
Physica C: Superconductivity and its applications 587 (2021) 1353900

Available online 6 June 2021
0921-4534/© 2021 Elsevier B.V. All rights reserved.

Electronic spectrum and superconductivity in the extended t–J–V model 
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A B S T R A C T   

A consistent microscopic theory of superconductivity for strongly correlated electronic systems is presented 
within the extended t–J–V model where the intersite Coulomb repulsion and the electron-phonon interaction are 
taken into account. The exact Dyson equation for the normal and anomalous (pair) Green functions is derived for 
the projected (Hubbard) electronic operators. The equation is solved in the self-consistent Born approximation 
for the self-energy. We obtain the d-wave pairing with high-Tc induced by the strong kinematical interaction of 
the order of the kinetic energy ∼ t of electrons with spin fluctuations which is much larger than the exchange 
interaction J. The Coulomb repulsion and the electron-phonon interaction give small contributions for the 
d-wave pairing. These results support the spin-fluctuation mechanism of high-temperature superconductivity in 
cuprates previously proposed in phenomenological models.   

1. Introduction 

Since the discovery of the high-temperature superconductivity 
(HTSC) in cuprates by Bednorz and Müller [1] many theoretical models 
were proposed to reveal the mechanism of HTSC but a commonly 
accepted one is still lacking (see, e.g. [2,3]). The main problem in a 
theoretical study of the cuprate superconductors is that strong electron 
correlations preclude application of the conventional Fermi-liquid 
approach in description of their electronic structure [4]. They are 
Mott-Hubbard (more accurately, charge-transfer) antiferromagnetic 
(AFM) insulators where the conduction band due to the strong Coulomb 
interaction splits into two subbands of singly-occupied and 
doubly-occupied states in the lattice. In this case conventional electronic 
operators cannot be used and composite or projected electronic opera-
tors for subbands should be introduced. To cope with the problem of 
unconventional character of the projected electronic operators various 
methods have been applied in investigation of strongly-correlated 
electronic systems (for a review see [5]). 

The first model of strongly correlated electrons revealing supercon-
ductivity is the t–J model proposed by Anderson [6]. It can be derived 
from the Hubbard model [7] in the strong correlation limit [8–11]. In 
the t–J model superconductivity occurs at finite doping in the spin-liquid 
of resonating valence-bond states (RVB) due to the AFM superexchange 
interaction J. The RVB scenario was considered later using the gauge 

theory [12], the mean-field t–J model with the renormalized hopping t 
and exchange interaction J parameters  [13], the variational Monte 
Carlo method for Gutzwiller wave functions  [14,15]. In Ref. [16] the t–J 
model was formulated as an effective Hamiltonian for the hole-doped 
superconducting cuprates. Since then the low-energy electronic spec-
trum, superconductivity, spin excitations in cuprates have been 
considered within the t–J model by numerous authors. 

Extensive numerical studies have been performed by various 
methods, such as Lanczos diagonalization of small clusters, quantum 
Monte Carlo simulations of two-dimensional lattices, cluster approxi-
mations (for reviews see [17–21] and references therein). A delicate 
balance between superconductivity and other instabilities, AFM, 
spin-density wave, charge-density wave, etc., was found [21]. 

To take into account strong Coulomb correlations in the Hubbard 
model the dynamical mean field theory (DMFT) was proposed [22–24]. 
It was used to consider the Mott-Hubbard transition from a conventional 
metallic state to an insulating state. However, to study phase transitions 
to AFM state or superconductivity the theory should be generalized to 
take into account short-range correlations. It was done within the 
dynamical cluster approximation (DCA) formulated in the reciprocal 
space, [25–27] and the cluster DMFT (or cellular DMFT) where the 
impurity single-site in DMFT is replaced by a finite cluster of lattice sites 
(see, e.g., [28–32]). In the cluster perturbation theory (CPT) an exact 
diagonalization of the electronic spectrum in a finite cluster (usually, 
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4 × 4 sites in the 2D model) is found and then coupling between of the 
clusters is taken into account [33–39]. A variational cluster approxi-
mation (VCA) was also proposed [40–42] where it was shown that the 
CPT and the cellular DMFT are limiting cases of a more general cluster 
method. A two-particle self-consistent approach was developed in Refs. 
[43–48]. To take into account short-range correlations a generalized 
DMFT approach was proposed in Refs. [49–52]. In the theory a mo-
mentum dependent self-energy Σk(ω) was included in addition to the 
DMFT single-site self-energy Σ(ω). This approach permits to describe a 
pseudogap formation near the Fermi level of the quasiparticle band. 

In cluster theories, it was possible to describe the electronic spectrum 
with formation of the pseudogap state and the arc-type Fermi surface at 
low doping. The d-wave superconductivity was also found but it was 
difficult to disclose the mechanism of the pairing. The role of the 
intersite Coulomb repulsion and the electron-phonon interaction are 
also difficult to include in the cluster calculations. To cope with prob-
lems, analytical approaches were also considered in several studies 
using various approximations for strong CI within the Hubbard-type 
models. 

To deal with the projected character of the electronic operators 
which imposes local constraints of no double occupancy of lattice sites in 
the t–J model, the slave-boson (-fermion) technique was proposed (see 
[53–58] and references therein). In the mean-field approximation 
(MFA), commonly used in this method, the local constraints are 
approximated by a global one, that reduces the problem to conventional 
fermions and bosons in the mean field. In Ref. [59] the slave-boson 
representation was considered beyond the MFA for the extended t − J 
model. A kinetic-energy driven mechanism of superconductivity for the 
fermion-spin theory was proposed where the pairing of fermions is 
induced by spin excitations described by slave bosons. However, as in 
the conventional slave-boson theory the local constraint of no double 
occupancy was not treated rigorously. 

Several other technique for strongly correlated system were also 
proposed, as e.g., a continued fraction representation for the GFs in 
Ref. [60]. It was used in studies of spin excitations and hole spectrum in 
Refs. [61,62]. We mention also a diagram method for the Hubbard 
model suggested in Refs. [63] as a site cumulants expansion in terms of 
hopping parameters. In this case a moderate to strong Hubbard repul-
sion can be considered. Using this technique in Ref. [64] the electronic 
spectrum was found in the one-loop approximation which shows the 
four-band structure as observed in numerical calculations. The strong 
coupling diagram technique was used in Ref. [65] for investigating the 
influence of spin and charge fluctuations on electron spectra of the 2D 
t–U Hubbard model. A dual fermion approach was proposed in Refs. 
[66–68]. 

A formally rigorous method to treat the unconventional commuta-
tion relations for the projected electronic operators is based on the 
Hubbard operator (HO) technique [69] (a generelazation of the HO 
representation for non-canonical degrees of freedom is given in [70]). 
The diagram technique for the HOs was developed to study the Hubbard 
and t–J models [71–74]. A superconducting pairing due to the kine-
matical interaction in the Hubbard model in the limit of strong electron 
correlations (U→∞) was first considered in Refs. [75]. In the lowest 
order diagrams for the two-particle vertex equation which is equivalent 
to the MFA for the superconducting order parameter gives only the 
s-wave pairing. 

A technically simpler method in comparison with the diagram 
technique is the projection technique [76] in the equation of motion 
method for the Green functions (GFs) [77] based on the Mori memory 
function approach [78]. Applying this method in terms of the HOs in 
Refs. [79,80] the d-wave pairing for the t–J model was found in the MFA. 
It was also shown that the s-wave pairing is prohibited since it violates 
the restriction of no double occupancy. Supercoducting pairing in the 
singlet band of the Emery model was considered in Ref. [81]. In Refs. 
[82–85] the equations of motion method for the GFs in the composite 
operator representation, similar to the HOs, was used in studies of the 

Hubbard model in the limit of strong correlations. The electronic spec-
trum, spin excitations and phase transitions were analyzed. 

The MFA in the first order projection technique was considered in 
many studies of electronic and spin-excitation spectra in more compli-
cated t–J models. In Ref. [86] a strong effect of the three-site interaction 
H3 in the t–J∗ model on the d-wave superconductivity was stressed and a 
modification of the superconducting order parameter was found in 
Ref. [87]. In Refs. [88,89] the renormalized mean-field theory for the t–J 
model was formulated and comparison with experiments in cuprates 
was performed. Using the LDA and tight-binding approximation for the 
La2− xSrxCuO4 an effective t′ –t′′–J∗ model was derived in Ref. [90]. The 
model was used to study the Lifshitz quantum phase transitions and 
transformation of the Fermi surface with hole concentration. Influence 
of the interlayer tunneling t2 on the electronic structure of the bilayer 
cuprates with hole concentration and strong magnetic fields was 
considered in Ref. [91]. Superconducting Tc and spin correlations within 
t′–t′′–t2–J∗ model were found in Ref. [92]. An effective model for 
electron-phonon and spin-phonon interactions for the original p–d 
model [93] was derived in Ref. [94]. Considering only holes in the 
singly-occupied Hubbard subband the low-energy t–J∗ part of the model 
with electron-phonon and spin-phonon interactions in terms of the HOs 
was also proposed. The isotope effect in the t–J∗ model with 
electron-phonon coupling was discussed in Ref. [95] and in Ref. [92] for 
the bilayer cuprates. Superconductivity in the two subband t–J model 
for the honeycomb lattice was considered recently in many publications. 
In ref. [96] the singlet order parameter for the d + id′ pairing was ob-
tained and the superconducting Tc as a function of doping was 
calculated. 

