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We show that under current experimental bounds of the decays ea → ebγ, the recent experimental data of
the muon anomalous magnetic dipole moment ðg − 2Þμ can be explained in the framework of the 3 − 3 − 1

model with right-handed neutrinos. In addition, all of these branching ratios can reach closely the recent
experimental upper bounds.
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I. INTRODUCTION

At present, the experimental data on the anomalous dipole
magneticmoments of electron andmuonae;μ ¼ ðge;μ − 2Þ=2
show significant deviations from their values predicted
by the Standard Model (SM) [1–4]. From the combina-
tion of various different contributions [2,5–23], the recent
improved value of aμ predicted by the SM is accepted
widely as follows [24]: aSMμ ¼ 116591810ð43Þ × 10−11.
The latest experimental measurement has been reported
from Fermi National Accelerator Laboratory [25], aexpμ ¼
116592061ð41Þ × 10−11, leading to the improved standard
deviation of 4.2σ from the SM prediction, namely

Δaμ ≡ aexpμ − aSMμ ¼ 251 × 10−11 � 59 × 10−11: ð1Þ
On the other hand, the recent constraints on the charged

lepton flavor violating (cLFV) decays, eb → eaγ are [26,27]:

Brðτ → μγÞ < 4.4 × 10−8;

Brðτ → eγÞ < 3.3 × 10−8;

Brðμ → eγÞ < 4.2 × 10−13: ð2Þ

Many recent versions of the 3 − 3 − 1models were indicated
that they are difficult to explain simultaneously all of these
experimental constraints [28–33] with the very large TeV
values of the SUð3ÞL symmetry scale. Namely, the discus-
sion on Ref. [29] needs the cLFV constraints from exper-
imental data to rule out largeΔaμ. The remainingmodels rule
out largeΔaμ for large SUð3ÞL symmetry scalewith order of
Oð1Þ TeV, if no new SUð3ÞL Higgs triplet or vectorlike
charged lepton are added. This result can be explained
qualitatively from a consequence that a one-loop contribu-
tion from a heavy gauge bosonV is different from that of the
W� boson by a small factorm2

W=m
2
V ≥ 10−3. Similarly, one-

loop contributions from heavy Higgs boson S have a sup-
pressed factorm2

h=m
2
S, wheremh is the mass of the standard

model (SM-like) Higgs boson. In addition, these Higgs
contributions are constrained strictly by the small upper
bound of Brðμ → eγÞ, leading to a strict constraint on
the doubly Higgs mass for the 3 − 3 − 1 models adding a
SUð3ÞL Higgs sextet to explain the experimental neutrino
oscillation data. Adding new particles as Higgs triplets or
vectorlike charged leptons into the original 3 − 3 − 1models
to generate new couplings contributing to Δaμ is a popular
way to explain successful the experimental data of aμ
[31,32], but there seems irrelevant with neutrino oscillation
data. Some recent extensions of 3 − 3 − 1 models with
discrete symmetries [34,35] need a large number of new
leptons and Higgs bosons for the explanation of large Δaμ;e
consistent with experiments. On the other hand, a recent note
indicated that a version of the 3 − 3 − 1 model with right-
handed neutrino (331RN) with heavy neutral fermions
assigned as SUð3ÞL gauge singlets (called the 331ISSmodel
for short) can predict large one-loop contributions from
singly charged Higgs bosons and inverse seesaw (ISS)
neutrinos enough to explain the recent ðg − 2Þμ data [36].
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More interesting, the model contains two singly charged
Higgs bosons, which may result in a special possibility
that two one-loop contributions to Δaμ are large and
constructive, while those relate with cLFV decay ampli-
tudes are strongly destructive. In this work, we will pay
attention to this possibility, namely we will try to answer
a question whether there exist any allowed regions of the
parameter space that the destructive properties of the
Higgs contributions are enough to satisfy the cLFV
experimental constraints given in Eq. (2), and explain
successfully the recent data given in Eq. (1). We will use
the 3 − 3 − 1 model with the general Higgs potential
given in Ref. [37,38]. The 3 − 3 − 1 models explaining
active neutrino data based on the ISS mechanism has been
discussed widely previously [39–42], but the interesting
regions of the parameter space allowing large Δaμ data
and consistent with recent cLFV experimental constraints
were not shown. In addition, the Brðτ → μγ; eγÞ were
predicted to be smaller than Brðμ → eγÞ, which is very
suppressed with the recent and upcoming experimental
sensitivities of the order Oð10−9Þ [43,44]. Many other
models beyond the SM with the ISS mechanism can
explain consistently the experimental data of Δaμ and
cLFV constraints [45–48]. Here we analyze predictions of
the 3 − 3 − 1 model with right-handed neutrinos for the
above observables.
Our work is arranged as follows. We will review the

331ISS model in Sec. II, summarize the gauge, Higgs
bosons and the lepton sectors. In Sec. III, we introduce the
analytic formulas to calculate the muon magnetic dipole
moment and the cLFV branching ratios. In Sec. IV, we
discuss on the effect of a new singly charged Higgs boson
that can give one-loop contributions to Δaμ and cLFV
amplitudes enough to explain successful all the experi-
mental data under consideration. In Sec. V, illustrations for
numerical results are given to indicate the existence of the
allowed regions satisfying the experimental data mentioned
in this work. The conclusion is presented in the last Sec. VI,
where important results will be summarized.

II. REVIEW THE 3-3-1ISS MODEL

A. Gauge bosons and fermions

The particle content of the 331ISS model was introduced
in Refs. [41,49] where active neutrino masses and oscil-
lations are originated from the ISS mechanism. The quark
sector and SUð3ÞC representations are irrelevant in this
work, and hence they are omitted here. We refer Ref. [41]
for a quark discussion. The electric charge operator
corresponding to the gauge group SUð3ÞL ×Uð1ÞX is
Q ¼ T3 − 1ffiffi

3
p T8 þ X, where T3;8 are the diagonal

SUð3ÞL generators. Each lepton family consists of a
SUð3ÞL triplet ψaL ¼ ðνa; ea; NaÞTL ∼ ð3;− 1

3
Þ and a right-

handed charged lepton eaR ∼ ð1;−1Þwith a ¼ 1; 2; 3. Each
left-handed neutrino NaL ¼ ðNaRÞc is equivalent with a

new right-handed neutrinos defined in previous 331RN
models [50]. The only difference between the two models
331RN and 331ISS is that, the 331ISS model contains
three more right-handed neutrinos transforming as gauge
singlets, XaR ∼ ð1; 0Þ, a ¼ 1; 2; 3. They couple with the
SUð3ÞL Higgs triplets to generate the neutrino mass term
relating with the ISS mechanism. The three Higgs triplets
ρ ¼ ðρþ1 ; ρ0; ρþ2 ÞT ∼ ð3; 2

