

1,L |Vi ,Sj (g
R
Sjlνl

→ gL
Sjlνl

; gL
Vilνl

→ gR
Vilνl

), (34)

FBox
2,R |Vi ,Sj = FBox

2,L |Vi ,Sj (g
R
Sjlνl

→ gL
Sjlνl

; gL
Vilνl

→ gR
Vilνl

). (35)
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Fig. 9. Feynman box diagrams for Si,j in the loop.

In the SM limit, we observe that these contributions are much smaller than other contributions
because of the appearance of the factor ml/MVi in Eq. (33). This means that we can only take the
τ -lepton contributions for these form factors. However, in many BSMs, where new heavy charged
leptons with mEl � ml appear in the loop, these contributions may be significant. For this case, the
form factors are obtained directly by replacing l by El . We finally end up with the contributions of
one-loop box diagrams with charged scalar bosons Si, Sj in the loop (see Fig. 9). The corresponding
form factors read:

FBox
1,L |Si ,Sj = −

∑
Si ,Sj

eQgHSiSj gR
Silνl

gR
Sjlνl

8π2

×
{
(D33 + D23 + D3)(0, 0, 0, M 2

H ; q12, q13, M 2
Si

, m2
l , M 2

Sj
, M 2

Sj
)

+ (D33 + D23 + D13 + D3)(0, 0, 0, M 2
H ; q23, q12, M 2

Si
, M 2

Si
, m2

l , M 2
Sj
)

+ (D33 + D23 + D3)(0, 0, 0, M 2
H ; q23, q13, M 2

Si
, m2

l , m2
l , M 2

Sj
)

}
, (36)

FBox
1,R |Si ,Sj = FBox

1,L |Si ,Sj (g
R
Silνl

→ gL
Silνl

; gR
Sjlνl

→ gL
Sjlνl

), (37)

FBox
2,L |Si ,Sj = FBox

1,L |Si ,Sj ({q13, q23} → {q23, q13}), (38)

FBox
2,R |Si ,Sj = FBox

2,L |Si ,Sj (g
R
Silνl

→ gL
Silνl

; gR
Sjlνl

→ gL
Sjlνl

). (39)
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In Appendix A, we prove analytically and check numerically the UV finiteness of the results. We
find that the UV-divergent parts of all the above form factors come from all B-functions and the C22-,
C12- and C2-functions, while C0-, D0- Di- and Dij-functions are UV-finite. We prove that the sum of
all B-functions gives a UV-finite result (see Appendix A for more detail). Furthermore, C2-functions
are reduced to two B0-functions and their UV-divergent parts are cancelled out. Lastly, the remaining
functions C22 and C12 always appear together as the form of C22 + C12 in all the form factors. They
are also UV-finite in the limit of d → 4.

All the above form factors are also checked numerically by verifying the UV finiteness of the
results. We find that the results are in good stability when varying UV cutoff parameters. We refer
numerical results for this check in Appendix A.

Having the correct form factors for the decay processes, the decay width is given by [36]:

d�

dq12 dq13
= q12

512π3M 3
H

[
q2

13(|F1,R|2 + |F2,R|2)+ q2
23(|F1,L|2 + |F2,L|2)

]
. (40)

Taking the above integrand over q12 and q13 in the region 0 ≤ q12 ≤ M 2
H and 0 ≤ q13 ≤ M 2

H − q12,
one gets the total decay width. In the next subsection, we show a typical example where we apply
the analytic results for H → νl ν̄lγ in SM. Phenomenological results for these decay channels is also
studied using updated parameters at the LHC.

2.2.3. Standard model case
In this case, we have Vi, Vj → W +, W −, V 0

k → Z . All couplings are replaced by gHViVj = eMW /

sW , gV 0
k ViVj

= e cW /sW , gV 0
k AViVj

= e2 cW /sW , gL
V 0

k νlνl
= e/(2sW cW ), gR

V 0
k νlνl

= 0, gL
Hfifj

=
gR

Hfifj
= e mf /(2sW MW ), gL

V 0
k fifj

= e(T f
3 − Qf s2

W )/(sW cW ), gR
V 0

k fifj
= −eQf sW /cW , gL

Vilνl
=

e/(
√

2 sW ) and gR
Vilνl

= 0. Analytic results for the case of ml → 0 are presented as follows:

FTrig, SM
1,L |W ,W = α2

4M 3
W s3

W (q
2 − M 2

Z + i�Z MZ)

×
{[

M 2
H (2B111 + 3B11 + B1)+ 2B00 + 4B001

]
(M 2

H , M 2
W , M 2

W )

+
[
4M 2

H M 2
W − 2M 2

H q2 + 8(d − 1)M 4
W − 4M 2

W q2
]

×
[
C22 + C12 + C2

]
(0, q2, M 2

H , M 2
W , M 2

W , M 2
W )

+ 4M 2
W (4M 2

W − q2)C0(0, q2, M 2
H , M 2

W , M 2
W , M 2

W )

}
, (41)

FTrig, SM
1,L |f ,f = − α2m2

f N f
CQf

2c2
W s3

W MW (q2 − M 2
Z + i�Z MZ)

(
2Qf s2

W − T f
3

)

×
{

C0(0, q2, M 2
H , m2

f , m2
f , m2

f )+ 4
[
C22 + C12 + C2

]
(0, q2, M 2

H , m2
f , m2

f , m2
f )

}
.