In studies of electronic spectrum and superconductivity within the 
t–J model in MFA the exchange interaction J was considered as the 
origin of electron coupling to the spin system. To go beyond the MFA 
higher order contributions to electron interaction with spins should be 
considered. Applying the projection technique in the equation of motion 
method for the GFs in terms of the HOs a microscopic theory of spin- 
fluctuation superconducting pairing was proposed in Refs. [97,98]. 
The Dyson equation for the normal and anomalous GFs was derived 
where a new energy scale caused by the kinematical interaction of 
electrons with dynamical spin fluctuations were found. The interaction 
is determined by the kinetic energy of electrons given by the hopping 
parameter t, much larger then the exchange interaction J. Calculation of 
the normal part of the self-energy operator brings about the renormal-
ization of the electronic spectrum where at low doping the pseudogap 
and the arc-type Fermi surface appear [97,99,100]. Suppression of the 
quasiparticle weight in the equation for the superconducting gap results 
in lowering of the superconducting transition temperature Tc in com-
parison with the MFA results. Similar spin-fluctuation superconducting 
pairing was proposed in Ref. [101]. The spin-fluctuation d-wave pairing 
induced by the hopping parameter t was obtained within the diagram 
technique for the HOs in the t–J model [102,103]. 

A number of studies of the t–J model at low doping predict that 
doped holes dressed by strong AFM spin fluctuations propagate coher-
ently as quasiparticle spin-polarons with a narrow band of the order of J 
(see, e.g.,  [104,105]). In Ref. [106] the singlet superconducting pairing 
of spin-polarons on the AFM background was found. 

The memory function approach was used in Refs. [107–111] to study 
the magnetic susceptebility in cuprates within the t–J model and to 
explain the emergence of the magnetic resonance mode. A theory of spin 
excitations within the relaxation-function approach for the dynamical 
spin susceptibility in the t–J model was developed in the normal [112] 
and superconducting [113] states. It was shown that the magnetic 
resonance mode is caused by a weak damping of the spin excitations 
close to the AFM wave vector and does not relate to the superconducting 
phase transition contrary to the theoretical description based on the 
spin-exciton model [108,114,115]. 

A possibility of HTSC mediated by AFM spin fluctuations as a “glue” 
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for superconducting pairing was considered within phenomenological 
spin-fermion models in many publications (see, e.g., [116–121] and 
references therein). In the spin-fermion models the conventional 
Fermi-liquid approach was used where the kinematical interaction of 
electron with spin fluctuation is lost. In the theory a fitting parameter for 
electron interaction with spin excitations has to be introduced contrary 
to the microscopic theory [97,98] where this interaction is given by the 
hoping parameters. 

In our previous publications [122–125] we study the electronic 
spectrum and superconductivity in the 2D extended Hubbard model 
using equation of motion method for the GFs. In the present paper we 
consider superconductivity in the limit of strong correlations, U≫t, 
using the extended t–J–V model with an intersite Coulomb interaction 
(CI) Vij and the electron-phonon interaction (EPI) generalizing our 
previous results for the conventional t–J model [97]. Consideration of 
EPI and CI permits to compare the electron-phonon pairing mechanism 
with the spin-fluctuation one and to estimate the role of CI in suppres-
sion of the superconducting Tc. 

We derive the Dyson equations for the normal and anomalous GFs in 
terms of the HOs where the self-energy is calculated in the self-consistent 
Bohr approximation (SCBA). At first we consider the generalized MFA 
(GMFA) where the exchange interaction J and CI Vij determine the 
electronic spectrum and the Fermi surface (FS) for the well-defined 
qausiparticle (QP) excitations. Taking into account the self-energy ef-
fects the electronic spectral functions, the damping of QP excitations and 
the FS as functions of doping are calculated. At low doping the arc-type 
FS is emerging. Analyzing the gap equation we show that the strong 
kinematical interaction of electrons with AFM spin-fluctuations results 
in the d-wave superconductivity with high-Tc. Contribution from the EPI 
to the d-wave pairing turns out to be small but it determines a weak 
isotope effect. 

In the next Section we present the general formulation of the model 
and derivation of the Dyson equation. In Section 3 the GMFA for the 
normal and superconducting states is considered. The self-energy 
calculation is given in Section 4. The results and discussion are pre-
sented in Section 5. Summary is given in Section 6. Details of calcula-
tions are shown in Appendix. 

2. General formulation 

2.1. Extended t-J-V model 

We consider electronic spectrum and superconducting pairing in the 
extended t–J − V model on a square lattice. To study strong electron 
correlations in the singly occupied subband of the t–J model one has to 
use the projected electron operators, as ã†

iσ = a†

iσ(1 − Niσ). Here a†

iσ is a 
creation electron operator on the lattice site i with spin σ /2, σ = ±1 (σ 
= − σ) and Niσ = ã†

iσ ãiσ is the number operator. The t–J model in the 
conventional notation reads: 

H = −
∑

i∕=j,σ
tijã+

iσ ãjσ +
1
2
∑

i∕=j

Jij

(

SiSj −
1
4
NiNj

)

+ Hc,ep (1)  

where Sα
i = (1 /2)

∑
s,s′ ã

+

is σα
s,s′ ãis′ are spin-1/2 operators, σα

s,s′ is the Pauli 
matrix. Here tij is the hopping parameter between i and j lattice sites and 
Jij is the AFM exchange interaction. The intersite CI Vij for electrons and 
EPI gij are taken into account by the Hamiltonian: 

Hc,ep =
1
2
∑

i∕=j

VijNiNj +
∑

i,j
gijNi uj, (2)  

where uj describe atomic displacements on the lattice site j for phonon 
modes. 

The unconventional commutation relations for the projected elec-
tron operators result in the kinematical interaction. For instance, if we 

consider commutation relation for the projected electron creation ã†

jσ 

and annihilation ãiσ operators, 

ãiσ ã†

jσ + ã†

jσ ãiσ = δij
(
1 − Niσ

/
2+ σSz

i

)
, (3)  

we observe that they are Fermi operators on different lattice sites but on 
the same lattice site they describe the kinematical interaction of elec-
trons with charge Niσ and spin Sα

i fluctuations. 
It is convenient to describe the projected electron operators by the 

Hubbard operators (HOs) [69], as, e.g., ã+
iσ = Xσ0

i . Using the HOs, we 
write the Hamiltonian (1) in the form 

H = −
∑

i∕=j,σ
tijXσ0

i X0σ
j − μ

∑

iσ
Xσσ

i

+
1
4
∑

i∕=j,σ
Jij

(
Xσσ

i Xσσ
j − Xσσ

i Xσσ
j

)
+ Hc,ep,

(4)  

where the HOs Xαβ
i = |iα〉〈iβ| describe transitions from the state |i, β〉 to 

the state |i, α〉 on the lattice site i for three electronic states: the unoc-
cupied state (α, β = 0) and two singly occupied states (α, β = σ). The 
chemical potential μ in (4) is determined from the equation for the 
average number of electrons: 

n = 〈Ni〉, (5)  

where 〈…〉 is the statistical average with the Hamiltonian (4). 
The number and spin operators in the HO representation read 

Ni =
∑

σ
Niσ , Niσ = Xσσ

i , (6)  

Sσ
i = Xσσ

i , Sz
i = (σ / 2)

(
Xσσ

i − Xσσ
i

)
. (7)  

The HOs satisfy the completeness relation X00
i + Xσσ

i + Xσσ
i = 1 , which 

shows that only one quantum state |i, α〉 on each lattice site i can be 
occupied and, therefore, rigorously preserves the constraint of no double 
occupancy. From the multiplication rules for the HOs Xαβ

i Xγδ
i = δβγXαδ

i 
for Fermi-type operators X0σ

i follow the commutation relations as in Eq. 
(3)for ãiσ , while for Bose-type operators such as the number (6) or the 
spin (7) operators the commutation relations read: 
[
Xαβ

i ,Xγδ
j

]
= Xαβ

i Xγδ
j − Xγδ

j Xαβ
i = δij

(
δβγXαδ

i − δδαXγβ
i
)
. (8)  

These commutation relations determine the kinematical interaction for 
the HOs. 

2.2. Dyson equation 

To discuss the electronic spectrum and superconducting pairing 
within the model (1) we consider the matrix GF [77] 

Ĝij,σ(t − t
′

) = − iθ(t − t
′

)
〈{

Ψiσ(t),Ψ+
jσ(t

′

)
}〉

≡
〈〈

Ψiσ(t)
⃒
⃒
⃒Ψ+

jσ(t
′

)
〉〉

,
(9)  

where θ(x) is the Heviside function, {A,B} = AB+ BA, A(t) = exp(iHt)
Aexp(− iHt) (ℏ = 1), and we introduced HOs in the Nambu notation: 

Ψiσ =

(
X0σ

i

Xσ0
i

)

, Ψ+
iσ =

(
Xσ0

i X0σ
i

)
. (10)  

The Fourier representation in (k,ω)-space is defined by the relations: 

Ĝijσ(t − t
′

) =
1

2π

∫ ∞

− ∞
dte− iω(t− t′ ) Ĝijσ(ω), (11)  

Ĝijσ(ω) =
1
N
∑

k
exp
[
k
(
ri − rj

)]
Ĝσ(k,ω), (12) 
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where N is the number of lattice sites. The GF (9) is convenient to write 
in the matrix form 

Ĝσ(k,ω) =
(

Gσ(k,ω) Fσ(k,ω)
F†

σ(k,ω) − Gσ( − k, − ω)

)

, (13)  

where Gσ(k,ω) and Fσ(k,ω) are the normal and anomalous parts of the 
GF (9). 

To calculate GF (9) we use the projection technique in the equation 
of motion method [76]. By differentiating the GF over the time t we get 
the following equation 

ωĜijσ(ω) = δij Q̂σ +
〈〈

Ẑ iσ

⃒
⃒
⃒Ψjσ

〉〉

ω
, (14)  

where Ẑiσ = [Ψiσ, H]. The matrix Q̂σ is the average value of time- 
independent operators Q̂σ = 〈{Ψiσ ,Ψ+

jσ}〉. The diagonal matrix element 
is given by 

〈{X0σi , Xσ0i }〉 = 〈X00i + Xσσi 〉 = 1 − (1/2)〈Niσ〉 + 〈S zi 〉 ,  

while the off-diagonal matrix element 〈{X0σi , X0σ̄i }〉 = 0 . Thus, in the 
paramagnetic state, 〈Sz

i 〉 = 0, the matrix 

Q̂σ = τ̂0Q, Q = 1 − n
/

2, (15)  

is the σ-independent unity matrix determined by the average number of 
electrons (5). Therefore, in the following equations this matrix can be 
replaced by the scalar Q. 