3
Þ, η ¼ ðη01; η−; η02ÞT ∼ ð3;− 1

3
Þ, and

χ ¼ ðχ01; χ−; χ02ÞT ∼ ð3;− 1
3
Þ have the following necessary

vacuum expectation values for generating all tree-level
quark masses and leptons: hρi ¼ ð0; v1ffiffi

2
p ; 0ÞT , hηi ¼

ð v2ffiffi
2

p ; 0; 0ÞT and hχi ¼ ð0; 0; wffiffi
2

p ÞT .
The gauge bosons getmasses through the covariant kinetic

term of the Higgs triplets, LH ¼ P
H¼χ;η;ρ ðDμHÞ†ðDμHÞ,

where the covariant derivative for the electroweak symmetry
is Dμ ¼ ∂μ − igWa

μTa − igXT9XXμ, a ¼ 1; 2;…; 8. Note
that T9 ≡ I3ffiffi

6
p and 1ffiffi

6
p for (anti)triplets and singlets [51].

Matching with the SM gives e ¼ gsW and gX
g ¼ 3

ffiffi
2

p
sWffiffiffiffiffiffiffiffiffiffi

3−4s2W
p ,

where e and sW are respective the electric charge and sine
of the Weinberg angle, s2W ≃ 0.231. The relation gX

g is the
same for both choices of triplet or antitriplets representations
of the left-handed leptons [52,53]. The derivation of this
relation is summarized as follows. The 3 − 3 − 1 models

have two spontaneous breaking steps: SUð3ÞL ×Uð1ÞX !w
SUð2ÞL ×Uð1ÞY !v1;v2Uð1ÞQ. The first breaking step with
w ≠ 0 generates masses for heavy particles predicted by the
SUð3ÞL symmetry. The neutral gauge bosons will change
into the basis containing the SM ones W3

μ and Bμ:
ðW3

μ;W8
μ; XμÞ⃗w≠0;v1¼v2¼0ðW3

μ; Z0
μ; BμÞ. Diagonalizing the

squared mass matrix of these neutral gauge bosons will
get a massive eigenstate Z0 with m2

Z0 ∼ w2 and two SM
massless states W3

μ and Bμ. The relations between the
two bases before and after the first breaking step are

W8
μ ¼ βtffiffiffiffiffiffiffiffiffiffi

6þβ2t2
p Bμ −

ffiffi
6

pffiffiffiffiffiffiffiffiffiffi
6þβ2t2

p Z0
μ, and Xμ ¼

ffiffi
6

pffiffiffiffiffiffiffiffiffiffi
6þβ2t2

p Bμ þ
βtffiffiffiffiffiffiffiffiffiffi
6þβ2t2

p Z0
μ, with t≡ gX=g. Inserting these relations to the

covariant derivation of the 3 − 3 − 1 gauge group and
keeping the part used to identify with the SM one, we have

D3−3−1
μ → DSM

μ ¼ ∂μ − igT3W3
μ

− i
gtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6þ β2t2
p ðβT8 þ

ffiffiffi
6

p
T9XÞBμ;

which results in the consequences that g and gtffiffiffiffiffiffiffiffiffiffi
6þβ2t2

p ¼ gtW

are the gauge couplings of the SM, and the Uð1ÞY charge of
the SM is Y=2 ¼ βT8 þ IX.
Like the 331RN model, the 331ISS model includes two

pairs of singly charged gauge bosons with the following
physical states W� and Y� and masses
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W�
μ ¼ W1

μ ∓ iW2
μffiffiffi

2
p ; Y�

μ ¼ W6
μ � iW7

μffiffiffi
2

p ;

m2
W ¼ g2

4
ðv21 þ v22Þ; m2

Y ¼ g2

4
ðw2 þ v21Þ: ð3Þ

The bosonsW� are identified with the SM ones, leading to
the consequence that

v21 þ v22 ≡ v2 ¼ ð246 GeVÞ2: ð4Þ

The general Higgs potential relating with the 331RN model
will be applied in our work with v1 ≠ v2. We will use the
following parameters for this general case.

tβ ≡ tan β ¼ v2
v1

; v1 ¼ vcβ; v2 ¼ vsβ: ð5Þ

The parameter tβ plays a similar role known in the well-
known models with two Higgs doublet and the minimal
supersymmetric Standard Model. This is different from
Ref. [49], where v1 ¼ v2 was assumed so that the
Higgs potential given in Ref. [54] was used to find the
exact physical state of the SM-like Higgs boson. This
simple condition was also used in previous discussions in
3 − 3 − 1 models addressed with anomalous magnetic
dipole moments [31,32]. As we will show below, large
tβ ≠ 1 is one of the key condition for predicting large
ðg − 2Þμ consistent with experiments. The reason is that
the physical states of the charged Higgs bosons are
determined analytically from this Higgs potential, and only
these Higgs bosons contribute significantly to one-loop
corrections to the ðg − 2Þμ.
The Yukawa Lagrangian for generating lepton masses is:

LY
l ¼ −heabψaLρebR þ hνabϵ

ijkðψaLÞiðψbLÞcjρ�k
− YabψaLχXbR −

1

2
ðμXÞ�baðXaRÞcXbR þ H:c:: ð6Þ

Here we assumed that the model under consideration
respects a new lepton number symmetry L discussed in
Ref. [38] so that the term ψaLηXbR is not allowed in the
above Yukwa Lagrangian, while the soft-breaking term
ðμXÞ�baðXaRÞcXbR is allowed with small ðμXÞba. The new
lepton number L called by generalized lepton number [55]
is defined as L ¼ 4ffiffi

3
p T8 þ LI, where L is the normal lepton

number. The specific assignment of L is LðρÞ ¼ −1=3,
LðηÞ ¼ −2=3, LðχÞ ¼ 4=3, LðψaLÞ ¼ 1=3, which guaran-
tees the consistence for the well-known definition of L,
namely LðlÞ ¼ 1 for l ¼ eaL;R; νaL, LðlÞ ¼ −1 for
l ¼ NaL; XaR, and LðqÞ ¼ 0 for all SM quarks [38].
The first term in Lagrangian (6) generates charged lepton

masses mea ≡ heabv1ffiffi
2

p δab, i.e., the mass matrix of the charged

leptons is assumed to be diagonal, hence the flavor states of

the charged leptons are also the physical ones. In the basis
ν0L ¼ ðνL; NL; ðXRÞcÞT and ðν0LÞc ¼ ððνLÞc; ðNLÞc; XRÞT of
the neutral leptons, Lagrangian (6) gives a neutrino mass
term corresponding to a block form of the mass matrix [49],
namely