(42)
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We also have FTrig, SM
k ,R |W ,W = FTrig, SM

k ,R |f ,f = 0 for k = 1, 2 due to the fact that all couplings gR··· are
absent from the SM. For one-loop box diagrams, the form factors read

FBox, SM
1,L |W ,W = α2

2M 3
W s3

W

{
(M 2

H + 2M 2
W )
[
(C22 + C12 + C2)(0, q12, M 2

H , M 2
W , M 2

W , M 2
W )

+ (C22 + C12 + C2)(q12, 0, M 2
H , M 2

W , M 2
W , M 2

W )
]

+ 2(d − 2)M 4
W

[
(D33 + D23)(0, 0, 0, M 2

H ; q12, q13; M 2
W , 0, M 2

W , M 2
W )

+ (D33 + D23)(0, 0, 0, M 2
H ; q23, q13; M 2

W , 0, 0, M 2
W )

+ (D33 + D23 + D13)(0, 0, 0, M 2
H ; q23, q12; M 2

W , M 2
W , 0, M 2

W )
]

+ 2(d − 4)M 4
W

[
D3(0, 0, 0, M 2

H ; q12, q13; M 2
W , 0, M 2

W , M 2
W )

+ D3(0, 0, 0, M 2
H ; q23, q12; M 2

W , M 2
W , 0, M 2

W )

+ D3(0, 0, 0, M 2
H ; q23, q13; M 2

W , 0, 0, M 2
W )
]

+ 4M 2
W

[
C0(0, q12, M 2

H , M 2
W , M 2

W , M 2
W )

− M 2
W D2(0, 0, 0, M 2

H ; q12, q13; M 2
W , 0, M 2

W , M 2
W )
]}

,

(43)

FBox, SM
2,L |W ,W = FBox, SM

1,L |W ,W ({q13, q23} → {q23, q13}) , (44)

FBox, SM
1,R |W ,W = FBox, SM

2,R |W ,W = 0. (45)

For phenomenological results, we use following input parameters: MZ = 91.1876 GeV,�Z = 2.4952
GeV, MW = 80.379 GeV, MH = 125.1 GeV, mτ = 1.77686 GeV, mt = 172.76 GeV, mb = 4.18
GeV, ms = 0.93 GeV and mc = 1.27 GeV. We first confirm the previous result in Ref. [13] in which
the decay width is computed in α-scheme, or α = 1/137.035999084. By working in this scheme,
the decay width (for l = e) is obtained as �H→νe ν̄eγ = 0.480414 KeV. This value gives a good
agreement with the result in Ref. [13].

At the LHC, the decay processes are involved two kind of events: (i) in the case where a photon is
undetected, we then have Higgs decay to invisible particles; (ii) for a detected photon, we observe
the Higgs decay to a photon plus missing energy. The former events provide important information
for controlling the SM background for H → γ γ and H → Zγ where Z may decay to undetected
leptons, etc. The latter events are interesting for searching dark matter at the LHC. Both events are
examined in this paper using the present parameters at the LHC. In this computation, we work in the
GF -scheme in which α is evaluated from GF = 1.1663787 × 10−5 GeV−2. The result reads

α−1 = π√
2GF M 2

W s2
W

= 132.184. (46)

The following new results for decay widths are obtained:

�
Trig
H→νl ν̄lγ

= 0.536234 KeV, (47)

�Tot
H→νl ν̄lγ

= 0.554933 KeV. (48)
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Fig. 10. Differential decay width is plotted as function of invariant mass of mνl ν̄l .

Table 1. Decay widths in the case of photon that can be tested.

� [KeV]/Ecut
γ [GeV] 5 30 50

�
Trig
H→γ νl ν̄l

0.536232 0.188952 0.00529925

�Total
H→γ νl ν̄l

0.554931 0.20927 0.00993683

We realize that the attributions of |FBox
k/L(R)|2 are much smaller than those of the other terms. The

differential decay width is also plotted as function of the invariant mass mνl ν̄l (or mνl ν̄l = √
q12).