Now, we project the many–particle GF in (14) on the single–electron 
GF 
〈〈

Ẑ iσ

⃒
⃒
⃒Ψ+

jσ

〉〉

ω
=
∑

l
Ê ilσ

〈〈
Ψlσ

⃒
⃒
⃒Ψ+

jσ

〉〉

ω
+
〈〈

Ẑ
(irr)
iσ

⃒
⃒
⃒Ψ+

jσ

〉〉

ω
, (16)  

where we introduce the irreducible part of the operator Ẑiσ : 
〈{

Ẑ
(irr)
iσ ,Ψ+

jσ

}〉
=
〈

Ẑ
(irr)
iσ Ψ+

jσ +Ψ+
jσ Ẑ

(irr)
iσ

〉
= 0. (17)  

This results in the equation for the matrix of electronic energy in the 
GMFA: 

Êijσ =
〈{

[Ψiσ ,H],Ψ+
jσ

}〉
Q− 1 =

(
εij Δijσ

Δ∗
jiσ − εji

)

, (18)  

which in the Fourier representation reads: 

Êσ(k) =
1
N

∑

ri ,rj

e− k(ri − rj) Êijσ =

(
ε(k) Δσ(k)

Δ∗
σ(k) − ε(k)

)

. (19)  

Here ε(k) is the electronic spectrum in the normal state and Δσ(k) is the 
gap in the superconducting state. The energy matrix (19) defines the 
zero–order GF: 

Ĝ
0
σ(k,ω) = Q

ωτ̂0 + ε(k)τ̂3 + Δσ(k)τ̂1

ω2 − E2(k)
, (20)  

where τ̂1, τ̂3 are the Pauli matrices and E2(k) = ε2(k) + Δ2
σ(k) is the 

energy of quasiparticle (QP) excitations in the superconducting state. 
By writing the equation of motion for the irreducible part of the GF 

in (16) 〈〈Ẑ
(irr)
iσ (t)

⃒
⃒
⃒
⃒Ψ

+
jσ(t

′

)〉〉 with respect to the second time t′ for the 

right–hand side operator Ψ+
jσ(t

′

) and performing the same projection 
procedure as in (16) we can obtain the Dyson equation for the GF (9) in 
the form 

Ĝijσ(ω) = Ĝ
0
ijσ(ω) +

∑

kl
Ĝ

0
ikσ(ω) Q− 1 Σ̂klσ(ω) Ĝljσ(ω). (21)  

The self–energy operator Σ̂klσ(ω) is given by the properpart of the scat-
tering matrix that has no parts connected by the single zero-order GF 
(20): 

Σ̂ijσ(ω) =
〈〈

Ẑ
(irr)
iσ

⃒
⃒
⃒
⃒Ẑ

(irr)+

jσ

〉〉proper

ω
Q− 1 . (22) 

The self-energy operator can be written in the same matrix form as 
the GF (13): 

Σ̂σ(k,ω) =
(

Mσ(k,ω) Φσ(k,ω)

Φ†
σ(k,ω) − Mσ(k, − ω)

)

, (23)  

where the Mσ(k,ω) and Φσ(k,ω) denote the respective normal and 
anomalous (pair) components of the self-energy operator. Therefore, for 
the single–electron GF (9) we obtain an exact representation: 

Ĝσ(k,ω) = Q
{

ωτ̂0 − Êσ(k) − Σ̂σ(k,ω)

}− 1

. (24)  

A formal solution of the matrix Eq. (24) can be written in the form (cf. 
[126]): 

Ĝσ(k,ω) = Q
ωZk(ω)τ̂0 + (ε(k) + ξk(ω))τ̂3 + ϕσ(k,ω)τ̂1

(ωZk(ω))2
− (ε(k) + ξk(ω))

2
− |ϕσ(k,ω)|2

, (25)  

where we introduced the odd and even components of the normal self- 
energy operator Mσ(k,ω) with respect to the frequency ω: 

ω(1 − Zk(ω)) =
1
2
[M(k,ω) − M( − k, − ω)], (26)  

ξk(ω) =
1
2
[M(k,ω)+M( − k, − ω)]. (27)  

The superconduction gap ϕσ(k,ω) is determined both by the GMFA 
function Δσ(k) in Eq. (19) and the anomalous self-energy component 
Φσ(k,ω) in Eq. (23) : 

ϕσ(k,ω) = Δσ(k) + Φσ(k,ω). (28) 

The QP excitation in the GMFA (19) is determined by the static 
correlation functions and can be directly calculated as described in the 
next section. However, to calculate the self-energy matrix (23) which 
describes inelastic scattering of electrons on spin, charge fluctuations 
and phonons one has to introduce an approximation for the many-
–particle GFs in (23) as considered in Section 4. 

3. Generalized mean-field approximation 

3.1. Normal state 

The normal state GF in the GMFA is given by Eq. (20) for the zero gap 
function: 

G0(k,ω) =
〈〈

X0σ
k

⃒
⃒Xσ0

k
〉〉

ω =
Q

ω − ε(k). (29)  

To calculate the energy ε(k) we use the equation of motion for the HOs 
(

i
d
dt

+ μ
)

X0σ
i = −

∑

j,σ′
tijBiσσ′ X

0σ′
j + X0σ

i

∑

j
gijuj

+
1
2
∑

j,σ′
Jij
(
Bjσσ′ − δσσ′

)
X0σ′

i + X0σ
i

∑

j
V(i, j)Nj.

(30)  

Here we introduced the Bose-like operator 
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Biσσ′ =
(
X00

i +Xσσ
i

)
δσ′ σ + Xσσ

i δσ′ σ

=

(

1 −
1
2

Ni + σSz
i

)

δσ′ σ + Si
σδσ′ σ ,

(31)  

which describes electron scattering on spin and charge fluctuations 
caused by the kinematic interaction (3). Using Eq. (30) we calculate the 
matrix εij = 〈{[X0σ

i ,H],Xσ0
j }〉 Q− 1 and for the electronic energy ε(k)

obtain the relation: 

ε(k) = − 4t αγ(k) − 4t′ βγ′

(k) − 4t′′ βγ′′(k)

−
2J
N

∑

q
γ(k − q)Nqσ + ω(c)(k) − μ,

(32)  

ω(c)(k) =
1
N
∑

q
V(k − q)N(q), (33)  

where the renormalization of the chemical potential δμ in the GMFA we 
include in the definition of μ. Here t, t′ , t′′ are the hopping parameters 
between the first a1 = ±ax,±ay , second a2 = ±(ax ± ay), and third a3 

= ±2ax,±2ay neighbors, respectively (ax = ay = a - are the lattice 
constants). The Fourier components of the hopping parameter t(k), CI 
V(k) and the exchange interaction J(k) are given by: 

t(k) = 4 t γ(k) + 4 t′ γ′

(k) + 4t′′ γ′′(k), (34)  

V(k) = 4V1 γ(k) + 4V2 γ
′

(k), (35)  

J(k) = 4Jγ(k), (36)  

where γ(k) = (1 /2)(coskx + cosky), γ′

(k) = coskxcosky, γ′′(k) =

(1 /2)(cos2kx + cos2ky). For the intersite CI for the first and the second 
neighbors, V1 and V2 in (35), we take sufficiently small values V1 =

0.3 t and V2 = 0.2 t as shown in numerical calculations [127]. For the 
AFM exchange interaction (36) we take J = 0.4t . Below we take t = 0.4 
eV as the energy unit and put t = 1. 

The renormalization of the spectrum (32) caused by the AFM short- 
range correlations is determined by the parameters: 

α = Q
(
1 + C1

/
Q2), β = Q

(
1 + C2

/
Q2), (37)  

where the spin correlation functions for the first and the next neighbors 
are: 

C1 =
〈
SiSi±ax/ay

〉
=

1
N
∑

q
γ(q)Cq,

C2 =
〈
SiSi±ax±ay

〉
=

1
N
∑

q
γ′

(q)Cq.

(38)  

For the spin correlation function Cq = 〈SqS− q〉 we take the model: 

Cq =
CQ

1 + ξ2[1 + γ(q)]
, (39)  

where the parameter CQ is defined from the normalization condition 〈
SiSi〉 = (3 /4)n = (1 /N)

∑
qCq. The correlation functions have the 

maximum CQ at the AFM wave vector Q = (π, π). In Ref. [112] the 
correlation functions C1 and C2 as a function of doping were calculated 
for the t − J model (see Fig. 1). To simplify the numerical calculations it 
is more convenient to use the analytical Eqs. (38) and (39) which give C1 
and C2 close to that ones in Ref. [112]. The correlation functions depend 
on the AFM correlation length ξ. For its dependence on the hole doping δ 
we use an approximation ξ/a = 1/

̅̅̅
δ

√
observed in neutron scattering 

experiments (see, e.g., [128]) and confirmed in the exact diagonaliza-
tion study for finite clusters [129]. The values of correlation functions 
C1, C2, CQ, the AFM correlation length ξ, and parameters α, β for various 
hole doping δ are given in Table 1. The value of the normalization 

parameter χQ = 2CQ/ωs, ωs = J = 0.4, for the dynamical spin suscep-
tibility in Eq. (64) is also given. 

The electronic occupation number in the GMFA is determined by the 
zero-order GF (29) 

N(k) =
Q

exp[ε(k)/T] + 1
. (40)  

The chemical potential in the GMFA is calculated from the equation: 

n =
1
N

∑

k,σ
N(k) = 2 − n

N

∑

k

1
exp[ε(k)/T] + 1

. (41)  

Eq. (41) proves that n ≤ 1 in the singly-occupied band in the t–J model. 
To reproduce the realistic electronic spectrum which shows the FS 

transition from the four-pockets at small doping to a large one with 
doping for the hopping parameter we take t′ = 0.1t, t′′ = 0.2t. For these 
parameters we obtain the electronic spectrum in Fig. 1 which is similar 
to calculated within the Hubbard model in Refs. [122,124]. Note that at 
small doping δ = 0.05 the electronic energy ε(k) at the Γ(0,0) and M(π,
π) points of the BZ are close induced by short-range AFM correlations as 
in the long-range AFM state. 

