
PHYSICAL REVIEW A 104, 012612 (2021)

Heralded preparation of polarization entanglement via quantum scissors

Dat Thanh Le ,1,2,* Warit Asavanant ,3 and Nguyen Ba An 2,4

1ARC Centre for Engineered Quantum System, School of Mathematics and Physics, University of Queensland, Brisbane QLD 4072, Australia
2Thang Long Institute of Mathematics and Applied Sciences (TIMAS), Thang Long University, Nghiem Xuan Yem,

Hoang Mai, Hanoi 10000, Vietnam
3Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
4Institute of Physics, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam

(Received 20 May 2021; accepted 9 July 2021; published 23 July 2021)

Quantum entanglement is at the heart of quantum information sciences and quantum technologies. In the
optical domain, the most common type of quantum entanglement is polarization entanglement, which is usually
created in a postselection manner involving destructive photon detection and thus hindering further applica-
tions which require readily available entanglement resources. In this work, we propose a scheme to prepare
multipartite entangled states of polarized photons in a heralded manner, i.e., without postselection. We exploit
the quantum scissors technique to truncate a given continuous-variable entanglement into the target entangled
states which are of hybrid discrete-continuous or solely discrete types. We consider two implementations of
the quantum scissors: one modified from the original quantum scissors [Pegg et al., Phys. Rev. Lett. 81,
1604 (1998)] using single photons and linear optics and the other designed here using a type-II two-mode
squeezer. We clarify the pros and cons of these two implementations as well as discussing practical aspects
of the entanglement preparation. Our work illustrates an interface between various types of optical entanglement
and the proposed quantum scissors techniques could serve as alternative methods for heralded generation of
polarization entanglement.
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I. INTRODUCTION

Quantum entanglement plays an essential role in foun-
dations of quantum mechanics [1] and proves to be an
indispensable resource in quantum technologies [2]. Quan-
tum entanglement exists in various forms, among quantum
systems of the same natures or of distinct natures as well as
among different degrees of freedom (DoFs) within a single
quantum system. Of particular interest is the hybrid entangle-
ment between discrete-variable (DV) and continuous-variable
(CV) quantum systems [3–15], which has been successfully
applied in numerous quantum information protocols [16–25].

In the optical domain, the most frequently used quan-
tum entanglement is between polarized photons, due to their
resilience against decoherence and loss [26,27] and the avail-
ability of high-quality polarization-control elements [28,29].
Polarization entanglement was exploited in quantum dense
coding [30], quantum teleportation [31], quantum cryptog-
raphy [32], and tests of Bell inequality [33]. Entangled
polarization pairs, called polarization Bell pair (PBP), are rou-
tinely produced via spontaneous parametric downconversion
(SPDC), in which a photon in a pumping beam is con-
verted into two photons of lower frequencies obeying both
the energy and momentum conservation constraints [34]. This
process, however, is highly probabilistic, and the generated
state is dominantly occupied by the unwanted vacuum com-
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ponent [35], which necessitates photon detection to verify
entanglement and thus destroys the entangled state itself.
Such postselection procedure hurdles subsequent quantum
information tasks which require an on-demand entanglement
resource, such as quantum error correction [36] and entangle-
ment purification [37].

Therefore, many works have been devoted to the prepara-
tion of polarization entanglement without postselection, e.g.,
by employing ancilla single photons and linear optics [38,39]
or a probabilistic controlled-NOT (CNOT) gate [40]. In 2010,
two groups independently reported heralded generation of a
PBP [41,42], based on detection of four photons in a three-pair
SPDC emission event [43]. This method nevertheless suffers
from a very low success probability and false detections from
a four-pair emission [44]. Recently, with the development
of deterministic, highly pure single-photon sources [45,46],
heralded production of a PBP by fusion gate [47,48] has
been realized [49]. The fusion-based method might face diffi-
culty when generalizing to n-partite entanglement with n � 3,
which involves nontrivial analyses to find the optimal heralded
setup [50].

In this paper, we propose a scheme to prepare polarization
entanglement in a heralded fashion, i.e., without relying on
postselection. We show that truncating unwanted components
in a CV polarization entanglement, which can be supplied
by currently accessible resources, gives rise to a hybrid DV-
CV or solely DV entangled polarization state of n parties
for an arbitrary n � 2. We present two implementations for
such truncation operation: the first one is a modified version
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from the quantum scissors originally proposed in Ref. [51]
using single photons and linear optics and the second one is
proposed here exploiting a type-II two-mode squeezer [29].
The technological ingredients needed for these implementa-
tions are well-studied subjects and utilized in a variety of
applications [52–61]. Our scheme highlights the intriguing
interface between different types of quantum entanglement
and is realizable within the present-day optical technologies.

The outline of this paper is the following. In Sec. II we
introduce a particular CV entanglement and show its connec-
tion to hybrid DV-CV and solely DV (i.e., DV-DV) entangled
states via truncation of irrelevant terms. We then in Sec. III
propose two distinct methods to implement the desired trun-
cation operation. Next, in Sec. IV we analyze the performance
for the generation of several types of entanglement using the
two truncation techniques. This is followed by discussions
on practical perspectives of the entanglement preparation in
Sec. V. Finally, we conclude the paper in Sec. VI. An ap-
pendix provides detailed calculations for the results in the
main text.

II. TRUNCATION OF CONTINUOUS-VARIABLE
ENTANGLEMENT

In what follows, we show that a CV entanglement contains
within itself a hybrid DV-CV or a DV-DV entanglement. We
consider the CV polarization entanglement [14,62]

|�〉12 = N0(|αH 〉1|βH 〉2 + eiϕ |− αV 〉1|− βV 〉2), (1)

where N0 = [2(1 + cos(ϕ)e−(α2+β2 ) )]−1/2 and |γH/V 〉 =∑∞
n=0 fn(γ )|nH/V 〉 is a horizontally or vertically polarized co-

herent state of real amplitude γ with fn(γ ) = e−γ 2/2γ n/
√

n!
and |nH/V 〉 a Fock state containing n horizontally or vertically
polarized photons. Note that in this paper without loss of
generality we consider coherent states of real amplitudes
only. For convention the polarization-mode and spatial-mode
subscripts are placed respectively inside and outside of
the ket/bra states and from now on, “mode,” when being
used, implies “spatial mode.” Throughout the paper, for
brevity we also suppress the vacuum state when expressing
ket/bra states as follows: |αH , 0V 〉 ≡ |αH 〉, |0H , αV 〉 ≡ |αV 〉,
|nH , 0V 〉 ≡ |nH 〉, and |0H , nV 〉 ≡ |nV 〉. The vacuum state in
some equations will be made visible to perform relevant
calculations.