The distribution is defined in the form of

d�

dmνl ν̄l

= m3
νl ν̄l

512π3M 3
H

M 2
H −2m2

νl ν̄l∫
0

dq13

[
q2

13(|F1,R|2 + |F2,R|2)+ q2
23(|F1,L|2 + |F2,L|2)

]
. (49)

The distribution is shown in Fig. 10. The solid line shows the total contributions, while the dashed
line represents the interference between three-point diagrams and box diagrams. We observe a peak
of Z∗ → νl ν̄l which is around MZ . In the region mνν̄ ≤ MZ , the contributions of box diagrams are
visible, while they give a small contribution beyond the peak. We are also interested in the case of a
photon that can be tested at the colliders. In this case, one should apply the energy cuts for the final
photon. The results are shown with different cuts for photons in Table 1. The results are important
and should be taken into account at the HL-LHC and future colliders.

We note that all numerical results shown in this subsection are for a family of neutrinos in the final
state. For all neutrinos, we multiply by a factor 3 for all above results.

2.2.4. Two Higgs Doublet Model case
We next consider the case of the THDM [18]. We devote Appendix B to reviewing the model,
and derive all couplings involving the decay channels. Applying the calculation to this model,
we have Vi, Vj → W +, W −, V 0

k → Z and Si, Sj → H±. All related couplings gHViVj =
(2M 2

W /v)s(β−α), gHSiSj = −(1/v)
[
(2μ2 − 2MH± − M 2

H 0
1
)s(β−α) + 2(μ2 − M 2

H 0
1
)cot2β c(β−α)

]
,
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gHViSj = (MW /v)c(β−α), gASiSj = (2MW /v)sW = e, gV 0
k SiSj

= (MZ/v)c2W , gL
Hfifj

= gR
Hfifj

= λL
τ =

λR
τ , gL

Siτντ
= Yτ and gR

Siτντ
= Yντ . Putting these couplings and masses of charged Higgs in to the

above results, we can derive one-loop formulas for the form factors of the decay processes in THDM.
For phenomenological analysis, one should combine this calculation with the current measurements
at the LHC, for examples the data on H → γ γ , Zγ , H → f f̄ , etc. These topics are beyond the
scope of the current paper. We will devote our future paper to the phenomenological analysis of the
decay channels in THDM and many BSMs.

3. Conclusions

We have presented analytic formulas for all possible one-loop contributions to the SM-like Higgs
decay H → νl ν̄lγ that are valid in many BSMs. Additional vector bosons, charged fermions and
charged (and also neutral) scalar particles exchanging in the loop diagrams have been considered in
this computation. We also conclude that the evaluations can be extended directly for general numbers
of the extra neutrinos in final states. Analytic results are expressed in a general form, written in terms
of Passarino–Veltman scalar functions that can be evaluated numerically using LoopTools. The
computations have been checked numerically by verifying UV finiteness of the results. We find that
the results are in good stability when varying UV cutoff parameters. We then apply the results to the
SM and the decay widths are generated and cross-checked with previous computations. All physical
results for the decay channels within SM have been studied with the present input parameters at
the LHC. Furthermore, the calculation has also been applied successfully to THDM. As the outlook
beyond this work, we plan to apply the computation for the phenomenological analysis in many
BSMs.
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Appendix A. Checks for the calculations

We check for the UV finiteness of the results in order to understand how the UV cutoff (CUV = 1/ε)
parameter can be cancelled out from the final results. We take the results in Eq. (18) as an example.
In the SM V 0

k = Z and Vi = Vj = W ±, we then have the relation gZAViVi = eQgZViVi (A represents
the photon) because of the condition that the gauge symmetry breaks to quantum electrodynamic
(QED) at the final stage. In many BSMs, there may exist a relation between the couplings of photons
and other gauge bosons:

gV 0
k AViVj

= eQgV 0
k ViVj

. (A.1)

We first reduce all PV-functions in (18) to scalar one-loop integrals as follows:

B1(M
2
H , M 2

Vj
, M 2

Vi
) =

= 1

2M 2
H

[
A0(M

2
Vj
)− A0(M

2
Vi
)+ (M 2

Vi
− M 2

Vj
− M 2

H )B0(M
2
H , M 2

Vj
, M 2

Vi
)
]
, (A.2)
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B00(M
2
H , M 2

Vj
, M 2

Vi
) = 1

4M 2
H (d − 1)

×
{
(M 2

H + M 2
Vj

− M 2
Vi
)A0(M

2
Vj
)+ (M 2

H − M 2
Vj

+ M 2
Vi
)A0(M

2
Vi
)

−
[
M 4

H − 2M 2
H (M

2
Vj

+ M 2
Vi
)+ (M 2

Vj
− M 2

Vi
)2
]
B0(M

2
H , M 2

Vj
, M 2

Vi
)

}
,

(A.3)

B11(M
2
H , M 2

Vj
, M 2

Vi
) = 1

4M 4
H (d − 1)

×
{[

d(M 2
H + M 2

Vj
− M 2

Vi
)2 − 4M 2

H M 2
Vj

]
B0(M

2
H , M 2

Vj
, M 2

Vi
)