−Lν
mass ¼

1

2
ν0LM

ν†ðν0LÞc þ H:c:;

where Mν† ¼

0
B@

0 mD 0

mT
D 0 MR

0 MT
R μ†X

1
CA; ð7Þ

where MR is a 3 × 3 matrix ðMRÞab ≡ Yab
wffiffi
2

p , ðmDÞab ≡ffiffiffi
2

p
hνabv1 with a; b ¼ 1; 2; 3. Neutrino subbases are

denoted as νR ¼ ððν1LÞc; ðν2LÞc; ðν3LÞcÞT , NR ¼ ððN1LÞc;
ðN2LÞc; ðN3LÞcÞT , and XL ¼ ððX1RÞc; ðX2RÞc; ðX3RÞcÞT .
The mass matrix MR does not appear in the 331RN.
The Dirac neutrino mass matrix mD must be antisym-
metric. The matrix μX defined in Eq. (6) is symmetric and it
can be diagonalized by a transformation UX:

UT
XμXUX ¼ diagðμX;1; μX;2; μX;3Þ: ð8Þ

The matrix UX will be absorbed by redefinition the states
Xa, therefore μX will be set as the diagonal matrix given in
the right hand side of Eq. (8).
The mass matrix Mν is diagonalized by a 9 × 9 unitary

matrix Uν,

UνTMνUν¼ M̂ν ¼ diagðmn1 ;mn2 ;…;mn9Þ¼ diagðm̂ν;M̂NÞ;
ð9Þ

where mni ði ¼ 1; 2;…; 9Þ are masses of the nine physical
neutrino states niL. They consist of three active neutrinos
naL ða ¼ 1; 2; 3Þ corresponding to the mass submatrix
m̂ν ¼ diagðmn1 ; mn2 ; mn3Þ, and the six extra neutrinos
nIL (I ¼ 4; 5;…; 9) with M̂N ¼ diagðmn4 ; mn5 ;…; mn9Þ.
The ISS mechanism leads to the following approximation
solution of Uν,

Uν ¼ Ω
�
UPMNS O

O V

�
;

Ω ¼ exp

�
O R

−R† O

�
¼

�
1 − 1

2
RR† R

−R† 1 − 1
2
R†R

�

þOðR3Þ; ð10Þ

where

R� ≃ ð−m�
DM

−1; m�
DðM†

RÞ−1Þ; M ≡M�
Rμ

−1
X M†

R;

ð11Þ
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m�
DM

−1m†
D ≃mν ≡ U�

PMNSm̂νU
†
PMNS; ð12Þ

V�M̂NV† ≃MN þ 1

2
RTR�MN þ 1

2
MNR†R; MN ≡

�
0 M�

R

M†
R μX

�
: ð13Þ

The relations between the flavor and mass eigenstates are

ν0L ¼ UνnL; and ðν0LÞc ¼ Uν�ðnLÞc; ð14Þ

where nL ≡ ðn1L; n2L;…; n9LÞT and ðnLÞc ≡ ððn1LÞc; ðn2LÞc;…; ðn9LÞcÞT . The standard form of the lepton mixing matrix
UPMNS is the function of three angles θij, one Dirac phase δ and two Majorana phases α1, and α2 [56], namely

UPDG
PMNS ¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA
0
B@

c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

1
CA
0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CAdiagð1; eiα1 ; eiα2Þ

¼ U0
PMNSdiagð1; eiα1 ; eiα2Þ; ð15Þ

where sij ≡ sin θij, cij ≡ cos θij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2ij

q
, i, j ¼ 1; 2; 3 ði < jÞ, 0 ≤ θij < 90 ½Deg:� and 0 < δ ≤ 720 ½Deg:�. The

Majorana phases are chosen in the range −180 ≤ αi ≤ 180 ½Deg:�
In this paper, we will work on the normal ordered scheme (NO) of the active neutrino masses, which allows δ ¼ π

using in this work. The respective best fit and the confidence level of 3σ of the neutrino oscillation experimental data is
given as [4]

s212 ¼ 0.32; 0.273 ≤ s212 ≤ 0.379;

s223 ¼ 0.547; 0.445 ≤ s223 ≤ 0.599;

s213 ¼ 0.0216; 0.0196 ≤ s213 ≤ 0.0241;

δ ¼ 218½Deg�; 157 ½Deg� ≤ δ ≤ 349 ½Deg�;
Δm2

21 ¼ 7.55 × 10−5½eV2�; 7.05 × 10−5½eV2� ≤ Δm2
21 ≤ 8.24 × 10−5½eV2�;

Δm2
32 ¼ 2.424 × 10−3½eV2�; 2.334 × 10−3½eV2� ≤ Δm2

32 ≤ 2.524 × 10−3½eV2�: ð16Þ

The above CP phase is consistent with the updated one given in Ref. [57], where the allowed range corresponding to 3σ
confidence level are −3.41 ≤ δ ≤ −0.03 ð164.6 ≤ δ ≤ 358.3 ½Deg:�Þ for the NO scheme. The lepton mixing matrix defined
in Eq. (12) relates with the experimental parameters appearing in Eq. (16) are [56]

s212 ¼
jðUPMNSÞ12j2

1 − jðUPMNSÞ13j2
; s213 ¼ jðUPMNSÞ13j2; s223 ¼

jðUPMNSÞ23j2
1 − jðUPMNSÞ13j2

: ð17Þ

Additionally, it is easily to derive that

eiδ ¼ c23ðc212 þ ys212Þ
s13s23s12c12ð1 − yÞ ; y ¼ ðUPMNSÞ22ðUPMNSÞ11

ðUPMNSÞ12ðUPMNSÞ21
;

eiα1 ¼ ðUPMNSÞ12c12
jðUPMNSÞ11js12

; eiðα2−δÞ ¼ ðUPMNSÞ13c13c12
jðUPMNSÞ11js13

: ð18Þ

The detailed calculation shown in Ref. [49], using the ISS relations, yields

mD ¼ zcβ × m̃D; m̃D ¼

0
B@

0 x12 x13
−x12 0 1

−x13 −1 0

1
CA; ð19Þ
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where z ¼ ffiffiffi
2

p
vhν23 is assumed to be positive and real,

x�12 ¼
ðmνÞ11ðmνÞ23 − ðmνÞ13ðmνÞ12
ðmνÞ12ðmνÞ33 − ðmνÞ13ðmνÞ23

; x�13 ¼
ðmνÞ11ðmνÞ33 − ðmνÞ213

ðmνÞ12ðmνÞ33 − ðmνÞ13ðmνÞ23
: ð20Þ

We note that the lightest active neutrino mass is zero at the tree level, but can be nonzero when loop-corrections are included
[38]. Also, the quantum effects can be considered for the charged lepton masses, so that the regions predicting large Δaμ
may be larger [58,59] than the ones discussed in this work. The perturbative limit requires that hν23 <