A schematic setup for the preparation of the state |�〉12 is
shown in Fig. 1(a) and can be briefly described as follows.
The required inputs include a polarized cat state |CatH 〉 =
N0(|δH 〉 + eiϕ |− δH 〉) with N0 = [2(1 + cos(ϕ)e−2δ2

)]1/2 in
mode 1 and a polarized coherent state |δH 〉 in mode 1′, both of
which have the same horizontal polarization. The two states
first interact at a balanced beam splitter (BBS). Since the
action of a general beam splitter (BS) with transmissivity t
on a pair of coherent states of the same polarization is

BSab(t )|μ〉a|ν〉b = |μ√
t + ν

√
1 − t〉a|μ

√
1 − t − ν

√
t〉b,

(2)

the two inputs become a NOON-like state [63]
N0(|δ√2H 〉1|0〉1′ + eiϕ |0〉1|− δ

√
2H 〉1′ ). A half-wave plate

(HWP) placed at mode 1′, followed by a polarizing

FIG. 1. (a) Schematic setup to prepare the CV polarization entan-
glement |�〉12 in Eq. (1). Here |CatH 〉 = N0(|δH 〉 + eiϕ |− δH 〉) with
N0 = [2(1 + cos(ϕ)e−2δ2

)]1/2, BBS is balanced beam splitter, PBS
polarizing beam splitter, BS(t0) beam splitter with transmissivity
t0, and HWP half-wave plate. (b) Splitting of mode 2 in the state
|�〉12 by BS(t1) prepares the tripartite CV polarization entanglement
|	〉12...n with n = 3 in Eq. (7).

beam splitter (PBS) to merge two modes 1 and 1′ into
one mode 1, changes the the NOON-like state into
N0(|δ√2H 〉 + eiϕ |− δ

√
2V 〉)1. A final BS with transmissivity

t0 splits such state into two spatial modes, resulting in the
state |�〉12 in Eq. (1) with

α = δ
√

2t0, β = δ
√

2(1 − t0). (3)

Using Fock-state representation for coherent states, we
decompose |�〉12 as

|�〉12 = N0 f1(α)(|1H 〉1|βH 〉2 − eiϕ |1V 〉1|− βV 〉2) + · · ·
(4)

= N0 f1(β )(|αH 〉1|1H 〉2 − eiϕ |− αV 〉1|1V 〉2) + · · ·
(5)

= N0 f1(α) f1(β )(|1H 〉1|1H 〉2 + eiϕ |1V 〉1|1V 〉2) + · · · ,

(6)

where in the first equation we hide terms in which mode 1
is not a single-photon state, in the second equation we hide
terms in which mode 2 is not a single-photon state, and in the
third equation we hide terms in which both modes 1 and 2
are not single-photon states. The visible terms in Eq. (4) or
(5) constitute a hybrid DV-CV entangled state between single
photons and coherent states [5,14], whereas those in Eq. (6)
represent a DV-DV entangled state in the form of a PBP. The
decompositions suggest that we can prepare these types of
entangled states by performing on mode 1 and/or mode 2 of
the state |�〉12 an operation that (i) truncates the non-single-
photon components (which include the vacuum state and the
more-than-one-photon components), (ii) preserves coherence
of two single-photon states of orthogonal polarizations, and
(iii) is carried out in a heralded fashion. We call such an oper-
ation the ideal (or perfect) polarized-single-photon quantum
scissors, and for brevity we abbreviate them as PQS. The
first two requirements for the PQS are obvious, while the last
one ensures that the entanglement preparation of interest is
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heralded given that the input entangled state |�〉12 is supplied
on-demand.

Intriguingly, the above observation can be generalized to
the case of an entangled state among n parties for an arbitrary
n. This is due to the fact that the n-partite version of the state
|�〉12, which is of the form

|	〉12...n = Mn
(∣∣α(1)

H

〉
1

∣∣α(2)
H

〉
2 · · · ∣∣α(n)

H

〉
n

+ eiϕ
∣∣ − α

(1)
V

〉
1

∣∣ − α
(2)
V

〉
2 · · · ∣∣ − α

(n)
V

〉
n

)
, (7)

with Mn = {2(1 + cos(ϕ) exp[−∑n
j=1(α( j) )2]}−1/2, can be

straightforwardly prepared employing (n − 2) BSs to keep
splitting |�〉12. For example, as depicted in Fig. 1(b) we split
mode 2 of the state |�〉12 by one BS with transmissivity t1 to
produce a tripartite CV polarization entangled state

N0
(∣∣α(1)

H

〉
1

∣∣α(2)
H

〉
2

∣∣α(3)
H

〉
3 + eiϕ

∣∣ − α
(1)
V

〉
1

∣∣ − α
(2)
V

〉
2

∣∣ − α
(3)
V

〉
3

)
,

(8)

where α(1) = δ
√

2t0, α(2) = δ
√

2(1 − t0)t1, and α(3) =
δ
√

2(1 − t0)(1 − t1). Generalization to a higher number of
parties is straightforward. Given the state |	〉12...n, we perform
the PQS on j parties of it, say, from party 1 to party j, to
obtain an n-partite hybrid DV-CV entangled state of the form

|
〉12...n = 1√
2

(|1H 〉1 · · · |1H 〉 j

∣∣α( j+1)
H

〉
j+1 · · · ∣∣α(n)

H

〉
n

+ eiϕ |1V 〉1 · · · |1V 〉 j

∣∣ − α
( j+1)
V

〉
j+1 · · · ∣∣ − α

(n)
V

〉
n

)
.

(9)

When j = n the above state becomes the n-partite DV GHZ
polarization entanglement.

III. IMPLEMENTATIONS OF THE
POLARIZED-SINGLE-PHOTON

QUANTUM SCISSORS

In this section we present two implementations of the PQS
that truncates the CV polarization entanglements in Eqs. (1)
and (7) into hybrid DV-CV and DV-DV entangled states. We
show that the two implementations actually realize a nonideal
PQS in the sense that they perfectly satisfy the requirements
(ii) (preserving coherence of two orthogonally polarized sin-
gle photons) and (iii) (succeeding in a heralded way) but
partially meet the requirement (i) (see the requirements for the
ideal PQS in Sec. II). That is, they do not completely truncate
all the non-single-photon components but retain the vacuum
and a two-photon state, resulting in an unwanted imperfection.
This imperfection, however, can be made arbitrarily small by
suitably adjusting relevant parameters.