This renormalization of the spectrum results in the FS ε(kF) = 0 with 
four hole pockets in Fig. 2 at low doping. As discussed in Section 4.1, by 
taking into account the self-energy contribution in the GF (25) instead of 
the well defined in the GMFA electronic spectrum in Fig. 1 we observe a 
diffuse spectral density. At the same time, the FS in Fig. 2 in the form of 
closed pockets for low doping transfers to open arcs where only the outer 
part of pockets is revealed while the inner part, closer to the (π, π) point 
of the BZ, is smoothed away. 

The density of states (DOS) A0(ω) in the GMFA is determined by the 
relation: 

A0(ω) = 1
N
∑

k

1
πQ
[
− ImG0(k,ω)

]
=

1
N
∑

k
δ[ε(k) − ω], (42) 

Fig. 1. Dispersion of the electron spectrum along the main directions in the BZ: 
Γ(0, 0)→M(π, π)→X(π,0)→Γ(0, 0)→X(π, 0) for δ = 0.05 (red, dash-dotted line), 
δ = 0.1 (black, dash line), δ = 0.2 (brown, dotted line), δ = 0.3 (blue, 
solid line). 

Table 1 
Static spin correlation functions C1, C2 and renormalization parameters CQ and 
χQ for the AFM correlation length ξ/a = 1/

̅̅̅
δ

√
at various hole concentrations δ =

1 − n.  

δ = 0.05 0.10 0.20 0.30 0.40 

ξ = 1/
̅̅̅
δ

√ 4.5 3.2 2.2 1.8 1.6 

C1(ξ) -0.3 -0.24 -0.17 -0.13 -0.1 
C2(ξ) 0.2 0.14 0.09 0.06 0.04 
CQ(ξ) 9.00 5.02 2.74 1.84 1.33 
χQ(ξ) 44.98 25.11 13.68 9.21 6.64 
α(ξ) -0.043 0.11 0.31 0.45 0.56 
β(ξ) 0.9 0.8 0.75 0.74 0.76  
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and presented in Fig. 3 as a function of doping in units of 1 /t. With 
doping AFM correlations are suppressed which results in increasing of 
the effective bandwidth, while the density of state at the FS is 
decreasing. 

3.2. Superconducting state 

The superconducting gap function Δσ(k) in the zero-order GF (20) is 
determined by the Fourier component of the anomalous correlation 
function in the energy matrix (18): Δijσ = 〈{[X0σ

i ,H],X0σ
j }〉 Q− 1. Using the 

equation of motion (30) for the gap function we find the relation 

Δσ(k) =
1

NQ
∑

q
[2t(q) − J(k − q)+V(k − q)]

〈
X0σ
− qX0σ

q

〉
. (43)  

The EPI gives no contribution in the GMFA. From the GF F(0)
σ (q,ω) in Eq. 

(20) we obtain for the correlation function 
〈

X0σ
− qX0σ

q

〉
= − Q

Δσ(q)
2E(q)

tanh
E(q)
2T

. (44)  

There are two pairing contributions in Eq. (43): the exchange interaction 
J(k − q) and the k-independent kinematic interaction t(q). The latter 
gives k-independent gap 

Δσ = −
2
N
∑

q
t(q)

Δσ(q)
2E(q)

tanh
E(q)
2T

, (45)  

which violates the constraint of no double occupancy (see Refs. [79, 
124]). In particular, 

〈
X0σ

i X0σ
i

〉
=

Q
N

∑

q

Δσ

2E(q)
tanh

E(q)
2T

∕= 0. (46)  

The constraint 〈X0σ
i X0σ

i 〉 = 0 is fulfilled for the d-wave gap Δσ(qx, qy) =

− Δσ(qy, qx) in integration over (qx, qy) in (46) for E(qx,qy) = E(qy,qx). 
Therefore, we disregard t(q) contribution in Eq. (43) and obtain the 

gap equation in the form 

Δσ(k) =
1
N
∑

q
[J(k − q) − V(k − q)]

Δσ(q)
2E(q)

tanh
E(q)
2T

. (47)  

Solution of the linearized gap Eq. (47) with E(q) = ε(q) gives Tc as a 
function of doping for the d-wave pairing shown in Fig. 4. The maximal 
value of Tmax

c ≃ 0.02t ≃ 100 K for zero CI is at hole concentration δ ∼

0.14 for the maximal DOS at the FS. For conventional values of the 
hopping parameters without hole pockets on the FS, as, e.g., in Ref. [97], 
Tmax

c is at δ ∼ 0.33, far away from the experimental values δ ∼ 0.16. 
Intersite CI V(k − q) (35) strongly suppresses Tc. The effective 

coupling for the CI V1 = 0.3 results in weak coupling, J − V1 = 0.1, and 
extremely small Tmax

c ∼ 4t × 10− 4 in comparison with with Tmax
c for 

V1 = 0 in Fig. 4. Such a strong reduction of Tc is explained by the 
unretarded character of both interactions, the exchange interaction J 
and CI. They act in the whole subband of the t − J model and there is no 
renormalization of CI as in the case of retarded electron-phonon inter-
action. In the MFA, commonly used for the t–J model, it is possible to 
explain quite high-Tc ≃ 100 K observed in experiments as was proposed 
by Anderson [6]. But taking into account the CI comparable with the 
exchange interaction J, high-Tc in cuprates cannot be realized. 

The three-site interaction H3 in the t–J∗ model further results in 
decreasing of the effective AFM interaction, in the simplest MFA [130], 
J∗ ≃ J(n /2). A more accurate estimation of the three-site interaction H3 
in the t–J∗ model in Ref. [86] has shown that the superconductivity 
temperature Tmax

c for the d-wave pairing is strongly suppressed, 
approximately in 25 times, in comparison with the original t–J model. 
So, even without CI V1 the superconducting Tmax

c is very small and many 
calculations performed in MFA for the original t–J model, as e.g., in 
Ref. [10] where a good agreement with experiments in cuprates was 
claimed, cannot explain high-Tc in cuprates. 

To find the superconductivity in this case we should take into ac-
count the kinematical interaction in the anomalous self-energy Φσ(k,ω)

in Eq. (23) as discussed in the next Section. 

4. Self-energy calculation 

In this section we consider the strong coupling approximation (SCA) 
by taking into account the self-energy contribution to the GFs in com-
parison to the weak-coupling approximation (WCA) in the GMFA dis-
cussed in the previous section. 

The self-energy (22) is determined by the many-particle GFs where 
the normal and anomalous (pair) components in the matrix (23) are 
given by: 

Fig. 2. Fermi surface in the quarter of the BZ for δ = 0.05 (red, dash-dotted 
line), δ = 0.1 (black, dash line), δ = 0.2 (brown, dotted line), δ = 0.3 (blue, 
solid line). 

Fig. 3. Density of states A0(ω) for δ = 0.05 (red, dash-dotted line), δ = 0.1 
(black, dash line), δ = 0.2 (brown, dotted line), δ = 0.3 (blue, solid line). Fig. 4. Tc dependence on δ = 1 − n for V1 = 0.  
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Mijσ(t − t
′

) = (1 /Q)
〈〈[

X0σ
i ,H

]
(t)
⃒
⃒
⃒

[
H,Xσ0

j

]
(t

′

)
〉〉

, (48)  

Φijσ(t − t
′

) = (1 /Q)
〈〈[

X0σ
i ,H

]
(t)
⃒
⃒
⃒

[
X0σ

j ,H
]
(t

′

)
〉〉

(49)  

As follows from the equation of motion (30), the many-particle GFs in 
Eqs. (48), (49) describe propagation of a pair of excitations, a Fermi one 
like ãiσ = X0σ

i and a Bose one like spin and charge fluctuations or pho-
nons, from time t to t′ . Their interaction is determined by the zero order 
vertexes, tij, Jij or Vij. This representation of the self-energy distinguishes 
from that one used in the diagram technique where the self-energy is 
usually given by a skeleton diagram for a fermion and a boson with a full 
vertex. This distinction results in different type of approximations for the 
self-energy. In the diagram technique the vertex is calculated by a 
perturbation theory, while for the self-energy (48) and (49) we have to 
use an approximation for the many-particle GFs. Here we use the SCBA 
which is similar to the non-crossing approximation in the diagram 
technique. In the approximation, a propagation for Fermi-like and Bose- 
like excitations is assumed to be independent between time t to t′ . The 
time-dependent many-particle correlation functions in the proper part of 
the self-energy, having no parts connected by a single-electron GF, 
therefore can be written as a product of fermionic and bosonic time- 
dependent correlation functions. 

In particular, the contribution from the kinematical interaction, the 
first sum in the equation of motion (30), is given by the decoupling of 
two-time correlation functions: 
〈

Xσ′ 0
m B+

jσσ′

⃒
⃒
⃒X0σ′

l (t)Biσσ′ (t)
〉
=
〈
Xσ′ 0

m X0σ′
l (t)

〉〈
B+

jσσ′ Biσσ′ (t)
〉
, (50)  

〈
Xσ

′
0

m Bjσσ′
⃒
⃒Xσ′ 0

l (t)Biσσ′ (t)
〉
=
〈
Xσ

′
0

m Xσ′ 0
l (t)

〉 〈
Bjσσ′ Biσσ′ (t)

〉
. (51)  

The decoupling is performed on different lattice sites (j ∕= m, i ∕= l) 
which exclude correlations between different type of excitations. The 
same type of approximation for the fermion-phonon GF 〈

Xσ0
m uj

⃒
⃒X0σ′

l (t)ui(t)〉 = 〈Xσ0
m X0σ′

l (t)〉〈ujui(t)〉 directly reproduces the Eliash-
berg theory [126] of superconductivity for the electron-phonon model. 
The vertex correction to the EPI in the Eliashberg theory is small given 
by the parameter ωph/μ where ωph is a phonon energy. In the SCBA the 
vertex correction to the spin-fluctuation interaction is also small, of the 
order of ωs/μ, the spin-fluctuation energy ωs which restricts the region of 
interaction, to the Fermi energy μ. The time-dependent single-particle 
correlation functions at the right-hand side in Eqs. (50) and (51) are 
calculated self-consistently using the corresponding full GFs. 