− d(M 2
H + M 2

Vj
− M 2

Vi
)A0(M

2
Vj
)+

[
(3d − 4)M 2

H + d(M 2
Vj

− M 2
Vi
)
]
A0(M

2
Vi
)

}
, (A.4)

B001(M
2
H , M 2

Vj
, M 2

Vi
) = 1

8M 4
H d(d − 1)

{
d
[
M 6

H − M 4
H (M

2
Vj

+ 3M 2
Vi
)

− M 2
H (M

4
Vj

+ 2M 2
Vj

M 2
Vi

− 3M 4
Vi
)+ (M 2

Vj
− M 2

Vi
)3
]
B0(M

2
H , M 2

Vj
, M 2

Vi
)

−
{

4M 2
H M 2

Vj
+ d

[
M 4

H − 2M 2
H (M

2
Vj

+ M 2
Vi
)+ (M 2

Vj
− M 2

Vi
)2
]}

A0(M
2
Vj
)

+
{

4M 2
H M 2

Vi
− d

[
M 4

H + 4M 2
H M 2

Vi
− (M 2

Vj
− M 2

Vi
)2
]}

A0(M
2
Vi
)

}
, (A.5)

B111(M
2
H , M 2

Vj
, M 2

Vi
) = 1

8M 6
H d(1 − d)

×
{
(M 2

H + M 2
Vj

− M 2
Vi
)
{

d(d + 2)
[
M 4

H − 2M 2
H M 2

Vi
+ (M 2

Vj
− M 2

Vi
)2
]

+ 2d(d − 4)M 2
H M 2

Vj

}
B0(M

2
H , M 2

Vj
, M 2

Vi
)

−
{

d2(M 2
H + M 2

Vj
− M 2

Vi
)2 + 8M 2

H M 2
Vj

+ 2d
[
M 4

H − 2M 2
H (M

2
Vj

+ M 2
Vi
)+ (M 2

Vj
− M 2

Vi
)2
]}

A0(M
2
Vj
)

+
{

8M 2
H M 2

Vi
+ d2

[
3M 4

H + (2M 2
H + M 2

Vj
− M 2

Vi
)2
]

− 2d
[
5M 4

H + 2M 2
H (M

2
Vj

+ M 2
Vi
)− (M 2

Vj
− M 2

Vi
)2
]}

A0(M
2
Vi
)

}
. (A.6)

For C-functions, we also have

C22(0, q2, M 2
H , M 2

Vj
, M 2

Vj
, M 2

Vi
) =

= 1

2M 2
H q2(M 2

H − q2)

{
M 2

H (M
2
Vj

− M 2
Vi

+ q2)B0(q
2, M 2

Vj
, M 2

Vi
)
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+ q2(M 2
Vi

− M 2
Vj

− M 2
H )B0(M

2
H , M 2

Vj
, M 2

Vi
)+ (q2 − M 2

H )
[
A0(M

2
Vj
)− A0(M

2
Vi
)
]}

,

(A.7)

C12(0, q2, M 2
H , M 2

Vj
, M 2

Vj
, M 2

Vi
) = 1

2q2(M 2
H − q2)2(d − 2)

×
{[

d q2(M 2
Vj

− M 2
Vi

− q2)+ 4q4 − (d − 2)M 2
H (M

2
Vj

− M 2
Vi

− q2)
]
B0(q

2, M 2
Vj

, M 2
Vi
)

+ 2q2(M 2
Vi

− M 2
Vj

− M 2
H )B0(M

2
H , M 2

Vj
, M 2

Vi
)+ (d − 2)(M 2

H − q2)
[
A0(M

2
Vj
)− A0(M

2
Vi
)
]

+ 4M 2
Vj

q2(q2 − M 2
H )C0(0, q2, M 2

H , M 2
Vj

, MVj , M 2
Vi
)

}
, (A.8)

C2(0, q2, M 2
H , M 2

Vj
, M 2

Vj
, M 2

Vi
) = 1

M 2
H − q2

[
B0(M

2
H , M 2

Vj
, M 2

Vi
)− B0(q

2, M 2
Vj

, M 2
Vi
)
]
. (A.9)

Finally, we present the results in terms of A0, B0 and C0. We know that C0 functions are UV-finite,
while UV-divergent parts of A0 and B0 are proportional to CUV = 1/ε in the limit of ε → 0 [34] (or
d → 4). We find that the sum of all coefficients of CUV will be 0 in the limit of d → 4. As a result,
the form factors are UV-finite. In the SM, using the above reduction formulas, the results in Eq. (41)
become

FTrig, SM
1,L |W ,W = α2

2M 3
W s3

W (d − 2)(M 2
H − q2)2(q2 − M 2

Z + i�Z MZ)

×
{[

M 2
H (2M 2

W − q2)+ 4M 4
W (d − 1)− 2M 2

W q2
]

×
[(

M 2
H (d − 4)+ (2 − d)q2

)
B0(M

2
H , M 2

W , M 2
W )+ 2q2B0(q

2, M 2
W , M 2

W )
]

+ 4M 2
W (M

2
H − q2)

[
2M 2

W (M
2
H − q2)(2d − 5)− 4M 4

W (d − 1)

+ q4(d − 2)− M 2
H q2(d − 3)

]
C0(0, q2, M 2

H , M 2
W , M 2

W , M 2
W )

}
.