A. Using single photons and linear optics

The first implementation of the desired PQS, denoted as
PQS1, involves the original quantum scissors proposed in
Refs. [51,55] which truncate the more-than-one-photon com-
ponents and amplify the one-photon component compared to
the vacuum one in a quantum state

|ψ〉 =
∞∑

n=0

cn|n〉, (10)

FIG. 2. (a) Black-box representation with the label QS(t ) and
physical setup of the quantum scissors proposed in Refs. [51,55].
Here t denotes the transmissitivity of the BS, which characterizes
the performance of the scissors. The input |ψ〉 = ∑∞

n=0 cn|n〉, going
through the QS(t ), is truncated into the (unnormalized) output state√

1 − tc0|0〉 ± √
tc1|1〉, conditioned by detection of a single photon

at detector D1 and no photons at detector D2 or no photons at detec-
tor D1 and a single photon at detector D2. Choosing t properly this
output can be made very close to a single-photon state. (b) Linear-
optics-based implementation of a nonideal PQS with the black-box
labeled as PQS1(t ), comprising two modules of the quantum scis-
sors in panel (a). The PQS1(t ) truncates a general polarized state
|ψp〉 = ∑∞

n,m=0 cnm|nH , mV 〉 into an output state that is very close
to the (unnormalized) state |ψ (1)

p 〉 = c10|1H , 0V 〉 + c01|1V , 0H 〉. The
box with the label QSH (t ) (QSV (t )) represents the physical setup in
panel (a) with the ancilla single photon being horizontally (vertically)
polarized.

where |n〉 is a Fock state containing n photons and∑∞
n=0 |cn|2 = 1. We refer to such scissors as QS to distinguish

from the PQS. The QS deals with photons having only one
polarization, whereas the PQS is supposed to work with inputs
having two orthogonal polarizations. Therefore, the QS is not
readily applicable for extracting the desired entanglements out
of the CV entanglement in Eq. (1) or (7). In the following, we
first present some details of the QS and then show how to
construct the PQS1 from it.

The black-box representation of the QS and its physical im-
plementation are depicted in Fig. 2(a). Concretely, following
the schematic setup in Fig. 2(a) the QS transforms the state
|ψ〉 as

|ψ〉 =
∞∑

n=0

cn|n〉 QS(t )−−→ √
1 − tc0|0〉 ± √

tc1|1〉, (11)

where the output state is unnormalized and the relative sign
“+” (“−”) corresponds to detection of a single photon (vac-
uum) at detector D1 and vacuum (a single photon) at detector
D2. We choose the BS transmissitivity t such that

√
1 − tc0

is much smaller than
√

tc1, making the output state close
enough to a single photon. The setup in Fig. 2(a) resembles
an error-corrected quantum teleportation circuit, of which the
state |ψ〉 serves as the input, the quantum channel is a single-
rail entangled state created by splitting the single-photon input
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via the BS(t ), and the Bell measurement is performed using
the BBS and two detectors D1 and D2. The output state is
corrected, compared to the input one |ψ〉, in the sense that
more-than-one-photon components are erased, recovering |ψ〉
back to the single-rail basis. The heralding probability and the
fidelity of the QS technique are, respectively,

PQS = (1 − t )|c0|2 + t |c1|2, (12)

FQS = t |c1|2
(1 − t )|c0|2 + t |c1|2 . (13)

The probability PQS here is nothing but the inverse square of
the normalization factor of the output state in Eq. (11).

The above result also holds when the to-be-truncated mode
is entangled with others. To verity this, let us consider a
quantum state comprising spatially distinguishable modes
a, b, c, . . . in the form

|�〉abc... =
∞∑

n=0

cn|n〉a|φn〉bc..., (14)

where a is the to-be-truncated mode and |φn〉bc... is a (normal-
ized) joint quantum state of modes b, c, . . . . We can check that
the QS in Fig. 2(a) applying to only mode a reduces |�〉abc...

in the following way:

|�〉abc... =
∞∑

n=0

cn|n〉a|φn〉bc...
QS(t )−−−−−→

on mode a

√
1 − tc0|0〉a|φ0〉bc...

+√
tc1|1〉a|φ1〉bc.... (15)

This is just the same as the result in Eq. (11) if we formally
make the replacement cn → cn|φn〉bc.... We also note that dif-
ferent from Eq. (11) the relative sign in the output state of
Eq. (15) has been chosen to be “+” for definiteness.

We now turn to the design of the PQS1. We consider a
single-spatial-mode polarized quantum state of a general form

|ψp〉 =
∞∑

n,m=0

cnm|nH , mV 〉, (16)

where |nH , mV 〉 describes a quantum state of the single spatial
mode of interest having n horizontally polarized photons and
m vertically polarized photons and

∑∞
n,m=0 |cnm|2 = 1. The

concerned PQS1 should operate in such a way that it truncates
the state |ψp〉 into (exactly or very close to) the target output
state

∣∣ψ (1)
p

〉 = c10|1H , 0V 〉 + c01|0H , 1V 〉 ≡ c10|1H 〉 + c01|1V 〉.
(17)

For this purpose, we arrange a setup including two modules of
the QS, QSH (t ) and QSV (t ), as sketched in Fig. 2(b), where
QSH/V (t ) operates as QS(t ) in Fig. 2(a) when the input photon
is horizontally or vertically polarized. According to Fig. 2(b),
we first separate spatially two polarizations of the single-
spatial-mode state |ψp〉 by a PBS to obtain a two-spatial-mode
state

∞∑
n,m=0

cnm|nH 〉a|mV 〉a′ ≡
∞∑

n=0

|nH 〉a

∞∑
m=0

cnm|mV 〉a′ . (18)

Following the transformation in Eq. (15), the module QSH (t )
acting on mode a truncates the state in Eq. (18) into

√
1 − t |0H 〉a

∞∑
m=0

c0m|mV 〉a′ + √
t |1H 〉a

∞∑
m=0

c1m|mV 〉a′

≡
∞∑

m=0

|mV 〉a′ (
√

1 − tc0m|0H 〉 + √
tc1m|1H 〉)a. (19)

At the same time, the module QSV (t ) on mode a′, also accord-
ing to Eq. (15), shortens the state in Eq. (19) into

√
1 − t |0V 〉a′ (

√
1 − tc00|0H 〉 + √

tc10|1H 〉)a

+√
t |1V 〉a′ (

√
1 − tc01|0H 〉 + √

tc11|1H 〉)a. (20)

This truncated two-spatial-mode state going through another
PBS and after rearrangements is recast to a single-spatial-
mode state√

(1 − t )t
∣∣ψ (1)

p

〉
a + (1 − t )c00|0H , 0V 〉a + tc11|1H , 1V 〉a.

(21)

We extend the above result to the case when the mode to
be truncated is in entanglement with others. That is, instead of
the state |ψp〉 in Eq. (16) we consider

|�p〉abc... =
∞∑

n,m=0

cnm|nH , mV 〉a|φnm〉bc..., (22)

where a is the to-be-truncated mode and |φnm〉bc... is a (nor-
malized) joint quantum state of modes b, c, . . . . We aim to
get the ideal output state after truncation as∣∣� (1)

p

〉
abc... = c10|1H , 0V 〉a|φ10〉bc...+c01|0H , 1V 〉a|φ01〉bc...

≡ c10|1H 〉a|φ10〉bc...+c01|1V 〉a|φ01〉bc.... (23)

Similar to the output in Eq. (21), application of the PQS1 on
mode a in the state |�p〉abc... gives

√
(1−t )t |� (1)

p 〉abc... + (1 − t )c00|0H ,0V 〉a|φ00〉bc...

+ tc11|1H , 1V 〉a|φ11〉bc.... (24)

The success probability and the corresponding fidelity be-
tween this output state and the ideal one |� (1)

p 〉abc... are

PPQS1 = (1 − t )t (|c10|2 + |c01|2) + (1 − t )2|c00|2 + t2|c11|2,
(25)

FPQS1 = (1 − t )t (|c10|2 + |c01|2)

(1 − t )t (|c10|2 + |c01|2) + (1 − t )2|c00|2 + t2|c11|2 .