Using the spectral representation for these GFs, we obtain the ex-
pressions for the normal and anomalous components of the self-energy 
(see Appendix): 

M(k,ω) =
1
N
∑

q

∫+∞

− ∞

dz
πQ

K(+)(ω, z,k,q)[ − Im]G(q, z), (52)  

Φσ(k,ω) = 1
N
∑

q

∫+∞

− ∞

dz
πQ

K(− )(ω, z,k,q)[ − Im]Fσ(q, z). (53)  

The kernel of the integral Eqs. (52) and (53) is determined by the rela-
tion (see Appendix): 

K(±)(ω, z,k, q) =
∫+∞

− ∞

dΩ
2π

tanh(z/2T) + coth(Ω/2T)
ω − z − Ω

×{|gsf (k, q)|2Imχsf (k − q,Ω)

±|gep(k − q)|2Imχph(k − q,Ω)

±
[
|V(k − q)|2 + |t(q)|2

/
4
]
Im χcf (k − q,Ω)

}

≡

∫+∞

− ∞

dΩ
2π

tanh(z/2T) + coth(Ω/2T)
ω − z − Ω

λ(±)(k, q,Ω),

(54)  

where |gsf (k,q)|2 = |t(q) − (1/2)J(k − q)|2. The spectral densities of 
bosonic excitations are determined by the dynamic susceptibility for 
spin (sf), number (charge) (cf), and lattice (phonon) (ph) fluctuations 

χsf (q,ω) = −
〈〈

Sq|S− q
〉〉

ω, (55)  

χcf (q,ω) = −
〈〈

δNq
⃒
⃒δN− q

〉〉

ω, (56)  

χph(q,ω) = −
〈〈

uq
⃒
⃒u− q

〉〉

ω. (57)  

They are defined by the commutator GFs [77] for the spin Sq, number 
δNq = Nq − 〈Nq〉, and lattice displacement (phonon) uq operators. At 
first we consider solution of these equations for the normal state. 

4.1. Normal state GF 

The normal state GF in Eq. (25) can be written as 

G(k,ω) =
〈〈

X0σ
k

⃒
⃒Xσ0

k
〉〉

=
Q

ω − ε(k) − M(k,ω), (58)  

where the normal state self-energy is given by Eqs. (52) and (54). The 
spectral density of electronic excitation is determined by 

A(k,ω) = −
1

πQ
ImG(k,ω + iϵ)

=
− M′′(k,ω)/π

[ω − ε(k) − M
′

(k,ω)]
2
+ [M′′(k,ω)]2

.

(59)  

Here we introduce the real, M′

(k,ω), and imaginary, M′′(k,ω), parts of 
the self-energy: M(k,ω + iϵ) = M′

(k,ω)+ iM′′(k,ω). 
The renormalization parameter (26) for the electronic energy close 

to the FS, ω→0, reads: 

Zk(0) = 1 − [∂M(k,ω)/∂ω]ω=0 ≡ 1 + λ(k), (60)  

where λ(k) is the coupling parameter. 

4.2. Superconducting state 

The superconduction gap in the SCA (28) is determined both by the 
GMFA function Δσ(k) (47) and the anomalous self-energy component 
(53) and (54). For calculation of superconducting Tc we can use the 
linear approximation for the anomalous GF in Eq. (53): 

Fσ(k,ω) = Q
ϕσ(k,ω)

Z2
k(ω) [ω2 − ε̃2

(k,ω)]
, (61)  
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where the renormalized energy ε̃(k,ω) = [ε(k) + ξk(ω)]/Zk(ω) . Further 
we consider the gap equation close to the FS, ϕσ(k) = ϕσ(k,ω = 0): 

ϕσ(k) =
1
N

∑

q

∫+∞

− ∞

dz
π

⎡

⎣V(k − q) − J(k − q)
exp(z/T) + 1

+K(− )(0, z,k, q)

]

[ − Im]
ϕσ(q)

Z2
q(0)

[
(z + iϵ)2

− ε̃2
(q, z)

] .

(62)  

Solution of this equation we consider in Section 5.3. 

5. Results and discussion 

5.1. Model parameters 

To perform numerical calculations we should introduce susceptibil-
ity models. For the spin-fluctuation susceptibility (55) we use the model: 

Im χsf (q,ω+ iϵ) = χs(q) χ ′′

s (ω)

=
χQ

1 + ξ2(1 + γ(q))
tanh

ω
2T

1
1 + (ω/ωs)

2.
(63)  

The model describes the broad energy spectrum of spin fluctuations 
χ ′′

s (ω) with the cut-off frequency ωs and the static susceptibility χs(q)
with the maximum at the AFM wave-vector Q = (π, π) as observed in the 
paramagnetic phase. Similar model was suggested in Ref. [100]. In 
Ref. [112] we have calculated the dynamic spin susceptibility for the t −
J model which frequency and wave-vector dependencies are close to the 
model (63). It can be used in numerical calculations but it is more 
convenient to adopt the analytical model (63). 

The intensity of electron interaction with spin fluctuations is deter-
mined by the maximum of the static susceptibility χs(q) at Q = (π,π): 

χQ =
3n
2ωs

{
1
N

∑

q

1
1 + ξ2[1 + γ(q)]

}− 1

. (64)  

It is very important that χQ is not a fitting parameter but is fixed by the 
normalization condition: 

〈
S2

i

〉
= 1

π

∫+∞

− ∞

χ ′′

s (ω) dω
exp(ω/T) − 1

1
N
∑

q
χs(q)

=
ωs

2
1
N
∑

q
χs(q) =

3n
4
,

(65)  

that yields χQ = 2CQ/ωs presented in Table 1. Therefore, there are two 
parameters which determine the function (63): the AFM correlation 
length ξ that depends on the hole concentration δ as given in Table 1, 
and the frequency ωs. The latter can be estimated as ωs = J = 0.4 t taking 
into account theoretical calculations, e.g., Refs. [100,112], and experi-
mental results of the inelastic magnetic neutron scattering experiments 
and optical measurements. As shown in Table 1, at large correlation 
length ξ, low doping, the spin-fluctuation interaction given by χQ is 
strong while with doping and decreasing ξ the interaction becomes 
weak. 

For the EPI we can use the model of forward scattering. It can explain 
a weak transport EPI λtr, while it may result in a strong superconducting 
coupling λ, e.g., λtr < λ/3 [131]. To take into account the importance of 
the forward scattering we consider a model EPI for optic phonons in Eq. 

(54) suggested in Ref. [132]: 

|gep(k − q)|2χph(ω) = gep
ξch

1 + ξ2
ch|k − q|2

ω2
0

ω2
0 − ω2, (66)  

where ω0 = 0.1 t is an optic excitation frequency. The parameter ξch is 
the charge correlation length for holes and can be approximated by the 
relation ξch/a = 1/(2δ) [133]. This results in a large EPI in the under-
doped case, while in the overdoping region it decreases, e.g., for qa =

0.1 it changes from 4gep at δ = 0.1 to 1.62gep at δ = 0.3. We assume a 
large EPI coupling constant gep = 8 t = 3.2 eV. 

For the charge susceptibility (56) we use the model considered in our 
calculation of the charge density waves in Ref. [134]: 

χcf (q,ω) =
4

Ω2
q − ω2

1
N
∑

q′

[ t(q′

) − t(q′

− q)]N(q),

Ω2
q =

2
N

∑

q′

[t(q′

) − t(q − q′

)]

× [t(q′

) − (1/2) J(q) + 2V(q)]N(q),

(67)  

where the electronic occupation number N(q) we calculate in the GMFA 
(40). 

We perform numerical calculations for the same parameters as for 
the electronic spectrum in Section 3.1 and given in the Table 1. The 
calculations are done for low temperature T = 0.02 which is much less 
than the chemical potential and the exchange interaction J = 0.4 so we 
can neglect temperature dependence of the correlation length and the 
electronic spectrum. 

5.2. Normal state 

Electronic spectrum in the normal state is determined by the the 
spectral density (59). To calculate it we should find the self-energy (52) 
given by Eq. (54): 

M(k,ω) = 1
2πN

∑

q

∫+∞

− ∞

∫+∞

− ∞

dz dΩ
ω − z − Ω

×
[
tanh

z
2T

+ coth
Ω
2T

]
λ+(k,q,Ω)A(q, z).

(68)  

We calculate the self-energy and the spectral density by iteration. In the 
lowest order for the spectral density A(0)(q, z) = δ(z − ε(q)) the first order 
of the imaginary part of the self-energy reads 

−
1
π ImM(1)(k,ω + iϵ) =

1
2πN

∑

q
λ+(k, q,ω − ε(q))

×
[
tanh

ε(q)
2T

+ coth
ω − ε(q)

2T

]
(69)  

The real part of the self-energy (68) is calculated using the dispersion 
relation for the GFs [77]. The n-order of the self-energy M(n)(k,ω) is 
calculated using the (n − 1)-order of the spectral density A(n− 1)(q, ω). 
The iteration procedure converges for n > 8 and we present the results of 
calculations in the n = 10-order of iterations. For the interactions in Eq. 
(54) we calculate separately contributions to the imaginary part of the 
self-energy determined by spin fluctuations Msf (k,ω), phonons Mph(k,ω)

and charge fluctuations (CF) Mcf (k,ω). 
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Let us consider the contribution to the self-energy (68) produced by 
spin fluctuations. For the model (63) the first order of the imaginary part 
(69) is given by 

−
1
π ImM(1)

sf (k,ω) = 1
2πN

∑

q

|gsf (k, q)|2 χQ

1 + ξ2(1 + γ(k − q))

×
tanh(ε(q)/2T) tanh[(ω − ε(q))/2T] + 1

1 + [(ω − ε(q))/ωs]
2 .