(A.10)

In the limit of d → 4, we observe that the term

− 2q2B0(M
2
H , M 2

W , M 2
W )+ 2q2B0(q

2, M 2
W , M 2

W ) → UV-finite. (A.11)

Furthermore, in all other form factors the UV-divergent parts may come from C2, C22 and C12. From
the reduction formula (A.9), we verify that C2 is UV finite when d → 4. The remaining functions
are also UV finite. Taking C22 as an example, we have∑

ViVj

C22(0, q2, M 2
H , M 2

Vj
, M 2

Vj
, M 2

Vi
) =

= 1

M 2
H q2(M 2

H − q2)

{
M 2

H q2B0(q
2, M 2

Vj
, M 2

Vi
)− q2M 2

H B0(M
2
H , M 2

Vj
, M 2

Vi
)
}

. (A.12)

When d → 4, the above term will be UV-finite. Since D-functions are also UV-finite. Therefore, we
conclude that all the form factors are also UV-finite in the limit od d → 4.
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Table A.1. Numerical checks for FTrig
1L |WW .

Diagrams/(CUV ,μ2) (0, 1) (105, 107)

1st 5.684478386592405 × 10−8 −0.0004193697635384515
+ 7.556282593901243 × 10−8 i −0.0005574612531042949 i

2nd 5.684478386592405 × 10−8 −0.0004193697635384515
+ 7.556282593901243 × 10−8 i −0.0005574612531042948 i

3rd −6.951714952517838 × 10−8 0.00083878369949511
−9.24079908850924 × 10−8 i + 0.0011149812238695827 i

Sum 4.417241820666968 × 10−8 4.417241820666968 × 10−8

+5.871766099293248 × 10−8 i +5.871766099293248 × 10−8 i

Table A.2. Numerical checks for FBox
1L |WW .

Diagrams/(CUV ,μ2) (0, 1) (105, 107)

1st −3.114167099931247 × 10−10 −3.114167099931247 × 10−10

2nd 6.440660243424821 × 10−10 6.440660243424821 × 10−10

3rd −9.02406987251144 × 10−11 −9.02406987251144 × 10−11

Sum 2.424086156242413 × 10−10 2.424086156242413 × 10−10

Numerical checks for the computations are performed for all the above form factors. The results
must be independent of UV cutoff and μ2 parameters. To demonstrate, we take the form factors
FTrig

1L |WW and FBox
1L |WW , which appear as high rank tensor one-loop integrals in the amplitude, as

typical examples. Numerical results are presented at an arbitrary sampling point in the physical
region. (see Tables A.1, A.2 for more detail).

Appendix B. Review of the Two Higgs Doublet Model

We review briefly the THDM which is broken softly Z2-symmetry. We base this review on Ref. [18].
There are two scalar doublets1,2 with hypercharge Y = 1/2. Parts of the Lagrangian which are
different from that of SM are written as

L = LK + LY − V (1,2), (B.1)

where LK is the kinematic term, LY is for the Yukawa part, and V (1,2) is the Higgs potential.
The kinematic term is given as

LK =
2∑

k=1

(
Dμk

)† (Dμk
)

, (B.2)

with Dμ = ∂μ−igT aW a
μ−i(g′/2)Bμ. The Higgs potential which is broken Z2-symmetry is expressed

as

V (1,2) = 1

2
m2

11
†
11 − m2

12(
†
12 +

†
21)+ 1

2
m2

22
†
22 + λ1

2

(


†
11

)2 + λ2

2

(


†
22

)2
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+ λ3

(


†
11

) (


†
22

)
+ λ4

(


†
12

) (


†
21

)
+ λ5

2

[(


†
12

)2 +
(


†
12

)2
]

.(B.3)

Here m2
12 plays the role of the soft broken scale of the Z2-symmetry. The two scalar doublet fields

can be parameterized as follows:

1 =
⎛
⎝ φ+

1
v1 + η1 + iξ1√

2

⎞
⎠, 2 =

⎛
⎝ φ+

2
v2 + η2 + iξ2√

2

⎞
⎠. (B.4)