ffiffiffiffiffiffi
4π

p
, leading to the

following upper bound of z,

z < 1233 ½GeV�: ð21Þ
The two formulas in Eq. (20) were found in the general symmetric from ofM−1, namely they are be found by using Eq. (12)
for off-diagonal entries of mν to determine ðM−1Þij, then insert them into the diagonal ones. The off-diagonal elements of
M−1 are determined as follows:

ðM−1Þ12 ¼
1

2

�
x�13ðM−1Þ11 −

ðM−1Þ22
x�13

−
ðmνÞ13 þ x�13ðmνÞ23

x�12x
�
13z

2

�
;

ðM−1Þ13 ¼
1

2

�
x�12ðM−1Þ11 þ

ðM−1Þ33
x�12

−
ðmνÞ12 þ x�12ðmνÞ23

x�12x
�
13z

2

�
;

ðM−1Þ23 ¼
1

2

�
x�212ðM−1Þ22 − x�213ðM−1Þ33

x�12x
�
13

þ x�13ðmνÞ12 − x�12ðmνÞ13
x�12x

�
13z

2

�
: ð22Þ

Hence all elements of the matrixM−1 depend on only three
complex parameters ðM−1Þii with i ¼ 1; 2; 3. When iden-
tifying with M−1 ¼ ðM†

RÞ−1μXðM�
RÞ−1 given in Eq. (11),

six parameters μX;i and ðM−1Þii are determined as functions
of elements of MR. In this work, we will consider all
elements of MR are free parameters, namely

ðMRÞij ¼ zcβ × ð eMRÞij; ð eMRÞij ≡ kij; ð23Þ

where all kij are assumed to be real for simplicity. The ISS
relations are valid with at least some jkijj ≫ 1 and
detM ≠ 0. In the numerical investigation,mν is determined
from the 3σ neutrino oscillation data through Eq. (12). The
Dirac matrix mD is then determined by Eq. (19). The free
parameters kij and z are assumed to be real, and z is
positive. The three elements of the matrix μX are deter-
mined as functions of these free parameters. The respective
formulas are lengthy hence they are not written down
explicitly here. In our work, we only consider the case
max jμX;ij ≪ z hence all ðμXÞi gives suppressed mixing
elements in the total lepton mixing matrix Uν. This
condition will always be checked numerically to derive
the final results.

In the numerical investigation, the free parameters z and
kij will be scanned in the valid ranges to construct the total
neutrino mass matrix defined in Eq. (7). After that, the mass
eigenstates and the total mixing matrix are calculated
numerically with at least 30 digits of precision. Using the
relations listed in Eqs. (17) and (18), we reproduce all of the
oscillation parameters Δm2

ij and s2ij then force them satisfy-
ing the 3σ allowed data. This will help us to collect the
allowed values of z and kij in evaluating the cLFV branching
ratios and ðg − 2Þμ data.We emphasize that the regions of the
parameter space in our numerical investigation are more
general than those mentioned in Refs. [36,49].
The Lagrangian for quark masses was discussed previ-

ously [38]. Here, we just remind the reader that the Yukawa
couplings of the top quark must satisfy the perturbative limit

hu33 <
ffiffiffiffiffiffi
4π

p
, leading to a lower bound v2 >

ffiffi
2

p
mtffiffiffiffi
4π

p . Combining

this with the relations in Eqs. (4) and (5) gives a lower bound
tβ ≥ 0.3, which will be used in the numerical discussion.

B. Higgs bosons

The Higgs potential used here respect the new lepton
number defined in Ref. [38], namely

Vh ¼
X

S¼η;ρ;χ

½μ2SS†Sþ λSðS†SÞ2� þ λ12ðη†ηÞðρ†ρÞ þ λ13ðη†ηÞðχ†χÞ þ λ23ðρ†ρÞðχ†χÞ

þ λ̃12ðη†ρÞðρ†ηÞ þ λ̃13ðη†χÞðχ†ηÞ þ λ̃23ðρ†χÞðχ†ρÞ þ
ffiffiffi
2

p
ωfðϵijkηiρjχk þ h:c:Þ; ð24Þ
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where f is a dimensionless parameter, which fω is the
same as that used in previous works. The minimum
conditions of the Higgs potential as well as the identifi-
cation of the SM-like Higgs were discussed in detailed
previously [54,60]. The model always contains a light
CP even neutral Higgs boson identified with the SM-like
Higgs boson confirmed experimentally. This Higgs
boson gives suppressed contributions to ðg − 2Þμ hence
we will ignore it from now on. The model contains two
pairs of singly charged Higgs bosons H�

1;2 and Goldstone
bosons of the gauge bosons W� and Y�, which are
denoted as G�

W and G�
Y , respectively. The masses of all

charged Higgs bosons are [51,60,61] m2
H�

1

¼ ðλ̃12v2
2

þ fw2

sβcβ
Þ,

m2
H�

2

¼ ðv2c2β þ w2Þðλ̃23
2
þ ftβÞ, and m2

G�
W
¼ m2

G�
Y
¼ 0. The

relations between the original and mass eigenstates of the
charged Higgs bosons are [60]

�
η�

ρ�1

�
¼

�−sβ cβ
cβ sβ

��
G�

W

H�
1

�
;

�
ρ�2
χ�

�
¼

�−sθ cθ
cθ sθ

��
G�

Y

H�
2

�
; ð25Þ

where tθ ¼ v1=w.
The model contains five CP-odd neutral scalar com-

ponents. Three of them are Goldstone bosons of the
neutral gauge bosons Z, Z0 and X0. The two remaining
are physical states with masses m2

a1 ¼ fðcβsβv2 þ ω2

tβ
Þ þ

λ̄13
2
ðsβ2v2 þ ω2Þ; m2

a2 ¼ fð ω2

cβsβ
þ cβsβv2Þ. As a conse-

quence, the parameter f must be positive. In addition,
f may be small so that charged Higgs boson masses can be
around 1 TeV.