(26)

As will be shown later, for our initial input entanglement of
interest, i.e., the state |�p〉abc... in Eq. (22), c11 = 0, so that
by choosing t → 1 the fidelity FPQS1 is approaching 1 but the
success probability PPQS1 is turning out to be very low.

B. Using type-II two-mode squeezer

Here we propose a different PQS implementation, denoted
as PQS2, employing a type-II two-mode squeezer

Ŝsi = exp(ξ K̂†
si − ξ ∗K̂si ), (27)
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FIG. 3. Two-mode-squeezer-based implementation of a nonideal
PQS with the black box labeled as PQS2(�) using a type-II two-
mode squeezer represented by a SPDC crystal [58]. Here � is the
squeezing parameter characterizing the performance of the scissors.
The input state |ψp〉 = ∑∞

n,m=0 cnm|nH , mV 〉 is injected into the signal
(s) mode of the squeezer while the idle (i) mode is in the vacuum.
Co-detection of single photons at both detectors D1 and D2 heralds
the truncated output at the idle mode which is very close to the
desired state |ψ (1)

p 〉 = c10|1H , 0V 〉 + c01|1V , 0H 〉. A pump, denoted by
p, stimulates squeezing in the SPDC crystal.

where s and i respectively denote the signal and idle modes, ξ

is proportional to the coupling constant χ (2) and the intensity
of the classical pump [64], and

K̂si = âs,H âi,V + âs,V âi,H . (28)

This squeezer is typically realized by a SPDC crystal [29]
and commonly used in laboratories. The setup to realize the
PQS2 for truncating unwanted components in the state |ψp〉
in Eq. (16) is depicted in Fig. 3 comprising two main steps:
(step 1) injecting |ψp〉 to mode s of the squeezer while leaving
mode i in the vacuum, which is mathematically equivalent to
acting Ŝsi on |ψp〉s|0〉i, and (step 2) detecting two photons in
mode s, one horizontally polarized and the other vertically
polarized, which heralds the truncated output state in mode
i that is expected to be exactly or very close to the desired
state |ψ (1)

p 〉 in Eq. (17).
To get intuition on how this PQS2 implementation works,

let us consider a scenario in which we inject |ψ (1)
p 〉 =

c10|1H 〉 + c01|1V 〉 in Eq. (17) to mode s of the squeezer Ŝsi

and leave mode i in the vacuum. We approximate Ŝsi to the
first order of |ξ |, which is typically of order 10−2 [29], as
Ŝsi 	 1 + (ξ K̂†

si − ξ ∗K̂si ). We find that

Ŝsi

∣∣ψ (1)
p

〉
s|0〉i 	 ∣∣ψ (1)

p

〉
s|0〉i + ξ |1H , 1V 〉s

∣∣ψ (1)
p

〉
i

+ξ
√

2(c10|2H 〉s|1V 〉i + c01|2V 〉s|1H 〉i ). (29)

We then detect in mode s single photons of both horizontal
and vertical polarizations, i.e., we perform measurement with
the projector

�̂s = |1H , 1V 〉s〈1H , 1V |. (30)

The projected state in mode i will be |ψ (1)
p 〉, implying that the

initial input state of mode s is completely transferred to mode
i. We repeat the same procedure for different inputs in mode
s, including the vacuum state |0〉 and |nH , mV 〉 with n, m � 1,

and observe that

Ŝsi|0〉s|0〉i 	 |0〉s|0〉i + ξ (|1H 〉s|1V 〉i+|1V 〉s|1H 〉i ), (31)

Ŝsi|nH , mV 〉s|0〉i 	 |nH , mV 〉s|0〉i

+ ξ
√

n+1|(n+1)H , mV 〉s|1V 〉i

+ ξ
√

m+1|nH , (m+1)V 〉s|1H 〉i, (32)

of which the probability of finding |1H , 1V 〉s in mode s is
nonzero only when n = m = 1. Noticing that the state |ψp〉
in Eq. (16) is a superposition of |ψ (1)

p 〉, |0〉, and |nH , mV 〉 with
n, m � 1, the results in Eqs. (29), (31), and (32) thus suggest
that if the input state in mode s is |ψp〉, application of Ŝsi on the
input |ψp〉s|0〉i combining with the subsequent measurement
�̂s on mode s will yield in mode i an output state consisting
of |ψ (1)

p 〉 and |0〉. When the contribution from the vacuum is
negligible, this can realize the map |ψp〉 → |ψ (1)

p 〉, i.e., the
PQS2, with a high fidelity. We also note that an unwanted term
from second-order squeezing can appear in the output, as will
be shown below by exact calculations.

We facilitate exact calculations related to the squeezer by
using the following formula [65]:

Ŝsi|nH , mV 〉s|0〉i = Kn+m

∞∑
k,l=0

(−i�)k+l
(
Cn

n+kC
m
m+l

) 1
2

× |(n + k)H , (m + l )V 〉s|lH , kV 〉i, (33)

where Ck
n = n!/[(n − k)!k!], � = tanh(iξ ) is the characteris-

tic squeezing parameter, and Kn = (1 − |�|2)(n+2)/2. Acting
Ŝsi on |ψp〉s|0〉i (step 1) then produces

Ŝsi|ψp〉s|0〉i =
∞∑

n,m=0

cnmKn+m

∞∑
k,l=0

(−i�)k+l
(
Cn

n+kC
m
m+l

) 1
2

× |(n + k)H , (m + l )V 〉s|lH , kV 〉i. (34)

Performance of the measurement �̂s in Eq. (30) on mode s of
this state (step 2) projects mode i onto

K1(−i�)
∣∣ψ (1)

p

〉 + c11K2|0〉 + c00K0(−i�)2|1H , 1V 〉, (35)

where the last term, which is an unwanted two-photon state,
results from second-order squeezing.

We replace the single-mode input |ψp〉 by the state
|�p〉abc... in Eq. (22) and apply the PQS2 above to only mode
a. Analogous to the result in Eq. (35) we obtain the following
output:

K1(−i�)
∣∣� (1)

p

〉
abc... + c11K2|0〉a|φ11〉bc...

+ c00K0(−i�)2|1H , 1V 〉a|φ00〉bc..., (36)

where |� (1)
p 〉abc..., given in Eq. (23), is the ideal truncated state.

The success probability and the fidelity of the state preparation
for this case are

PPQS2 = (|c10|2 + |c01|2)K2
1 |�|2 + |c11|K2

2 + |c00|2K2
0 |�|4,

(37)

FPQS2 = (|c10|2 + |c01|2)K2
1 |�|2

(|c10|2 + |c01|2)K2
1 |�|2 + |c11|K2

2 + ∣∣c00|2K2
0

∣∣�|4 .