(70)  

As we show later, contributions to the imaginary part of the self-energy 
from phohons and CF are much smaller than from spin-fluctuations. 
Therefore, we can neglect these contributions and in the iteration pro-
cedure for the self-energy and the spectral density use Msf (k,ω) and 
Asf (k,ω). 

The results of the 10th order of iterations for the spectral density 
Asf (k,ω) (59) and the energy dispersion ̃ε(k) obtained by 2D projection 
of Asf (k,ω) along the main directions in the BZ, Γ(0,0)→X(π,0)→M(π,π)
→Γ(0,0), are presented in Figs. 5–10. 

At low doping the spectral density shows a large incoherent back-
ground, in particular close to the (π, π)-point of the BZ, as shown in 
Figs. 5 and 6 for δ = 0.05 and in Figs. 7 and 8 for δ = 0.1. With 
increasing doping the spin-fluctuation interaction becomes weak and 
the incoherent background decreases, while the intensity of excitations 
increases as shown in Figs. 9 and 10 for δ = 0.3. The spectrum of ex-
citations at large doping in Fig. 10 is close to that one in the GMFA 
shown in Fig. 1. However, at low doping where the self-energy 
renormalization is strong the spectrum in the GMFA is quite different 
from those shown in Figs. 6 and 8. In particular, a large intensity of 
excitations at the (π,π)-point of the BZ in Fig. 6 appears at much lower 
energy than in the GMFA due to a shift of the excitation energy caused 
by the real part of the self-energy. Therefore, we can conclude that the 
self-energy effects are very important in studies of the QP excitations in 
the t − J model. 

The QP damping determined by the imaginary part of the self-energy 
(68) Γ(k,ω) = − (1 /π)ImMsf (k,ω) due to spin-fluctuation interaction is 
plotted in Fig. 11 at doping δ = 0.1. For a larger doping, δ = 0.3, the 
intensity decreases as shown in Fig. 12. A large asymmetry of the 
damping for the hole spectrum below the Fermi energy, ω < 0, and for 
the electron spectrum at ω > 0 is observed with a strong damping for the 
hole spectrum. In Fig. 12 for δ = 0.3 it is shown more clearly. 

Strong damping for the hole spectrum results in a large incoherent 
background in the spectral density A(k,ω) in Figs. 5–10. Close to the 
Fermi energy the damping Γ(k,ω→0) disappears linearly with ω for a 
small doping as in Fig. 11, while for a large doping it proportional to ω2 

as in Fig. 12. This behavior looks like as a transition from the marginal 
Fermi-liquid to the conventional Fermi-liquid. 

In comparison with other studies we can mention the spectrum of 
excitations for the t − J model obtained within the CPT in Ref. [38] (see 
Fig. 1 (b–d)). The spectrum is close to our results, in particular, a flat 
dispersion for the energy excitations with high intensity close X(π,0)
point of the BZ is clearly reproduced in our figures. Studies of the 
spectral properties for the two-dimensional t − J model using the 
finite-temperature Lanczos method in Ref. [135] have revealed similar 
results for the spectral density and the imaginary part of the self-energy. 
The spectrum of the hole excitations found in the Hubbard model re-
produces the main features of the spectrum in the t − J model as was 
found within the equation of motion method in Refs. [122,123] and 
applying the CPT in Ref. [39]. 

The EPI contribution (66) for the imaginary part of the phonon self- 
energy Mph(k,ω) (69) reads: 

Fig. 5. Spectral density A(k,ω) along the main directions in the BZ: Γ(0, 0)→ 
M(π, π)→X(π,0)→Γ(0, 0) for δ = 0.05. 

Fig. 6. Energy dispersion along the main directions in the BZ: Γ(0,0)→ 
X(π, 0)→M(π, π)→Γ(0, 0) for δ = 0.05. 

Fig. 7. Spectral density A(k,ω) for δ = 0.1.  

Fig. 8. Energy dispersion for δ = 0.1.  
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−
1
π ImMph(k,ω) =

1
2πN

∑

q

gepξch

1 + ξ2
ch|k − q|2

×

∫+∞

− ∞

dz

⎡

⎣tanh
z

2T
+ coth

ω − z
2T

⎤

⎦Im
A(q, z)ω2

0

ω2
0 − [ω − z]2

.

(71)  

The frequency dependence of the imaginary part of the phonon self- 
energy is shown in Fig. 13 for δ = 0.1. For the spectral density we 
used Asf (q,z). 

The CF contribution (67) for the imaginary part of the self-energy 
Mcf (k,ω) (69) is given by 

−
1
π ImMcf (k,ω) =

1
2πN

∑

q

[

|V(k − q)|2 +
1
4
|t(q)|2

]

×

∫+∞

− ∞

dz

⎡

⎣tanh
z

2T
+ coth

ω − z
2T

⎤

⎦A(q, z)Im χcf (k − q,ω − z).

(72)  

The imaginary part of the CF self-energy is plotted in Fig. 14 for δ = 0.1. 
For the spectral density we used Asf (q,z). 

The phonon and CF contributions are an order of magnitude smaller 
than the imaginary part of the spin-fluctuation self-energy and, there-
fore, can be ignored in calculation of the spectral density. Therefore, the 
results obtained for the spin-fluctuation spectral density Asf (k,ω) can be 
considered as the total spectral density A(k,ω) (59). 

The DOS A(ω) in the SCA is determined by the function 

A(ω) =
1
N
∑

k

1
πQ

[ − ImG(k,ω)] = 1
N
∑

k
A(k,ω), (73)  

and presented in Fig. 15 in units of 1/t for various doping. 

Fig. 9. Spectral density A(k,ω) for δ = 0.3.  

Fig. 10. Energy dispersion for δ = 0.3.  

Fig. 11. Imaginary part of the spin-fluctuation self-energy − (1 /π)ImMsf (k,ω)

for δ = 0.1. 

Fig. 12. Imaginary part of the spin-fluctuation self-energy − (1 /π)ImMsf (k,ω)

for δ = 0.3. 

Fig. 13. Imaginary part of the phonon self-energy − (1 /π)ImMph(k,ω) for δ =

0.1. 

Fig. 14. Imaginary part of the charge fluctuation self-energy 
− (1 /π)ImMsc(k,ω) for δ = 0.1. 
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In comparison with the DOS A(0)(ω) in the GMFA in Fig. 3, A(ω) in 
the SCA shows lower values for small doping at the FS due to a small QP 
weight 1/Zk at low doping. 

The results of spectral density close to the Fermi surface A(k,ω = 0)
(59) which determines the FS are presented in Figs. 16–18. The FS 
changes from the arc-type at low doping (δ = 0.05,0.1) as demonstarted 
in Figs. 16 and 17 to the large FS at high doping (δ = 0.3) in Fig. 18. In 
the GMFA, we have well-defined qusiparticles with the FS in the form of 

hole pockets at δ = 0.05, 0.1 which changes to large FS at large doping 
as shown in Fig. 2. Taking into account the self-energy effects, the 
spectral density A(k, 0) reveals transfer of pockets to arcs as demon-
started in Figs. 16 and 17 where only the outer part of pockets is visible, 
while the inner part, closer to the (π, π) point of the BZ, due to a large 
imaginary part of the self-energy, is smoothed away. The spectral den-
sity for low doping also describes the pseudogap formation with zero 
density of states at around (±π,0), (0,±π) points of BZ. Similar behavior 
for the spectral density at the FS was found in Ref. [136] in the exact 
diagonalization studies for the t − t′ − t′′ − J model. At low hole 
concentration δ = 0.1 a gap opening occurs in this region leading to arcs 
on the FS. The arc type FS were obtained using the CPT for the t − J 
model in Ref. [38] and for the Hubbard model in Ref. [39]. 

In ARPES experiments in cuprates only the arc transformation at low 
doping to large FS is observed since a weak intensity of the inner part of 
the pockets makes them invisible. In particular, in Ref. [137], the FS 
show the arcs at doping x = 0.05, 0.1 which can be considered as a 
manifestation of the pockets where only the outer part of it is found. 
Similar results were obtained in other publications, see Ref. [138] where 
large intensity of the ARPES signal at the ”arc-type” part of the FS in the 
underdoped regime and the large FS in overdoped regime were ob-
tained. In Ref. [139] two gaps were found, one is the PG region outside 
the arcs and the SC gap related to arcs. In Ref. [140] well defined arcs on 
the FS with underlying FS are obtained. 

The wave-vector and doping dependence of the QP renormalization 
parameter Zk (60) calculated from the real part of the self-energy is 
shown in Fig. 19. It strongly depends on the doping being especially 
large for low doping resulting in a small QP weight 1/Zk. 

Fig. 15. Density of states A(ω) for δ = 0.05 (red, dash-dotted line)) δ = 0.1 
(black, dashed line)), δ = 0.2 (brown, dotted line), δ = 0.3 (blue, solid line). 

Fig. 16. Spectral density A(k,0) in the quarter of the BZ for δ = 0.05.  

Fig. 17. Spectral density A(k,0) for δ = 0.1.  

Fig. 18. Spectral density A(k, 0) for δ = 0.3.  