III. ANALYTIC FORMULAS FOR ONE LOOP
CONTRIBUTIONS TO Δaea AND CLFV

DECAYS eb → eaγ

All detailed steps for calculation to derive the couplings
that give large one-loop contributions were presented in
Ref. [49]. We just collect the final results related with this
work. The condition meb > mea is always used to define
the one loop form factors cXðabÞR and cXðbaÞR introduced in

Ref. [62], which are different from our notations by a
relative factor meb.
The relevant Lagrangian of charged gauge bosons is

LlnV ¼ψaLγ
μDμψaL

⊃
gffiffiffi
2

p
X9
i¼1

X3
a¼1

½Uν�
ainiγ

μPLeaWþ
μ þUν�

ðaþ3Þiniγ
μPLeaYþ

μ �;

ð26Þ

corresponding to the following one-loop form factors:

cWðabÞR ¼
eg2

32π2m2
W

X9
i¼1

Uν
aiU

ν�
biFLVV

�
m2

ni

m2
W

�
;

cWðbaÞR ¼
eg2mea

32π2m2
Wmeb

X9
i¼1

Uν
biU

ν�
aiFLVV

�
m2

ni

m2
W

�
;

cYðabÞR ¼
eg2

32π2m2
W

X9
i¼1

Uν
ðaþ3ÞiU

ν�
ðbþ3Þi

m2
W

m2
Y
×FLVV

�
m2

ni

m2
Y

�
;

cYðbaÞR ¼
eg2mea

32π2m2
Wmeb

X9
i¼1

Uν
ðbþ3ÞiU

ν�
ðaþ3Þi

m2
W

m2
Y
×FLVV

�
m2

ni

m2
Y

�
;

ð27Þ

where

FLVVðxÞ ¼ −
10 − 43xþ 78x2 − 49x3 þ 4x4 þ 18x3 lnðxÞ

24ðx − 1Þ4 ;

ð28Þ

e ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
being the electromagnetic coupling constant,

and g ¼ e=sW .
Lagrangian of charged Higgs bosons is

LlnH ¼ −
gffiffiffi
2

p
mW

X2
k¼1

X3
a¼1

X9
i¼1

Hþ
k niðλL;kai PL þ λR;kai PRÞea

þ H:c:; ð29Þ

where

λR;1ai ¼ meaU
ν�
ai tβ; λR;2ai ¼

meacθU
ν�
ðaþ3Þi

cβ
;

λL;1ai ¼ −tβ
X3
c¼1

ðm�
DÞacUν

ðcþ3Þi ¼ −sβz
X3
c¼1

ðm̃�
DÞacUν

ðcþ3Þi;

λL;2ai ¼
X3
c¼1

cθ
cβ

× ½ðm�
DÞacUν

ci þ t2θðM�
RÞacUν

ðcþ6Þi� ¼ cθz
X3
c¼1

½ðm̃�
DÞacUν

ci þ t2θð eM�
RÞacUν

ðcþ6Þi�: ð30Þ
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The one-loop form factors are

cH;k
ðabÞR ¼ eg2

32π2m2
Wmebm

2
Hk

X9
i¼1

�
λL;k�ai λR;kbi mniFLHH

�
m2

ni

m2
Hk

�
þðmebλ

L;k�
ai λL;kbi þmeaλ

R;k�
ai λR;kbi ÞF̃LHH

�
m2

ni

m2
Hk

��
;

cH;k
ðbaÞR ¼ eg2

32π2m2
Wmebm

2
Hk

X9
i¼1

�
λL;k�bi λR;kai mniFLHH

�
m2

ni

m2
Hk

�
þðmeaλ

L;k�
bi λL;kai þmebλ

R;k�
bi λR;kai ÞF̃LHH

�
m2

ni

m2
Hk

��
; ð31Þ

where b ≥ a, and

FLHHðxÞ ¼ −
1 − x2 þ 2x lnðxÞ

4ðx − 1Þ3 ; F̃LHHðxÞ ¼ −
−1þ 6x − 3x2 − 2x3 þ 6x2 lnðxÞ

24ðx − 1Þ4 : ð32Þ

The total one-loop contribution to the cLFV and Δa331ISSμ is

cðabÞR ¼ cWðabÞR þ cYðabÞR þ cH1

ðabÞR þ cH2

ðabÞR; cðbaÞR ¼ fcðabÞR½a ↔ b�g ×mea

meb

: ð33Þ

The one-loop contributions from charged gauge bosons to the aea and the electric dipole moment dea of the charged lepton
ea are [62]:

aVea ¼ aWea þ aYea ≡ −
4m2

ea

e
ðRe½cWðaaÞR� þ Re½cYðaaÞR�Þ;

dVea ¼ dWea þ dYea ≡ −2meaðIm½cWðaaÞR� þ Im½cYðaaÞR�Þ; ð34Þ

The one-loop contribution to aea and dea caused by charged Higgs bosons is [62]:

aHea ¼
X2
k¼1

aH;k
ea ; aH;k

ea ≡ −
4m2

ea

e
Re½cH;k

ðaaÞR�;

dHea ¼
X2
k¼1

dH;k
ea ; dH;k

ea ≡ −2meaIm½cH;k
ðaaÞR�: ð35Þ

The quantity Δdea ¼ dVea þ dHea is the new one loop con-
tributions predicted to the electric dipole moment of the
charged leptons. It equals to zero when our investigation is
limited in the case of the Dirac phase δ ¼ π. This zero value
of dμ satisfies the current experimental constraint [63]
hence we will not consider from now on.
We remind the reader that one loop contributions from

neutral Higgs bosons are very suppressed hence they are
ignored here. The reason is that the 331ISS model has no
new charged leptons, hence the one-loop contributions of
any neutral Higgs bosons H0 to cðabÞR must arise only from
the couplings H0ēaea derived from the first term of the
Yukawa Laragian (6). These couplings have the same
Yukawa couplings with the SM-like h ∼ Re½ρ0�= ffiffiffi

2
p

,
but different mixing factors jcH0 j ≤ 1 telling the contribu-
tions of ρ0 to the physical state H0. Hence these contri-
butions to aμ have the same form with the one from the
SM-like Higgs boson having mass mh ≃ 125 GeV ≫ mμ,

ahμ ≃
ffiffi
2

p
Gμm2

μ

4π2
× m2

μ

m2
h
ln m2

h
m2

μ
≤ Oð10−14Þ [64]. Also, the heavy

neutral Higgs will give suppressed one-loop contributions
to Δaμ. The deviation of aμ between predictions by the two
models 331ISS and SM are