(38)
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FIG. 4. (a) Applying the PQS on j modes of the CV entangle-
ment |	〉12...n in Eq. (7) produces the entanglement |
〉12...n in Eq. (9).
For n = 2 and j = 1, panel (a) reduces to panel (b), which shows the
preparation of the hybrid entanglement |�DV-CV〉 in Eq. (39) from
the CV entanglement |�〉12 in Eq. (1). For n = 2 and j = 2, panel
(a) reduces to panel (c) which shows the preparation of the DV PBP
|�DV-DV〉 in Eq. (40) from the CV entanglement |�〉12. Here the PQS
can be realized by either the PQS1 or the PQS2.

As typically |ξ | ∼ 10−2 � 1 [29], one finds |�| ∼ 10−2 and
K0 ≈ K1 ≈ K2 ≈ 1. This combining with the fact that c11 = 0
for our particular input entanglement, i.e., the state |�p〉abc...

in Eq. (22), hints that the fidelity FPQS2 should be very high.

IV. PERFORMANCE ANALYSIS OF THE
ENTANGLEMENT PREPARATION

At this point, we are ready to exploit the two PQS im-
plementations, the PQS1 and the PQS2, developed in the
previous section to prepare the target entangled states. In
Fig. 4(a) we show the generation of the n-partite polarization
entangled state |
〉12...n in Eq. (9) using PQSs to truncate j
modes of the input CV entanglement |	〉12...n in Eq. (7). In
what follows, we consider two specific cases with (n, j) =
(2, 1) and (n, j) = (2, 2), which correspond respectively to
the preparations of the hybrid DV-CV entangled state

|�DV-CV〉 = 1√
2

(|1H 〉|αH 〉 + eiϕ |1V 〉|− αV 〉) (39)

and the DV-DV PBP

|�DV-DV〉 = 1√
2

(|1H 〉|1H 〉 + eiϕ |1V 〉|1V 〉), (40)

via truncating the input entanglement |�〉12 in Eq. (1). The
schematic diagrams for the entanglement preparations of in-
terest are shown in Figs. 4(b) and 4(c). We compute the
success probability and the fidelity when preparing these en-
tangled states by means of both the PQS1 and the PQS2.

A. Hybrid DV-CV entangled state

We reexpress the state |�〉12 in Eq. (1) in the form of the
state |�p〉abc... in Eq. (22)

|�〉12 =
∞∑

n,m=0

cnm|nH , mV 〉2|φnm〉1, (41)

where mode 2 is to be truncated and
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c10 = N0 f1(β ), |φ10〉 = |αH 〉,
c01 = N0eiϕ f1(−β ), |φ01〉 = |− αV 〉,
c00 = N0L−1

α f0(β ), |φ00〉 = Lα (|αH 〉+eiϕ |− αV 〉),
c11 = 0, |φ11〉 = ∅,

...
...

(42)

with Lα = [2(1 + cos(ϕ)e−α2
)]−1/2. Using the results in

Sec. III A [i.e., Eqs. (24) to (26)] application of the PQS1 on
mode 2 of the state |�〉12 written in the form of Eq. (41) gives
the (unnormalized) output

√
(1 − t )tN0 f1(β )(|1H 〉2|αH 〉1 − eiϕ |1V 〉2|− αV 〉1)

+ (1 − t )N0L−1
α f0(β )|0〉2Lα (|αH 〉 + eiϕ |− αV 〉)1. (43)

The heralding probability and the fidelity of the prepared state
to the hybrid DV-CV entanglement (|1H 〉2|αH 〉1 − eiϕ|1V 〉2|−
αV 〉1)/

√
2, which is up to a local unitary transformation equiv-

alent to the state |�DV-CV〉 in Eq. (39), are

PDV-CV
PQS1 = 2(1 − t )tN2

0 f 2
1 (β ) + (1 − t )2N2

0 L−2
α f 2

0 (β ), (44)

F DV-CV
PQS1 = 2t f 2

1 (β )

2t f 2
1 (β ) + (1 − t )L−2

α f 2
0 (β )

. (45)

The unwanted term containing the vacuum in mode 2 of the
output state in Eq. (43) results in an additional contribution to
the heralding probability PDV-CV

PQS1 [i.e., the second term in the
RHS of Eq. (44)] but induces a less-than-one fidelity F DV-CV

PQS1
[i.e., the presence of a second term in the denominator of the
RHS of Eq. (45)]. Notably, as α and β are defined via δ and t0
as in Eq. (3) and N0 is defined via δ and ϕ, PDV-CV

PQS1 and F DV-CV
PQS1

in effect are functions of δ, t0, ϕ, and t .
As for the PQS2 proposed in Sec. III B, applying it on

mode 2 of the state |�〉12 yields the (unnormalized) output
[see Eqs. (36) to (38)]

K1(−i�)N0 f1(β )(|1H 〉2|αH 〉1 − eiϕ |1V 〉2| − αV 〉1)

+K0(−i�)2N0L−1
α f0(β )|1H ,1V 〉2Lα (|αH 〉 + eiϕ |− αV 〉)1.

(46)

The success probability and the fidelity of the entanglement
preparation for this case are

PDV-CV
PQS2 = 2K2

1 |�|2N2
0 f1(β )2 + K2

0 |�|4N2
0 L−2

α f 2
0 (β ), (47)

F DV-CV
PQS2 = 2K2

1 f1(β )2

2K2
1 f1(β )2 + K2

0 |�|2L−2
α f 2

0 (β )
, (48)

which are actually dependent on δ, t0, ϕ, and �. Similar to the
case of the PQS1, the PQS2 also produces an undesired term
[i.e., the term on the second line of Eq. (46)] of which mode 2
is a two-photon state. This term gives rise to an increase in the
heralding probability [due to the second term in the RHS of
Eq. (47)] at the cost of decreasing the corresponding fidelity
[due to the second term in the denominator of the RHS of
Eq. (48)].

To display our results graphically we choose ϕ = 0 and
t0 = 0.5, which give α = β = δ and |�〉12 = N0(|δH 〉1|δH 〉2 +
|− δV 〉1| − δV 〉2)). With such parameters we plot PDV-CV

PQS1 and
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FIG. 5. (a), (b) Success probability PDV-CV
PQS1 and fidelity F DV-CV

PQS1

given in Eqs. (44) and (45), respectively, as functions of the input
amplitude δ and the transmissivity t for the preparation of the hybrid
entanglement |�DV-CV〉 in Eq. (39) using the PQS1 developed in
Sec. III A. (c), (d) Success probability PDV-CV

PQS2 and fidelity F DV-CV
PQS2

given in Eqs. (47) and (48), respectively, as functions of the input
amplitude δ and the squeezing parameter |�| for the preparation of
the same entanglement but using the PQS2 developed in Sec. III B.
In plotting these figures φ = 0 and t0 = 0.5 were chosen.