Fig. 19. Doping dependence of renormalization parameter Z(q) for δ = 0.05 
(red, dash-dotted line)) δ = 0.1 (black, dashed line)), δ = 0.2 (brown, dotted 
line), δ = 0.3 (blue, solid line). 
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5.3. Superconducting state 

The gap   Eq. (62) close to the FS defined by the function K(− )(0, z,
k, q) (54) can be written as 

where the first term is the integrated over z in (62) the GMFA gap 
function. The second order contributions are determined by the 
function: 

λ(− )(k,q,Ω) =
{⃒
⃒gsf (k, q)

⃒
⃒2Imχsf (k − q,Ω)

− |gep(k − q)|2Imχph(k − q,Ω)

−
[
|V(k − q)|2 + |t(q)|2

/
4
]
Im χcf (k − q,Ω)

}

≡ −
∑

α
|gα(k,q)|2Imχα(k − q,Ω),

(75)  

where α = sf ,ph, cf . After integration over z of the second term in (74) 
for the α-component of this term we obtain: 

Here summation over q is performed for the electronic energy ̃ε(q) close 
to the Fermi energy ε̃(q) = 0 in the narrow region |̃ε(q)| < Ω. The 
bosonic excitation energy Ω is determined by the dynamic susceptibility 
Imχα(k − q,Ω) . In this approach we can take the electronic energy ̃ε(q)
= 0 in the denominator Ω2 − ε̃2

(q) of Eq. (76) and neglect the contri-
bution from the bosonic excitations given by ε̃(q)coth(Ω /2T). In this 
approximation Eq. (76) reads: 

ϕα
σ(k) =

1
N

∑

q
|gα(k, q)|2χα(k − q)

ϕσ(q)
2Z2

q ε̃(q) tanh
ε̃(q)
2T

, (77)  

where we took into account the dispersion relation for the susceptibility 
∫+∞
− ∞ (dΩ /πΩ)Imχα(k − q,Ω) = Reχα(k − q,0) and introduced the static 

susceptibility χα(k − q) = Reχα(k − q,0). Therefore, the gap Eq. (74) for 
ϕσ(k) = σϕ(k) takes the form 

where θ-functions restrict the integration over q for |̃ε(q)| < Ω. To 

compare contributions for pairing from the spin fluctuations and the EPI 
we take into account in the interaction |gsf (k, q)|2 only the first term 
|t(q)|2. 

Solution of the gap Eq. (78) in the WCA, Z(q) = 1, for Tc as a function 

of doping is presented in Fig. 20. Solution of the gap Eq. (78) for Tc in the 
SCA for Z(q) given in Fig. 19 is shown in Fig. 21. To simplify the nu-
merical calculation we approximated the function Z(q) by its average 
over q values: Z = 2.1,1.7, 1.3 for δ = 0.1,0.2,0.3, respectively, which 
can be described by the function Z = 2.5 − 4δ. The superconducting Tc 
in the SCA in Fig. 21 is an order of magnitude smaller than in the WCA in 
Fig. 20 due to suppression of the QP weight given by 1/Z(q). 

To emphasize existences of two channels of pairing in our theory, 
induced by the unretarded interaction J and the retarded spin- 
fluctuation interaction, we include in Figs. 20 and 21 the results for Tc 
without CI V (dotted green line). In this case there is no suppression of 
the interaction J by CI V, as in the GMFA in Fig. 4, and both contribu-
tions to Tc are revealed. We see that the interaction J considerably 

enhance Tc but the main contribution comes from the retarded EPI and 
interaction with spin-fluctuations. A more detailed discussion of the role 
of CI V was given for the Hubbard model in Ref. [124]. It was shown that 
spin-fluctuations is a separate channel of pairing, which can be sup-
pressed only for CI V≳3t, much larger than the exchange interaction J =

0.4t. The same result holds for the t − J − V model not presented in the 
manuscript for shortness reason. 

Existence of two components of pairing interaction induced by the 
nonretarded exchange interaction J and retarded spin-fluctuation 
interaction in the Hubbard and t–J models was discussed in 
Ref. [141]. It was concluded that the basic is the retarded 
spin-fluctuation interaction which can be considered as a “glue” which 
mediates the d-wave pairing. This conclusion was confirmed in ARPES 
experiments, see, e.g., Ref. [142]. 

The role of intersite CI is also discussed in Ref. [143]. Using the 

variational Monte Carlo technique the superconducting d-wave gap was 

ϕσ(k) =
1
N
∑

q
[J(k − q) − V(k − q)]

ϕσ(q)
2Z2

q ε̃(q) tanh

ε̃(q))
2Tc

−
1
N

∑

q

∫+∞

− ∞

∫+∞

− ∞

dz dΩ
2π

tanh(z/2T) + coth(Ω/2T)
z + Ω

× λ(− )(k, q,Ω) [ − Im]
ϕσ(q)/π

Z2
q [z2 − ε̃2

(q)]
,

(74)   

ϕα
σ(k) =

1
N

∑

q

ϕσ(q)|gα(k, q)|2

2Z2
q ε̃(q)

∫+∞

− ∞

dΩ
2π ×

Imχα(k − q,Ω)

Ω2 − ε̃2
(q)

[

2Ωtanh
ε̃(q)
2T

− 2ε̃(q)coth
Ω
2T

]

(76)   

ϕ(k) =
1
N

∑

q

ϕ(q)
2Z2

q ε̃(q)
tanh

ε̃(q))
2Tc

× {J(k − q) − V(k − q) − |t(q)|2χsf (k − q)θ(ωs− |̃ε(q)|)+, |gep(k − q)|2χph(k − q)θ(ω0− |̃ε(q)|) + , [|V(k − q)|2

+
1
4
|t(q)|2

]

χcf (k − q)θ(ωc− |̃ε(q)|)
}

, (78)   
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calculated for the extended Hubbard model with a weak exchange 
interaction J = 0.2 t and a repulsion V ≤ 3 t in a broad range of 
0 ≤ U ≤ 32. It was found that the gap decreases with increasing V at all 
U and can be suppressed for V > J for small U. But for large U≳Uc ∼ 6 t 
the gap becomes robust and exists up to large values of V ∼ 10 J = 2 t. At 
the same time, the gap does not show notable variation with U for large 
U = 10 − 30 though it should depend on the conventional exchange 
interaction in the Hubbard model J = 4t2/U. We can explain these re-
sults by pointing out that at large U≳Uc concomitant decrease of the 
bandwidth in Ref. [143]) results in the splitting of the Hubbard band 
into the upper and lower subbands and emerging the kinematic inter-
action which induces the d-wave pairing in one Hubbard subband. In 
that case the second subband for large U gives a small contribution 
which results in U-independent pairing. It can be suppressed by the 
repulsion V only larger than the kinematic interaction, V≳2t. 

We calculated also Tc for several next-nearest-neighbor parameters 
t′ . It was found that Tmax

c increases with increasing of t′ as was found also 
in Ref. [98]. Variation of t′ results in changing of the FS but it also 
changes the spin-fluctuation interaction |t(q)|2. For the FS close to the 
AFM BZ, X(π,0)→Y(0,π), (coskx + cosky = 0), the interaction given by 
the hopping parameter 2t (coskx + cosky) is weak while the interaction 
determined by the hopping parameter t′ coskxcosky gives a substantial 
contribution for the d-wave symmetry order parameter ϕσ(q)∝coskx −

cosky. Increasing of Tmax
c with t′ was found in the band-structure cal-

culations  [144] and observed in ARPES experiments [145]. 
Comparison of Tc in the WCA in Fig. 20 and in the SCA in Fig. 21 

shows that in both approximations the contribution from the EPI is 
noticeably smaller than those induced by the spin-fluctuation interac-
tion. To explain this we note a difference between the self-energy for 
the normal state (68) and in the gap   equation (74). While in summation 
over q contributions to the normal self-energy come from all symmetry 
components of interactions, in the gap equation contributions are 
restricted only to the B1g symmetry component of interactions deter-
mined by the symmetry of the d-wave gap ϕσ(q). In particular, a strong 
momentum-independent EPI gives no contribution to the gap equation 

Fig. 23. Angle dependence of the superconducting gap ϕ(θ) at the FS.  

Fig. 20. Solution of the gap Eq. (78) in the WCA, Z = 1, for Tep
c (black, dash- 

dotted ed line), Tsf
c (blue, dashed line), and Tsf+ep

c (red, solid line). The green 
dotted line show Tsf+ep

c with zero CI, V(k − q) = 0. 

Fig. 21. Solution of the gap Eq. (78) in the SCA for Tep
c (black, dash-dotted 

line), Tsf
c (blue, dashed line), and Tsf+ep

c (red, solid line). The green dotted 
line show Tsf+ep

c with zero CI, V(k − q) = 0. 

Fig. 22. Wave-vector dependence of the superconducting gap at the FS ϕ(q).  
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but results in a large contribution to the normal self-energy and the 
parameter Z(q) in the gap equation that suppresses Tc (see also 
Ref. [132]). Therefore, the EPI can be quite strong and gives observable 
polaronic effects but has a small d-wave partial harmonic and plays only 
a secondary role in the d-wave pairing. This results in the weak isotope 
effect on Tc in the optimally doped cuprates. The same holds for the 
intersite CI since only d-wave partial harmonic gives a contribution to 
the gap equation. 

The wave-vector dependence of the superconducting gap at the FS 
ϕ(q) at δ = 0.2 is presented in Fig. 22 in the BZ. The angle dependence 
ϕ(θ) is shown in Fig. 23 where the angle θ is measured from the direction 
M(π, π)→X(π, 0) to the direction M(π, π)→Y(0, π). We see that the 
maximum values of the gap are shifted in comparison with the model 
d-wave gap function ϕ(0)(q) = ϕ(0)(coskx − cosky) from the BZ boundary 
at (0,±π), (±π,0) points. Similar behavior was found in Ref. [87] in the 
t–J∗ model with hopping parameters between distant lattice sites. 