Δa331ISSea ≡ Δaea ¼ ΔaWea þ aYea þ aH;1
ea þ aH;2

ea ;

ΔaWea ¼ aWea − aSM;W
ea ; ð36Þ

where aSM;W
μ ¼ 3.887 × 10−9 [64] is the SM prediction for

the one-loop contribution from W boson cW;SM
ð22ÞR . In this

work, Δa331ISSμ ¼ Δaμ will be considered as new physics
predicted by the 331ISS and will be used to compare with
the experimental data in the following numerical inves-
tigation. We note that the discrepancy of ae between
experiments and SM is about 2.5 standard deviation
[3,20,65–68]. In this work we will only pay attention to
the Δaμ which is the very interesting result of 4.2 standard
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deviation and may be a clear signal of new physics in the
near future.
Based on Ref. [62], the branching ratios of the cLFV

processes are

Brðeb → eaγÞ

≃
48π2

G2
F

ðjcðabÞRj2 þ jcðbaÞRj2ÞBrðeb → eaνaνbÞ; ð37Þ

where GF ¼ g2=ð4 ffiffiffi
2

p
m2

WÞ. This result is consistent with
the formulas given used in Refs. [49,61] for 3 − 3 − 1
models.
It is noted that for the gauge boson contributions,

we have jcVðbaÞRj=jcVðabÞRj ¼ mea=meb ≪ 1 for meb > mea.

Similarly, we can estimate that jcH;k
ðbaÞRj=jcH;k

ðabÞRj ≪ 1 for

every particular contribution. Anyways, in the general
case we cannot ignore cXðbaÞR because of the situation that

when contributions to cðabÞR have the same order but
some of them have opposite signs. Then the very
destructive correlations among particular Higgs con-
tributions in the cðabÞR will result in the same order
of both jcðabÞRj and jcðbaÞRj. This will happen in the
331ISS model when Δa331ISSμ ¼ Oð10−9Þ corresponding
to the order of the experimental data and Brðμ → eγÞ <
4.2 × 10−13 require both conditions of Oð10−9Þ ½GeV−2�≤
jcð22ÞRj≤Oð10−8Þ ½GeV−2� and jcð21ÞRj≤Oð10−13Þ×
½GeV−2�, respectively. As a result, we can estimate that
the one-loop contributions from two charged Higgs
bosons to Br(μ → eγ) are strongly destructive, i.e.,
cH1

ð12Þ ≃ −cH2

ð12Þ. Simultaneously, jcHk
ð12Þj ∼ jcHk

ð22Þj, therefore

the charged Higgs contributions toΔaμ must be constructive

and satisfy jcH1

ð22Þj ∼ jcH2

ð22Þj ∼Oð10−9Þ −Oð10−8Þ ½GeV−2�,
or they can be destructive but jcHi

ð22Þj ≫ jcHj

ð22Þj with i ≠ j.

These important properties of charged Higgs boson
contributions will be the key point in our numerical
investigation to collect data points satisfying the large
values of Δaμ ≥ 10−9 before considering any cLFV decay
constraints. The gauge contributions are suppressed hence
we do not discuss qualitatively here, but they are also
included in the numerical investigation. We just pay
attention to the two key one-loop charged Higgs boson

contributions which will affect two other cLFV decays
τ → eγ; μγ.
The experimental constraints of the form factors cðabÞR

are listed in Table I, where the allowed values of Δaμ are
chosen in the range of 1σ confidence level given in Eq. (1).
We derive that the allowed regions of the parameter space
have the following properties:

���� cð12ÞRcð22ÞR

����;
���� cð21ÞRcð22ÞR

���� ≤ Oð10−5Þ;
���� cð13ÞRcð22ÞR

����;
���� cð31ÞRcð22ÞR

����;
���� cð23ÞRcð22ÞR

����;
���� cð32ÞRcð22ÞR

���� ≤ Oð10−2Þ: ð38Þ

Normally, our numerical scan gives a relation that
jcHk

ð22ÞRj=jcHk
ðabÞRj ≤ Oð10Þ with a ≠ b. As a result, the huge

destructive correlation between charged Higgs contri-
butions to guarantee simultaneously the experimental
constraints of Brðμ → eγÞ and Δaμ. Also, the two cLFV
decays of τ → eγ; μγ also need smaller but still large
destructive charged Higgs contributions to satisfy the
upper experimental bounds because some of these parti-
cular contributions often satisfy jcHk

ð13ÞRj=jcHk
ð22ÞRj; jcHk

ð23ÞRj=
jcHk

ð22ÞRj ≥ 0.1. While jcHk
ð31ÞRj; jcHk

ð32ÞRj ≪ 10−10 ½GeV−2�,
consequently they are subdominant to the cLFV decays
where their branching ratios are close to the upper
experimental constraints. The mentioned properties are
very important for us to point out the validation of the
allowed regions.
For convenience in estimating qualitatively the above

properties, we define new important quantities determining
the correlations between two charged Higgs contributions
in a physical process as follows:

RX
ab≡

����Re½c
X
ðabÞR�

Re½cðabÞR�
����; a;b¼ 1;2;3; X ¼W;Y;H�

1 ; H�
2 ;

ð39Þ

R−
ab≡

����Re½c
H1

ðabÞR þ cH2

ðabÞR�
Re½cðabÞR�

����: ð40Þ

TABLE I. Constraints of cðabÞR½GeV−2� from experimental data. The allowed values of Δaμ satisfying a
confidence level of 1σ from the experimental data given in Eq. (1).

192 < Δaμ × 1011 < 310, −4.8 × 10−8 ½GeV−2� < cð22ÞR < −3.99 × 10−8 ½GeV−2�
Brðμ → eγÞ jcð21ÞRj; jcð12ÞRj < 3.47 × 10−13 ½GeV−2�
Brðτ → eγÞ jcð31ÞRj; jcð13ÞRj < 2.31 × 10−10 ½GeV−2�
Brðτ → μγÞ jcð32ÞRj; jcð23ÞRj < 2.63 × 10−10 ½GeV−2�
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The first ratio RX
ab shows the relative contribution

from the particle X in the loop to the total contri-
bution. The second one shows the relative contributions
of both singly charged Higgs bosons. In the 331ISS
model, we will see that the relations RW

ab; R
Y
ab ≪ RHk

ab
often happens. The interesting possibility we would like
to discuss is that large contributions of Hk for large Δaμ
with jRHk

22 j ∼ 10−1, while the huge destructive correla-
tions of these two Higgs bosons Re½cH1

ðabÞR=c
H2

ðabÞR� ≃ −1
will allow small cLFV constraints. Quantitatively,
we estimate that RHk

ab ≫ 1 and R−
ab ≃ 1, with a ≠ b.