F DV-CV
PQS1 as functions of the input amplitude δ and the trans-

missitivity t in Figs. 5(a) and 5(b) and PDV-CV
PQS2 and F DV-CV

PQS2
as functions of the input amplitude δ and the squeezing pa-
rameter |�| in Figs. 5(c) and 5(d). For the parameter ranges
in Fig. 5, we observe that the PQS1 is superior to the PQS2
in terms of the success probability but is inferior in terms of
the fidelity. Discretely, PDV-CV

PQS1 is of order 10−2 − 10−1, much
larger than PDV-CV

PQS2 , which is in the range 10−4–10−3. F DV-CV
PQS1

varies quite largely from about 0.25 to above 0.97, whereas
F DV-CV

PQS2 remains very close to 1 for almost the whole domain
of the used parameters. These manifest the pros and cons of
the two PQS implementations.

Closer looking at PDV-CV
PQS1 in Fig. 5(a) and F DV-CV

PQS1 in
Fig. 5(b) reveals two apparently contrast patterns in their
variations with respect to δ and t : PDV-CV

PQS1 decreases when
increasing both δ and t while F DV-CV

PQS1 improves. This is un-
derstandable, since from Eqs. (44) and (45) we find that
limt→1 PDV-CV

PQS1 = 0 and limt→1 F DV-CV
PQS1 = 1, indicating that

the state-preparation fidelity can be made arbitrarily high by
adjusting the transmissitivity t to close to 1 but with a price of
an unrealistically low heralding probability. We also note that
increasing δ, roughly speaking, leads to a decrease in f 2

0 (β ) ≡
f 2
0 (δ) and f 2

1 (β ) ≡ f 2
1 (δ) and an increase in f 2

1 (β )/ f 2
0 (β ) ≡

δ2. The former directly links to a reduction of PDV-CV
PQS1 [see

Eq. (44)]; the latter is equivalent to lessening the contribution

FIG. 6. (a), (b) Success probability PDV-DV
PQS1 and fidelity F DV-DV

PQS1

given in Appendix as functions of the input amplitude δ and the
transmissivity t for the preparation of the PBP |�DV-DV〉 in Eq. (40)
using the PQS1 developed in Sec. III A. (c), (d) Success probability
PDV-DV

PQS2 and fidelity F DV-DV
PQS2 given in Appendix as functions of the

input amplitude δ and the squeezing parameter |�| for the preparation
of the same entanglement but using the PQS2 developed in Sec. III B.
In plotting these figures φ = 0 and t0 = 0.5 were chosen.

of the unwanted term in the output state in Eq. (43) and
thus enhancing F DV-CV

PQS1 . As for PDV-CV
PQS2 and F DV-CV

PQS2 , the first
quantity increases with |�| and for a given |�| is maximized
by a particular value of δ which is numerically found to
be near 1. The second quantity changes very slowly with δ

and |�| and stays close to 1, which is not surprising if we
look at its expression in Eq. (48). For |�| = 10−2 − 10−1 � 1
the second term in the denominator of F DV-CV

PQS2 is negligible,
making F DV-CV

PQS2 	 1.

B. DV-DV polarization Bell pair

Given the output state in Eq. (43) or (46), that is close to the
hybrid entangled state (|1H 〉2|αH 〉1 − eiϕ |1V 〉2|− αV 〉1)/

√
2,

we continue truncating irrelevant components in mode 1 to
get the PBP |�DV-DV〉 in Eq. (40) via the PQS1 as well as the
PQS2. Detailed calculations for such processes are provided
in Appendix, and here we highlight the main results only.
Figure 6 shows the performance for the preparation of the PBP
using the two PQSs. The patterns for the success probabilities
and the fidelities in Fig. 6 are substantially similar to those
in Fig. 5, except the success probabilities are now lower by
several orders due to double truncation. We again see an
evident trade-off in the performances of the two QPS im-
plementations. The QPS1 yields a good heralding probability
but a modest fidelity, while the QPS2 features at a very low
success probability and a close-to-unit fidelity.
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FIG. 7. (a) Reduction of the number of photodetectors in the
PQS1 implementation. In the left, two spatially separated photons in
modes 1 and 2 of the same horizontal (H ) polarization are detected
by two detectors D1 and D2. In the right, employing a HWP, a delay
circle, a mirror, and a PBS makes the two photons detected by only
one detector D but at adjustably separated arrival times. (b) Similar
to (a) but for the PQS2 implementation with two detected photons
initially having orthogonal polarizations.

V. DISCUSSION

The results in the Sec. IV clearly show the advantages and
disadvantages of each of the two PQS implementations in
the entanglement production. The PQS1 is beneficial when it
comes to the heralding probability but possesses a moderate
fidelity. The PQS2, in contrast, performs with a low success
probability but yields a very high fidelity. Concerning the
consumed resources, the PQS1 requires two ancilla photons
of orthogonal polarizations and four photon-number-resolving
(PNR) detectors. The PQS2 differently involves one SPDC
crystal accompanied by optical pumping to stimulate squeez-
ing and two PNR detectors. Notably, owing to the interplay
between polarization and spatial DoFs [29] we can reduce the
number of PNR detectors in both the PQS implementations.
Concretely, instead of detecting two spatially separated pho-
tons by two detectors as in Figs. 2 and 3 we exploit delay
circles, mirrors, HWPs, and PBSs, as illustrated in Fig. 7, to
detect the photons by only one detector at the same spatial
mode but at different arrival times. By this the number of
needed PNR detectors in the PQS1 implementation is de-
creased from 4 to 2, whereas that in the PQS2 implementation
becomes 1.

The heralded entanglement preparation proposed in this
paper crucially depends on the availability of the input CV
entanglements in Eqs. (1) and (7). These entangled states as
demonstrated in Fig. 1 are produced from a coherent state and
a cat state. The latter is of great importance in foundations
of the quantum theory [66] and quantum applications [67,68]
but in general is troublesome to prepare [69]. Thankfully, in
practice there are states that can be used as cat states with
high fidelities, namely, kitten states, i.e., cat states with small
amplitudes (up to 1), that can be very well approximated
by a deterministic squeezed vacuum [70]. Large-amplitude
cat states (larger than 2) can be prepared probabilistically
via breeding of kitten states [71] or generalized photon sub-
traction [72]. Moreover, single-photon inputs required in the
PQS1 can be supplied deterministically with high quality
by semiconductor quantum-dot emitters [45,46,49]. Another
salient ingredient in our entanglement generation scheme as
well as in many other quantum optical protocols is PNR detec-
tors. Superconducting transition edge sensors PNR detectors
[73] have recently been shown to operate with an efficiency
exceeding 95% [74,75]. Another possibilities to discriminate
photon numbers include multiplexing of single-photon detec-

tors [70,76–78] and fine analyses of output signal waveforms
[79]. We note that for a small-amplitude input state [i.e., the
state |�〉12 in Eq. (1) with small α and β] of which more-than-
one-photon contributions are small compared to those of the
vacuum and the single-photon state, non-PNR detectors such
as single-photon counting modules (SPCMs) [42] or single-
photon avalanche photodiodes (SPADs) [78] might suffice for
our scheme.