From the stationary conditions for the Higgs potential, we get

m2
11 − μ2 v2

2

v2 + λ1

2
v2

1 + λ345

2
v2

2 = 0, (B.5)

m2
22 − μ2 v2

1

v2 + λ2

2
v2

2 + λ345

2
v2

1 = 0, (B.6)

where v2 = v2
1 + v2

2 is fixed at the electroweak scale v = (
√

2GF)
−1/2 = 246 GeV and μ2 =

(v2/v1v2)m2
12. The mixing angle is defined as tβ = tan β = v2/v1, λ345 = λ3 + λ4 + λ5. The mass

terms of the Higgs potential Vmass can be expressed as:

Vmass = (φ+
1 ,φ+

2 )Rβ

(
0 0
0 M 2

H+

)
R−1
β

(
φ+

1
φ+

2

)
+ 1

2
(ξ1, ξ2)Rβ

(
0 0
0 M 2

A

)
R−1
β

(
ξ1

ξ2

)

+ 1

2
(η1, η2)Rβ

⎛
⎝M 2

H 0
2

0

0 M 2
H 0

1

⎞
⎠R−1

β

(
η1

η2

)
, (B.7)

where the diagonalized matrix of neutral mass is diag(M 2
H 0

2
, M 2

H 0
1
) = RαM2RT

α with (M2)ij =
∂2V/(∂ηi∂ηj). The mass eigenstates can then be expressed as follows:(

G+
H+

)
= R−1

β

(
φ+

1
φ+

2

)
,

(
G0

A

)
= R−1

β

(
ξ1

ξ2

)
,

(
H 0

2
H 0

1

)
= R−1

α R−1
β

(
η1

η2

)
(B.8)

where

Rβ =
(

cβ sβ
−sβ cβ

)
, Rα =

(
cα sα

−sα cα

)
, (B.9)

and with −π/2 ≤ α ≤ π/2. On this basis, G+ and G0 are massless Goldstone bosons which will
become the longitudinal polarization of W + and Z0 in the unitary gauge. The remaining terms H±, A
and H 0

1,2 are charged Higgs bosons, a CP-odd Higgs boson and CP-even Higgs bosons, respectively.
Their masses are given by

M 2
H± = μ2 − v2

2
(λ4 + λ5), (B.10)

M 2
A = μ2 − v2λ5, (B.11)

M 2
H 0

1
= s2

αM2
11 − 2sαcαM2

12 + c2
αM2

22, (B.12)

M 2
H 0

2
= c2

αM2
11 + 2sαcαM2

12 + s2
αM2

22. (B.13)
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Table B.1. All the couplings involving the decay processes H → νl ν̄lγ .

Vertices Couplings

H 0
1 W +

μ W −
ν i

2M 2
W

v
s(β−α)gμν

H 0
1 (p)H

±(q)W ∓
μ ∓i

MW

v
c(β−α) (p − q)μ

H +(p)H −(q)Aμ i
2MW

v
sW (p − q)μ

H +(p)H −(q)Zμ i
MZ

v
c2W (p − q)μ

H 0
1 H +H − i

v

[
(2μ2 − 2MH± − M 2

H0
1
)s(β−α) + 2(μ2 − M 2

H0
1
)cot2β c(β−α)

]

For the Higgs potential in Eq. (B.3) and the stationary conditions in Eq. (B.5), we have 7 parameters,
which are {

λ1,2,3,4,5, tβ , m2
12

}
. (B.14)

These parameters are equivalent to{
M 2

H+ , M 2
A , M 2

H 0
1
, M 2

H 0
2
,α, tβ , m2

12

}
. (B.15)

These parameters will be used for phenomenological analysis. From the Higgs potential and kine-
matic term, we derive all the related couplings involving the decay processes H → νl ν̄lγ in this
paper. Without loss of generality, we can consider the lightest Higgs boson H 0

1 as the SM like-Higgs
boson. All the couplings are shown in Table B.1. For the Yukawa part, we refer the reader to Ref.
[18] for more details. Depending on the types of THDMs, we then have the couplings of scalar fields
and fermions. In this appendix, we mention the effective Lagrangian, which is the interactions of
neutral Higgs (charged Higgs) with fermions. Taking τ -lepton and ντ as an example, we have the
interaction terms

LH 0
1 τ τ̄

= τ̄
(
λL
τPL + λR

τPR
)
τH 0

1 , (B.16)

LH±τντ = τ̄
(
YτPL + YντPR

)
ντH+ + ν̄τ

(
YντPL + YτPR

)
τH−. (B.17)

It is noted that we are not going to present the explicit forms for the above couplings. They will be
written explicitly in phenomenological analysis that will form our future works.

Appendix C. Feynman rules

In this appendix, Feynman rules for the decay channels H → νl ν̄lγ are presented for the most general
extension of the SM, considering all possible contributions of additional heavy vector gauge bosons,
fermions, and charged (and also neutral) scalar particles appearing in the loop diagrams. In this
computation, Vi, Vj represents extra charged gauge bosons, V 0

k is for neutral gauge bosons, Si, Sj(S0
i )

are charged (neutral) Higgs bosons and fi, fj are used for fermions. The propagators involving the
decay processes in the unitary gauge are shown in Table C.1.
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Table C.1. Feynman rules involving the decay in unitary gauge.