6. Summary 

A detailed study of the electronic spectrum and superconductivity for 
strongly correlated electronic systems within the microscopic theory for 
the extended t–J–V model (1) is presented. Besides the conventional 
AFM exchange interaction J, the EPI and the intersite Coulomb repulsion 
are taken into account (2). The projection technique was employed to 
obtain the exact Dyson equation for the normal and anomalous (pair) 
GFs (21) in terms of the Hubbard operators. The self-energy (22) given 
by many-particle GFs was calculated in the SCBA (50), (51) in the second 
order of interactions. The most important contribution is induced by the 
kinematical interaction for the Hubbard operators (3). It results in a 
strong coupling of the electrons with spin fluctuations of the order of 
hopping parameter t(q) much larger than the exchange interaction J(q). 
Vertex corrections to this interaction in the SCBA should be small, of the 
order of ωs/μ, the spin-fluctuation energy ωs to the Fermi energy μ, as in 
the Eliashberg theory of EPI [126] with a small parameter ωph /μ where 
ωph is a phonon energy. 

In the generalized MFA, the first order of the projection technique, 
the electronic spectrum in Fig. 1 describes well defined QP excitations. 
The FS in Fig. 2 shows a transformation from the four-pocket shape in 

the BZ at small doping to a large FS for higher doping. The super-
onducting Tc induced by the exchange interaction J in the MFA in Fig. 4 
is large as in the RVB theory of Anderson [6] commonly used in many 
publications. However, the intersite Coulomb repulsion strongly reduces 
the exchange interaction pairing and brings to low Tc. 

The self-energy contributions result in a strong renormalization both 
the electronic spectrum and superconductivity. The spectral density and 
the electron dispersion, Figs. 5–10, reveal damped excitations with the 
FS in the form of arcs at low doping, Figs. 14 and 15. The same strong 
coupling of electrons with spin fluctuations results in high-Tc for the 
d-wave pairing. The EPI and the intersite Coulomb repulsion play a 
minor role for the d-wave pairing since they are determined only by the 
d-wave partial harmonic in the gap equation. But the quasiparticle 
weight renormalization due to the normal state self-energy gives an 
order of magnitude smaller Tc in Fig. 21 in comparison with the weak- 
coupling approximation in Fig. 20. The wave-vector dependence of 
the superconducting gap in Figs. 22 and 23 clearly demonstrates the 
d-wave gap symmetry. 

In general, the obtained results agree quite well with calculations for 
the Hubbard model and in a qualitative agreement with numerical cal-
culations within various cluster approximations, such as CDMFT, CDA, 
CPT, and with ARPES experiments. In comparison with the phenome-
nological spin-fermion models, we have no fitting parameter for electron 
interaction with spin fluctuations which is given by two basic parame-
ters of the model, the hopping parameter tij and the AFM exchange 
interaction J. The HO technique permits to implement rigorously the 
constraint of no double occupancy violated in the MFA for the slave- 
fermion-(boson) theories. We believe that the spin-fluctuation pairing 
induced by the kinematical interaction may be considered as the 
mechanism of high-Tc in cuprates. 
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Appendix A 

To calculate the many-particle GFs in the self-energy (48) and (49) we introduce the time-dependent correlation function using the spectral 
representation, as, e.g., 
〈〈

Biσσ′ X
0σ′
l

⃒
⃒
⃒Xσ′ 0

l′ B†

jσσ′

〉〉

ω
=

1
2π

∫ ∞

− ∞
dz

ez/T + 1
ω − z

×

∫ ∞

− ∞
dteizt

〈
Xσ′ 0

l′ B†

jσσ′ ,Biσσ′ (t)X
0σ′
l (t)

〉
, (79)  

In the SCBA (50) the many-particle time-dependent correlation functions are presented as a product of single-particle correlation functions which are 
calculated self-consistently in terms of the corresponding GFs: 

〈
Xσ0

l′ X0σ
l (t)

〉
= −

∫ ∞

− ∞

dω′ e− iω′ t

π n(ω′

)ImGll′ (ω
′

),
〈

B†

jσσ′

⃒
⃒
⃒Biσσ′ (t)

〉
= −

∫ ∞

− ∞

dω′ e− iω′ t

π N(ω′

)Im
〈〈

Biσσ′
⃒
⃒
⃒B†

jσσ′

〉〉

ω′
,

where n(ω) and N(ω) are the Fermi and the Bose distribution functions, respectivly. Integration over time t in Eq. (79) yields for the spin-fluctuation 
contributions to the self-energy (48): 

Msf
ijσ(ω) =

∫ ∫ ∞

− ∞

dzdΩ
2π2 Q

tanh(z/2T) + coth(Ω/2T)
ω − z − Ω

×
∑

l,l′ σ′
tiltjl′ ImGll′ (z) Im

〈〈
Biσσ′

⃒
⃒
⃒B†

jσσ′

〉〉

Ω
. (80)  

Taking into account the definition of the Biσσ′ -operator (31) for the bosonic GFs we obtain the relation: 
〈〈

Biσσ′
⃒
⃒
⃒B†

jσσ′

〉〉

ω
= (1 / 4)

〈〈
Ni
⃒
⃒Nj
〉〉

ω δσ′ σ +
〈〈

Sz
i

⃒
⃒
⃒Sz

j

〉〉

ω
δσ′ σ +

〈〈
Xσσ

i

⃒
⃒
⃒Xσσ

j

〉〉

ω
δσ′ σ . (81)  
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After summation over σ′ in (80) for the normal GF in the paramagnetic state, Gll′ σ(ω) = Gll′ σ(ω), the spin-fluctuation contribution to the bosonic GF 

(81) takes the form: 〈〈Sz
i

⃒
⃒
⃒Sz

j 〉〉ω + 〈〈Xσσ
i

⃒
⃒
⃒Xσσ

j 〉〉ω = 〈〈Si
⃒
⃒Sj〉〉ω. Introducing the Fourier representation similar to (12) we obtain for the spin-fluctuation 

contribution to the self-energy 

Msf (k,ω) =

∫ +∞

− ∞

∫ +∞

− ∞

dzdΩ
2π2 Q

tanh(z/2T) + coth(Ω/2T)
ω − z − Ω

1
N

∑

q

⃒
⃒gsf (k, q)

⃒
⃒2Imχsf (k − q,Ω)ImG(q, z). (82) 

Calculations for the CI and the EPI give the corresponding contribution to the self-energy (48): 

Mc, ep
ijσ (ω) =

∫
∫ ∞

− ∞

dzdΩ
2π2 Q

tanh(z/2T) + coth(Ω/2T)
ω − z − Ω

×

{
∑

ll′
V(i, l)V∗(j, l

′

)ImGij(z) Im
〈〈

Nl
⃒
⃒N†

l′
〉〉

Ω +
∑

ll′
gil g∗

jl′ ImGij(z) Im
〈〈

ul
⃒
⃒u†

l′
〉〉

Ω

} (83)  

As a result, after the Fourier transformation of all the contributions in Eq. (48)we obtain the normal self-energy given by Eq. (52). 
Similar calculations for the anomalous component of the self-energy result in the equation 

Φijσ(ω) = 1
Q

∑

l,l′

{
∑

σ′
tiltjl′

〈〈
Biσσ′ X0σ′

l

⃒
⃒Bjσσ′ X

0σ
′

l′
〉〉

ω

− V(i, l)V(j, l′ )
〈〈

X0σ
i Nl

⃒
⃒
⃒X0σ

j Nl′
〉〉

− gil gjl′
〈〈

X0σ
i ul

⃒
⃒
⃒X0σ

j ul′
〉〉

ω

} (84)  

For the many-particle anomalous GF we have 

〈〈
Biσσ′ X

0σ′
l

⃒
⃒Bjσσ′ X

0σ
′

l′
〉〉

ω =
1

2π

∫ ∞

− ∞
dz

ez/T + 1
ω − z

×

∫ ∞

− ∞
dteizt 〈X0σ

′

l′ Bjσσ′
⃒
⃒Biσσ′ (t)X

0σ′
l (t)

〉
. (85)  

Then using the SCBA (51) we calculate the time-dependent correlation functions self-consistently using the corresponding anomalous GFs. Integration 
over time t in Eq. (85) yields for the anomalous self-energy: 

Φijσ(ω) =
∫ ∫∞

− ∞
dzdΩ
2π2 Q

tanh(z/2T)+coth(Ω/2T)
ω− z− Ω ×

∑

l,l′

{
∑

σ′
tiltjl′ Im

〈〈
X0σ′

l

⃒
⃒X0σ

′

l′
〉〉

z Im
〈〈

Biσσ′
⃒
⃒Bjσσ′

〉〉

Ω

− V(i, l)V(j, l
′

)Im
〈〈

X0σ
i

⃒
⃒
⃒X0σ

j

〉〉

z
Im〈〈Nl|Nl′ 〉〉Ω − Im

〈〈
X0σ

i

⃒
⃒
⃒X0σ

j

〉〉

z
Im〈〈ul|ul′ 〉〉Ω

} (86)  

Here for the bosonic GF we have the relation 
〈〈

Biσσ′
⃒
⃒Bjσσ′

〉〉

ω = (1 / 4)
〈〈

Ni
⃒
⃒Nj
〉〉

ω δσ′ σ −
〈〈

Sz
i

⃒
⃒
⃒Sz

j

〉〉

ω
δσ′ σ +

〈〈
Xσσ

i

⃒
⃒
⃒Xσσ

j

〉〉

ω
δσ′ σ . (87)  

Summation over σ′ for the bosonic GF (87) and the anomalous GF Fll′ σ(ω) = − Fll′ σ(ω) in Eq. (86)results in the relation: − 〈〈Sz
i

⃒
⃒
⃒Sz

j 〉〉ω Fll′ σ(ω)+

〈〈Xσσ
i

⃒
⃒
⃒Xσσ

j 〉〉ω Fll′ σ(ω) = − 〈〈Si
⃒
⃒Sj〉〉ω Fll′ σ(ω). After the Fourier transformation of all the contributions in (86) we obtain the anomalous self-energy 

component (53). 
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[34] D. Sénéchal, D. Perez, M. Pioro-Ladriere, Phys. Rev. Lett. 84 (2000) 522. 
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[88] J. Jȩdrak, J.S. ek, Phys. Rev. B 81 (2010) 073108. 
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