We compare the entanglement preparation scheme pro-
posed here with the existing ones in the literature
[5,10,13,14,41–43,49]. Our scheme to generate the DV-CV
hybrid entangled state in Eq. (39), in comparisons with those
in Refs. [5,10,13,14], does not require a PBP input and
uses a lower number of PNR detectors, thus relaxing initial
overheads. Also, the success probability and the prepared-
state fidelity of our scheme at a proper choice of relevant
parameters can be made considerably higher than those in
Refs. [5,10,13,14]. As for the DV-DV PBP preparation, we
estimate the count rate in our scheme and compare it to
those in Refs. [41,42,49]. In particular, we assume that the
input entangled state |�〉12 prepared deterministically from a
squeezed vacuum and the input single photons emitted from a
quantum-dot emitter are supplied on-demand with repetition
rate 6.4 MHz [49]. We then employ the PQS1, choose δ = 0.8
and t = 0.98 at which PDV-DV

PQS1 ∼ 3.6×10−5 and F DV-DV
PQS1 > 0.9

[see Figs. 6(a) and 6(b)], and adapt multiplexing PNR detec-
tors in Refs. [70,78] that are compatible with MHz repetition
rates to generate the PBP at a count rate approximately given
by 6.4 MHz×3.6×10−5 ≈ 230 Hz. Using the PQS2, we op-
erate it at δ = 0.8 and |�| = 0.07 with PDV-DV

PQS2 ∼ 2×10−6 and
F DV-DV

PQS2 > 0.98 [see Figs. 6(c) and 6(d)] and again assume
that the entangled input |�〉12 is supplied from a squeezed
vacuum but with a higher repetition rate of 80 MHz [70],
so that the PBP preparation will have a count rate roughly
at 80 MHz×2×10−6 = 160 Hz. The count rates estimated
above for preparing the PBP with fidelities >0.9 are several
orders higher than those reported in Refs. [41,42,49]. Addi-
tionally, the use of a relatively small squeezing parameter |�|
in the PQS2 here eases up the requirement for very strong
pumping and reduces the effect of higher squeezing orders
which can lead to false detections as in Refs. [41,42].

VI. CONCLUSION

We presented a general scheme to prepare n-partite polar-
ization entangled states for an arbitrary n � 2 and considered
two specific examples, namely, the hybrid DV-CV entangled
state between polarized single photons and polarized coher-
ent states in Eq. (39) and the DV PBP between polarized
single photons in Eq. (40). Our scheme involves neither post-
selection nor destruction of photons [28,34]. Different from
existing heralded schemes [5,10,13,14,38–43,49], we harness
the connections among CV, hybrid DV-CV, and DV entan-
glements and propose a truncation technique, i.e., the PQS,
to map a given CV entanglement into the desired entangled
states in a heralded fashion. The needed input state is an
entangled coherent state in Eq. (1) or Eq. (7) which can
be supplied by modern quantum technologies following the
schematic setup in Fig. 1. We designed two different PQS
implementations, the PQS1 in Fig. 2 and the PQS2 in Fig. 3.
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The PQS1 employs a single-photon source and linear-optics
devices while the PQS2 uses a two-mode squeezer which
is a commonplace optical nonlinear element. The former is
advantageous in success probability and the later excels in
fidelity, as shown by detailed performance analysis of the
entanglement preparation in Sec. IV. Both the PQS1 and
the PQS2 could be implemented within the current optical
toolbox. Effects of imperfect input states, inefficient PNR
detectors, nonideal device operations, and decoherence from
surrounding environments are beyond the scope of the present
paper but will be the subject of a subsequent work. Also,
applications of the PQSs presented here to other quantum in-
formation tasks such as noiseless linear amplification [55,56]
and studies of the transition from CV entanglement to DV en-
tanglement in the context of the nonclassicality and classical
simultability [21,80,81] are worth pursuing.
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APPENDIX: SUCCESS PROBABILITY
AND FIDELITY FOR THE PREPARATION

OF THE POLARIZATION BELL PAIR

1. Using the PQS1

We rewrite the output in Eq. (43) as

|αH 〉1(g1|1H 〉 + g0|0〉)2 + |− αV 〉1(−g1eiϕ |1V 〉 + g0eiϕ |0〉)2,

(A1)

where

g1 =
√

(1 − t )tN0 f1(β ), g0 = (1 − t )N0 f0(β ). (A2)

We use the PQS1 in Sec. III A to truncate non-single-
photon components in mode 1 of this state and obtain the

output
√

(1 − t )t f1(α)|1H 〉1(g1|1H 〉 + g0|0〉)2

+
√

(1 − t )t f1(−α)|1V 〉1(−g1eiϕ |1V 〉 + g0eiϕ |0〉)2

+(1 − t ) f0(α)|0〉1[g1(|1H 〉 − eiϕ |1V 〉) + g0(1 + eiϕ )|0〉]2.

(A3)

The success probability and the fidelity of such output com-
pared to the desired PBP |�DV-DV〉 in Eq. (40) are

PDV-DV
PQS1 = [

2(1 − t )t f 2
1 (α) + 2(1 − t )2 f 2

0 (α)
](

g2
1 + g2

0

)
,

(A4)

F DV-DV
PQS1 = t f 2

1 (α)g2
1[

t f 2
1 (α) + (1 − t ) f 2

0 (α)
](

g2
1 + g2

0

) . (A5)

2. Using the PQS2

We rewrite the output in Eq. (46) as

|αH 〉1(h1|1H 〉 + h0|0〉)2 + |− αV 〉1(−h1eiϕ |1V 〉 + h0eiϕ |0〉)2,

(A6)

where

h1 = K1(−i�)N0 f1(β ), h0 = K0(−i�)2N0 f0(β ). (A7)

We use the PQS2 in Sec. III B to truncate non-single-photon
components in mode 1 of this state and obtain the output

K1(−i�) f1(α)|1H 〉1(h1|1H 〉 + h0|0〉)2

+ K1(−i�) f1(−α)|1V 〉1(−h1eiϕ |1V 〉 + h0eiϕ |0〉)2

+ K0(−i�)2 f0(α)|1H , 1V 〉1

× [h1(|1H 〉 − eiϕ |1V 〉) + h0(1 + eiϕ )|0〉]2. (A8)

The success probability and the fidelity of such output com-
pared to the desired PBP |�DV-DV〉 in Eq. (40) are

PDV-DV
PQS2 = [

2K2
1 |�|2 f 2

1 (α) + 2K2
0 |�|4 f 2

0 (α)
]
(|h1|2 + |h0|2),

(A9)

F DV-DV
PQS2 = K2

1 f 2
1 (α)|h1|2[

K2
1 f 2

1 (α) + K2
0 |�|2 f 2

0 (α)
]
(|h1|2 + |h0|2)

. (A10)
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[52] Ş. K. Özdemir, A. Miranowicz, M. Koashi, and N. Imoto,
Phys. Rev. A 64, 063818 (2001).

[53] S. A. Babichev, J. Ries, and A. I. Lvovsky, Europhys. Lett. 64,
1 (2003).