Particle types Propagators

Fermions f i
/k + mf

k2 − m2
f

Gauge boson Vi
−i

p2 − M 2
Vi

(
gμν − pμpν

M 2
Vi

)

Gauge boson V 0
k

−i

p2 − M 2
V 0

k
+ i�V 0

k
MV 0

k

(
gμν − pμpν

M 2
V 0

k

)

Charged (neutral) scalar bosons Si(S0
k )

i

p2 − M 2
Si
(M 2

S0
k
)

In the most general extension of the SM, the full Lagrangian contains the following parts:

L = Lf + LG + L + LY . (C.1)

Where the fermion sector is given as

Lf = ψ̄f i /Dψf (C.2)

with Dμ = ∂μ − igT aV a
μ + · · · . In this formula, T a is a generator of gauge symmetry. The gauge

sector is expressed as

LG = −1

4

∑
a

V a
μνV a,μν + · · · , (C.3)

where V a
μν = ∂μV a

ν − ∂νV a
μ + gf abcV b

μV c
μ with f abc is the structure constant of the corresponding

gauge group. The Higgs sector is described as follows:

L =
∑


Tr[(Dμ)† (Dμ
)] − V (). (C.4)

From the full Lagrangian, we then derive all the couplings. The structure of the couplings are
explained by following.

◦ By expanding the fermion sector, we can derive the vertices of vector boson V with fermions.
In detail, the interaction terms are parameterized as

LVff =
∑

fi ,fj ,V

f̄iγ
μ(gL

Vff PL + gR
Vff PR)fjVμ + · · · . (C.5)

◦ Trilinear gauge and quartic gauge couplings are extracted from the gauge sector:

LVVV ,VVVV =
∑

V 0
k ,Vi ,Vj

gV 0
k ViVj

[
∂μV 0

k ,νVμ
i V ν

j + V 0
k ,νVμ

i ∂
νVj,μ + · · ·

]

+
∑

V 0
k ,V 0

l ,Vi ,Vj

gV 0
k V 0

l ViVj

[
V 0

k ,μV 0
l,νVμ

i V ν
j + · · ·

]
+ · · · . (C.6)
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Table C.2. All couplings involving the decay processes in the unitary gauge.

Vertices Couplings

H · f̄i · fj −i
(

gL
Hfifj

PL + gR
Hfifj

PR

)

Aμ · fi · f̄i ieQf γ
μ

V 0 μ
k · fi · f̄j iγ μ

(
gL

V 0
k fi fj

PL + gR
V 0

k fi fj
PR

)

V μ
i · l̄ · νl iγ μ

(
gL

Vilνl
PL + gR

Vilνl
PR

)

Si · l̄ · νl igL
Silνl

PL + igR
Silνl

PR

S∗
i · l · ν̄l igR

Silνl
PL + igL

Silνl
PR

H · V μ
i · V ν

j i gHViVj gμν

H · Si · Sj −i gHSiSj

H (p) · V μ
i · Sj(q) i gHViSj (p − q)μ

Aμ · SQ
i (p) · S−Q

i (q) ieQ (p − q)μ

V 0 μ
k · Si(p) · Sj(q) i gV 0

k SiSj
(p − q)μ

V 0 μ
k · V ν

i · Sj gV 0
k ViSj

gμν

V 0 μ
k (p1) · V ν

i (p2) · V λ
j (p3) −i gV 0

k ViVj
�μνλ(p1, p2, p3)

Aμ(p1) · V Qν
i (p2) · V −Qλ

i (p3) −ieQ�μνλ(p1, p2, p3)

V 0 μ
k · Aν · V α

i · V β

j −i gV 0
k AViVj

Sμν,αβ

◦ We can derive the couplings of the scalar S to fermions from theYukawa part LY . The interaction
term is presented as follows:

LSfifj =
∑
fi ,fj ,S

f̄i(g
L
Sff PL + gR

Sff PR)fjS + · · · . (C.7)

◦ From the kinematic term of the Higgs sector, one can derive the coupling of the scalar S to the
vector boson V . In detail, we have the interaction terms

LSVV ,SSV ,SSVV =
∑

S,Vi ,Vj

gSViVj SVμ
i Vj,μ +

∑
Si ,Sj ,V

gSiSjV [(∂μSi)Sj − (∂μSj)Si]Vμ

+
∑

Si ,Sj ,Vk ,Vl

gSiSjVk Vl SiSjV
μ

k Vl,μ + · · · (C.8)
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◦ Finally, the trilinear scalar and quartic scalar interactions are from the Higgs potential V ():

LSSS,SSSS =
∑

Si ,Sj ,Sk

gSiSjSk SiSjSk +
∑

Si ,Sj ,Sk ,Sl

gSiSjSk ,Sl SiSjSkSl + · · · (C.9)

All the related couplings involving the decay channels are parameterized in general forms which are
presented in Table C.2 (also see Appendix B for a typical example). We use PL/R = (1 ∓ γ5)/2,
�μνλ(p1, p2, p3) = gμν(p1 − p2)

λ + gλν(p2 − p3)
μ + gμλ(p3 − p1)

ν and Sμν,αβ = 2gμνgαβ −
gμαgνβ − gμβgνα , and Q denotes the electric charge of the gauge bosons V Q

i and charged Higgs
bosons SQ.