The details of numerical investigation will be
shown below.

IV. ADDITIONAL SINGLY CHARGED HIGGS
BOSON FOR AN EXPLANATION OF ðg− 2Þμ

DATA AT 1σ DEVIATION

The appearance of the gauge singlet XR leads to a
possibility that, a new singly charged Higgs bosons h�3 ∼
ð1; 1;�1Þ can be included in the 331ISS model so that they
can give one-loop contributions to both Δaμ and cLFV
amplitudes through the following Yukawa interactions:

LY
h3
¼ −Y3

abðXaRÞcebRhþ3 þ H:c:

¼ −Y3
abU

ν�
ðaþ6ÞiðniÞPRebh

þ
3 þ H:c:: ð41Þ

The new contributions to the cLFV decays and Δa331ISSμ is

ch3ðabÞR ¼ emea

16π2mebm
2
h3

X9
i¼1

X3
c¼1

Y3
caY3�

cbU
ν�
ðaþ6ÞiU

ν
ðbþ6ÞiF̃LHH

�
m2

ni

m2
h3

�
;

ch3ðbaÞR ¼ e
16π2m2

h3

X9
i¼1

X3
c¼1

Y3�
caY3

cbU
ν
ðaþ6ÞiU

ν�
ðbþ6ÞiF̃LHH

�
m2

ni

m2
h3

�
: ð42Þ

Although the contributions of these singly charged Higgs bosons to Δaμ are normally small and negative, the contributions
to the cLFV amplitudes may be significantly large. Consequently, they can affect destructively the total cLFV decay
amplitudes. These properties will keep Δa331ISSμ reaching the experimental constraint given in Eq. (1), while keeping all
other cLFV branching ratios well below the experimental constraints. In this work, we consider the simplest case that h�3
does not mix with the other singly charged Higgs bosons in the 331RN, and the mass is another free parameter. All of these
properties can be derived easily from the total Higgs potential, hence it will be ignored in this work.

V. NUMERICAL DISCUSSION

A. Without contributions from additional singly charged Higgs bosons h�3
The numerical experimental parameters are taken from Ref. [4]:

GF ¼ 1.663787 × 10−5 GeV−2; g ¼ 0.652; αe ¼
1

137
¼ e2

4π
; s2W ¼ 0.231; me ¼ 5 × 10−4 GeV;

mμ ¼ 0.105 GeV; mτ ¼ 1.776 GeV; mW ¼ 80.385 GeV;

Brðμ → eν̄eνμÞ ≃ 1.; Brðτ → eν̄eντÞ ≃ 0.1782; Brðτ → μν̄μντÞ ≃ 0.1739: ð43Þ

Before discussing on the allowed regions that satisfy all
experimental constraints of cLFV decays eb → eaγ as well
as ðg − 2Þμ data, we give some important crude estimation
on the allowed regions of parameter space constrained by
both large Δa331ISSμ ≥ Oð10−9Þ and small Brðeb → eaγÞ.
The way to derive the total mass matrix to calculate
numerically the masses and total neutrino mixing matrix
Uν were presented in the previous section. We have
checked that the input changes of Δm2

ij and s2ij in the
allowed ranges given in Eq. (16) do not change signifi-
cantly the final results, so we will fix these quantities at
their best-fit points. An exception that the Dirac phase

δ ¼ 180 ½Deg:� is considered so that the imagine parts of
cðabÞR are zeros, leading to a simple case of destruction
among the one-loop contributions from charged Higgs
bosons.
In the numerical scan, the points in the allowed regions

also satisfy simultaneously the following conditions:

(1) The condition Re½cH1

ðabÞR�=Re½cH2

ðabÞR� < 0 with
a ≠ b, will give a possibility that Re½cH1

ð21ÞR� þ
Re½cH2

ð21ÞR� ∼ 0, which will result in valid regions
of the parameter space in which two charged
Higgs bosons contributions can cancel each others.
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Therefore, these regions will contain points which
give the very suppressed total contributions to
guarantee the small Brðeb → eaγÞ. We will use this
condition in our numerical investigation.

(2) A crude numerical scan shows that the condition
Re½cH1

ð22ÞR�=Re½cH2

ð22ÞR� > 0 so that the two charged

Higgs bosons contributions to Δa331ISSμ always have
the same sign, i.e., they give constructive contribu-
tions. Therefore the values of Δa331ISSμ are remained
in the original orders of Oð10−9Þ. Another case

giving large Δaμ is that jRe½cHi
ð22ÞR�j ≪ jRe½cHj

ð22ÞR�j
with i ≠ j when they have opposite signs.

First, we consider the simplest cases of all zero values of
off-diagonal elements kij ¼ 0 with i ≠ j. The numerical
investigation shows that we cannot obtain any allowed
points satisfying simultaneously both experimental data

of cLFV constraints and Δaμ. The reason is that there

always exists a strict relation that Re½cH1

ð22ÞR�=Re½cH2

ð22ÞR� and
Re½cH1

ð21ÞR�=Re½cH2

ð21ÞR� are always negative leading to small
Brðμ → eγÞ. As a consequence, charged Higgs contri-
butions to Δa331ISSμ are always destructive. Hence, the
derived values are smaller than the experimental data.
A requirement of Brðμ → eγÞ ≤ Oð10−8Þ gives largest
values of Δa331ISSμ < 10−9.
From a crude numerical scan, we can find the allowed

regions of the parameter space satisfying both conditions that
Brðμ → eγÞ < 4.2 × 10−13 and large Δa331ISSμ ≥ Oð10−9Þ.
These allowed regions will be used to collect the allowed
points satisfying the remaining cLFV constraints. The
following ranges of the parameter space will be chosen as
the necessary conditions of free parameterswhen scanning to
collect allowed points:

tβ ∈ ½0.3; 60�; 0.6 ½TeV� ≤ mH1
; mH2

≤ 3 ½TeV�;
jkijj × zcβ <

ffiffiffiffiffiffi
4π

p
w ¼ 5.3 ½TeV�; 10 ½GeV� ≤ z ≤ 1223 ½TeV�: ð44Þ

Numerical values of kij will be chosen so that they give
active neutrino masses and UPMNS consistent with neutrino
oscillation data. The value of 5.3 TeV is fixed from the
lower bound w obtained from the experimental data of the
heavy Z0 boson mass mZ0 . But it can be relaxed with larger
w without any changes of final conclusions in this work.
Without contributions of the additional singly charged

Higgs boson, our numerical investigation shows that the
largest values of Δaμ satisfying all cLFV constraints is
Δaμ ≤ 108.5 × 10−11, see an illustration shown in Fig. 1.
The corresponding ranges of the free parameters are shown

in Table II, where the right panel shows the only con-
tributions from cðabÞR ða < bÞ to the decay rates, namely

BrðabRÞ ¼ 48π2

G2
F

jcðabÞRj2Brðeb → eaνaνbÞ:

Here the two first lines show the respective minimum and
maximum values of the free parameters. The third line
shows a particular example of the set of the parameters
giving large Δaμ ≃ 108.1 × 10−11. The other quantities
are shown in Table III, which will be discussed more later.