[54] S. K. Goyal and T. Konrad, Sci. Rep. 3, 3548 (2013).
[55] M. S. Winnel, N. Hosseinidehaj, and T. C. Ralph, Phys. Rev. A

102, 063715 (2020).
[56] M. He, R. Malaney, and B. A. Burnett, Phys. Rev. A 103,

012414 (2021).
[57] K. P. Seshadreesan, H. Krovi, and S. Guha, Phys. Rev. Res. 2,

013310 (2020).
[58] A. Lamas-Linares, C. Simon, J. C. Howell, and D.

Bouwmeester, Science 296, 712 (2002).
[59] K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Phys. Rev.

Lett. 88, 113601 (2002).
[60] A. Zavatta, S. Viciani, and M. Bellini, Science 306, 660 (2004).
[61] V. Parigi, A. Zavatta, M. Kim, and M. Bellini, Science 317,

1890 (2007).
[62] W. P. Bowen, N. Treps, R. Schnabel, and P. K. Lam, Phys. Rev.

Lett. 89, 253601 (2002).
[63] J. Joo, W. J. Munro, and T. P. Spiller, Phys. Rev. Lett. 107,

083601 (2011).
[64] C. Gerry and P. Knight, Introductory Quantum Optics

(Cambridge University Press, Cambridge, 2004).
[65] C. Simon, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 84, 2993

(2000).
[66] E. Schrödinger, Naturwissenschaften 23, 807 (1935).
[67] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S.

Glancy, Phys. Rev. A 68, 042319 (2003).
[68] A. P. Lund, T. C. Ralph, and H. L. Haselgrove, Phys. Rev. Lett.

100, 030503 (2008).
[69] E. V. Mikheev, A. S. Pugin, D. A. Kuts, S. A. Podoshvedov, and

N. B. An, Sci. Rep. 9, 14301 (2019).
[70] Y. Israel, L. Cohen, X.-B. Song, J. Joo, H. S. Eisenberg, and Y.

Silberberg, Optica 6, 753 (2019).
[71] D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards,

I. A. Fedorov, and A. I. Lvovsky, Nat. Photon. 11, 379 (2017).

012612-10

https://doi.org/10.1007/s11128-019-2183-z
https://doi.org/10.1103/PhysRevA.102.012603
https://doi.org/10.1016/j.ijleo.2020.165820
https://doi.org/10.1364/JOSAB.415137
https://doi.org/10.1038/nature12366
https://doi.org/10.1103/PhysRevA.87.022326
https://doi.org/10.1103/PhysRevA.88.052127
https://doi.org/10.1103/PhysRevLett.114.100501
https://doi.org/10.1038/nphys3410
https://doi.org/10.1103/PhysRevLett.118.160501
https://doi.org/10.1364/OPTICA.5.001012
https://doi.org/10.1103/PhysRevLett.121.170403
https://doi.org/10.1126/sciadv.aba4508
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.84.777
https://doi.org/10.1103/PhysRevLett.75.4337
https://doi.org/10.1103/PhysRevLett.76.4656
https://doi.org/10.1038/37539
https://doi.org/10.1103/PhysRevLett.84.4733
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1103/PhysRevA.58.R2623
https://doi.org/10.1103/PhysRevA.71.033820
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevA.66.014102
https://doi.org/10.1103/PhysRevA.66.064302
https://doi.org/10.1109/JSTQE.2003.820916
https://doi.org/10.1038/nphoton.2010.156
https://doi.org/10.1038/nphoton.2010.123
https://doi.org/10.1103/PhysRevA.67.030101
https://doi.org/10.1038/nphoton.2010.180
https://doi.org/10.1038/nnano.2017.218
https://doi.org/10.1038/s41565-020-00831-x
https://doi.org/10.1103/PhysRevLett.98.170502
https://doi.org/10.1103/PhysRevA.77.062316
https://doi.org/10.1103/PhysRevLett.126.140501
https://doi.org/10.1103/PhysRevA.102.012604
https://doi.org/10.1103/PhysRevLett.81.1604
https://doi.org/10.1103/PhysRevA.64.063818
https://doi.org/10.1209/epl/i2003-00504-y
https://doi.org/10.1038/srep03548
https://doi.org/10.1103/PhysRevA.102.063715
https://doi.org/10.1103/PhysRevA.103.012414
https://doi.org/10.1103/PhysRevResearch.2.013310
https://doi.org/10.1126/science.1068972
https://doi.org/10.1103/PhysRevLett.88.113601
https://doi.org/10.1126/science.1103190
https://doi.org/10.1126/science.1146204
https://doi.org/10.1103/PhysRevLett.89.253601
https://doi.org/10.1103/PhysRevLett.107.083601
https://doi.org/10.1103/PhysRevLett.84.2993
https://doi.org/10.1007/BF01491891
https://doi.org/10.1103/PhysRevA.68.042319
https://doi.org/10.1103/PhysRevLett.100.030503
https://doi.org/10.1038/s41598-019-50703-1
https://doi.org/10.1364/OPTICA.6.000753
https://doi.org/10.1038/nphoton.2017.57


HERALDED PREPARATION OF POLARIZATION … PHYSICAL REVIEW A 104, 012612 (2021)

[72] K. Takase, J.-I. Yoshikawa, W. Asavanant, M. Endo, and A.
Furusawa, Phys. Rev. A 103, 013710 (2021).

[73] A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032
(2008).

[74] G. S. Thekkadath, M. E. Mycroft, B. A. Bell, C. G. Wade, A.
Eckstein, D. S. Phillips, R. B. Patel, A. Buraczewski, A. E. Lita,
T. Gerrits et al., npj Quantum Inf. 6, 89 (2020).

[75] J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J.
Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G.
Helt et al., Nature (London) 591, 54 (2021).

[76] M. Jönsson and G. Björk, Phys. Rev. A 99, 043822 (2019).

[77] J. Provazník, L. Lachman, R. Filip, and P. Marek, Opt. Express
28, 14839 (2020).

[78] R. Nehra, C.-H. Chang, Q. Yu, A. Beling, and O. Pfister,
Opt. Express 28, 3660 (2020).

[79] M. Endo, T. Sonoyama, M. Matsuyama, F. Okamoto, S. Miki,
M. Yabuno, F. China, H. Terai, and A. Furusawa, Opt. Express
29, 11728 (2021).

[80] R. P. Rundle, B. I. Davies, V. M. Dwyer, T. Tilma, and M. J.
Everitt, J. Phys. Commun. 4, 025002 (2020).

[81] L. García-Álvarez, C. Calcluth, A. Ferraro, and G. Ferrini,
Phys. Rev. Res. 2, 043322 (2020).

012612-11

https://doi.org/10.1103/PhysRevA.103.013710
https://doi.org/10.1364/OE.16.003032
https://doi.org/10.1038/s41534-020-00320-y
https://doi.org/10.1038/s41586-021-03202-1
https://doi.org/10.1103/PhysRevA.99.043822
https://doi.org/10.1364/OE.389619
https://doi.org/10.1364/OE.380416
https://doi.org/10.1364/OE.423142
https://doi.org/10.1088/2399-6528/ab6fb6
https://doi.org/10.1103/PhysRevResearch.2.043322