References
[1] A. Liss and J. Nielsen [ATLAS Collaboration], arXiv:1307.7292 [hep-ex] [Search INSPIRE].
[2] CMS Collaboration, arXiv:1307.7135 [hep-ex] [Search INSPIRE].
[3] H. Baer et al., arXiv:1306.6352 [hep-ph] [Search INSPIRE].
[4] A. M. Sirunyan et al. [CMS Collaboration], Phys. Lett. B 793, 520 (2019).
[5] M. Aaboud et al. [ATLAS Collaboration], Phys. Rev. Lett. 122, 231801 (2019).
[6] M. Aaboud et al. [ATLAS Collaboration], Phys. Lett. B 793, 499 (2019).
[7] V. S. Ngairangbam, A. Bhardwaj, P. Konar, and A. K. Nayak, Eur. Phys. J. C 80, 1055 (2020).
[8] G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 72, 1844 (2012).
[9] G. Bélanger, B. Dumont, U. Ellwanger, J. F. Gunion, and S. Kraml, Phys. Lett. B 723, 340 (2013).

[10] M. Heikinheimo, K. Tuominen, and J. Virkajärvi, J. High Energy Phys. 1207, 117 (2012).
[11] A. M. Sirunyan et al. [CMS Collaboration], J. High Energy Phys. 1910, 139 (2019).
[12] A. M. Sirunyan et al. [CMS Collaboration], J. High Energy Phys. 2103, 011 (2021).
[13] Y. Sun and D.-N. Gao, Phys. Rev. D 89, 017301 (2014).
[14] J. F. Kamenik and C. Smith, Phys. Rev. D 85, 093017 (2012).
[15] H. Davoudiasl, H.-S. Lee, I. Lewis, and W. J. Marciano, Phys. Rev. D 88, 015022 (2013).
[16] D. Curtin, et al. Phys. Rev. D 90, 075004 (2014).
[17] C. Petersson, A. Romagnoni, and R. Torre, J. High Energy Phys. 1210, 016 (2012).
[18] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, Phys. Rept.

516, 1 (2012).
[19] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); 11, 703 (1975) [erratum].
[20] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975).
[21] G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975).
[22] M. Singer, J. W. F. Valle, and J. Schechter, Phys. Rev. D 22, 738 (1980).
[23] J. W. F. Valle and M. Singer, Phys. Rev. D 28, 540 (1983).
[24] F. Pisano and V. Pleitez, Phys. Rev. D 46, 410 (1992).
[25] P. H. Frampton, Phys. Rev. Lett. 69, 2889 (1992).
[26] R. A. Diaz, R. Martinez, and F. Ochoa, Phys. Rev. D 72, 035018 (2005).
[27] R. M. Fonseca and M. Hirsch, J. High Energy Phys. 1608, 003 (2016).
[28] R. Foot, H. N. Long, and T. A. Tran, Phys. Rev. D 50, R34(R) (1994).
[29] L. A. Sánchez, F. A. Pérez, and W. A. Ponce, Eur. Phys. J. C 35, 259 (2004) [arXiv:hep-ph/0404005]

[Search INSPIRE].
[30] W. A. Ponce and L. A. Sánchez, Mod. Phys. Lett. A 22, 435 (2007) [arXiv:hep-ph/0607175] [Search

INSPIRE].
[31] Riazuddin and Fayyazuddin, Eur. Phys. J. C 56, 389 (2008) [arXiv:0803.4267 [hep-ph]] [Search

INSPIRE].
[32] A. Jaramillo and L. A. Sánchez, Phys. Rev. D 84, 115001 (2011) [arXiv:1110.3363 [hep-ph]] [Search

INSPIRE].
[33] H. N. Long, L. T. Hue, and D. V. Loi, Phys. Rev. D 94, 015007 (2016) [arXiv:1605.07835 [hep-ph]]

[Search INSPIRE].
[34] A. Denner and S. Dittmaier, Nucl. Phys. B 734, 62 (2006).
[35] T. Hahn and M. Pérez-Victoria, Comput. Phys. Commun. 118, 153 (1999).
[36] A. Kachanovich, U. Nierste, and I. Nišandžić, Phys. Rev. D 101, 073003 (2020).
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