FIG. 1. The left panel shows Δaμ vs Brðeb → eaγÞ ∼ ðjcðabÞRj2 þ jcðbaÞRj2Þ in the free parameter ranges given in Table II. The right
panel shows BrðabRÞ ∼ jcðabÞRj2 with a < b.
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In the left panel of Fig. 1, only Brðτ → μγÞ always
enhances with increasing Δaμ. The upper constraint
Brðτ → μγÞ < 4.4 × 10−8 gives the largest value of
Δaμ ≃ 108.5 × 10−11. From the right panel of Fig. 1, we
see that jcð23ÞRj < jcð32ÞRj in the region predicting large
Δaμ, because the contribution from jcð23ÞRj to Brðτ → μγÞ
denoted as Brð23RÞ is small, namely Brð23RÞ ≤ 0.2 ×
10−8 with Δaμ ≥ 108 × 10−11. This is in contrast to other
normal cases, as we will discuss based on the Table III.
Table III illustrates particular values of cðabÞR and large

Δa331ISSμ ≃ 108.1 × 10−11, corresponding to a set of free
parameters given in the third line of Table II. The numerical
results given in Table III show that the experimental con-
straint from Brðτ → μγÞ < 4.4 × 10−8 does not allow large
Δa331ISSμ > 108.5 × 10−11. More particular, cð32ÞR gives
the dominant contribution to Brðτ → μγÞ < 4.4 × 10−8,
with jcH2

ð32ÞRj ≫ jcH1

ð32ÞRj. In contrast, the remaining cLFV

decays have some common properties that jcðabÞRj > jcðbaÞRj
with a < b, jcHk

ðabÞRj ≫ jcðabÞRj, and the huge destructive

correlation between two charged Higgs boson contributions.
They are very important to guarantee small Brðτ → eγÞ and
Brðμ → eγÞ. On the other hand, they allow large and/or
constructive cHk

ð22ÞR, which are the dominant contributions

resulting in large Δa331ISSμ ≥ 10−9.
The above properties are also true for the allowed region

of the parameter space given in Table II. They are
summarized in Table IV through the quantities defined
in Eqs. (39) and (40). We can see that R−

32¼jRe½cH2

ð32ÞRþ
cH1

ð32ÞR�=Re½cð32ÞR�j→1 implies that sum of the two contri-
butions of the charged Higgs bosons to cð32ÞR is dominant.

In addition RH2

32 ≡ jRe½cH2

ð32ÞR�=Re½cð32ÞR�j≃1 indicates that
the contributions of the charged Higgs boson H2 is
dominant, hence the destructive correlation is small. This
is not enough to keep the cLFV constraint Brðτ → μγÞ <
4.4 × 10−8 for larger Δaμ > 108.5 × 10−11. All contribu-
tions of the two decays μ → eγ and τ → eγ do not have
properties mentioned here. In the next discussion, we will
show that new destructive contributions from additional

TABLE III. Particular contributions cXðabÞR½GeV−2� to the Δaμ and Brðeb → eaγÞ with the free parameters given in the third line of
Table II. The last column shows values of Δaμ and Brðeb → eaγÞ.
Notations cWðabÞR − cW;SM

ðabÞR cYðabÞR cH1

ðabÞR cH2

ðabÞR cðabÞR Process

Δaμ∶cð22ÞR × 1010 5.22 −0.499 −82.07 3.11 −74.24 Δaμ ¼ 10.81 × 10−10

μ → eγ∶cð12ÞR × 1013 422.13 29.645 −29086. 28636. 1.6960 Brð12RÞ ¼ 1.002 × 10−13

μ → eγ∶cð21ÞR × 1013 2.010 0.1412 −138.5 138.9 2.568 Brð21RÞ ¼ 2.296 × 10−13

τ → eγ∶cð13ÞR × 1010 −0.031 0.01941 13.60 −15.63 −2.039 Brð13RÞ ¼ 257.9 × 10−10

τ → eγ∶cð31ÞR × 1010 ≃0 ≃0 0.004 0.031 0.035 Brð31RÞ ¼ 0.076 × 10−10

τ → μγ∶cð23ÞR × 1010 −0.02505 −0.03235 −0.3305 0.5170 0.1291 Brð23RÞ ¼ 1.009 × 10−10

τ → μγ∶cð32ÞR × 1010 −0.001481 −0.001913 −0.01954 −2.656 −2.679 Brð32RÞ ¼ 434.7 × 10−10

TABLE IV. Correlations between different contributions to cðabÞR with ranges of free parameters given in Table II, where we denote
0 ≃ RY

ð22ÞR; R
W
ð31ÞR; R

Y
ð31ÞR; R

W
ð32ÞR; R

Y
ð32ÞR ≤ Oð10−3Þ.

RW
22 RH1

22 RH2

22
RW
12 RY

12 RH1

12 RH2

12
R−
12 RW

21 RY
21 RH1

21 RH2

21
R−
21 RW

13 RY
13

Min 0.06 0.96 0 54 7 ∼103 ∼103 60 0.3 0.04 34 34 0.01 0.01 0
Max 0.08 1.11 0.1 ∼105 ∼104 ∼107 ∼107 ∼106 299 37 ∼104 ∼104 336 4. 3

RH1

13 RH2

13
R−
13 RH1

31 RH2

31
R−
31 RW

23 RY
23 RH1

23 RH2

23
R−
23 RH1

32 RH2

32
R−
32

Min 6 7 0.05 0.1 0.8 ≃1 0.01 0.03 0.5 0 0.02 0 0.96 0.998
Max ∼103 ∼103 2.6 0.2 0.89 ≃1 16.4 15.4 222 255 33 0.04 0.996 1.002

TABLE II. Numerical values of free parameters for large Δa331ISSμ ≥ 10−9 satisfying all experimental constraints of the cLFV decays
eb → eaγ.

Notation k11 k22 k33 k12 k13 k23 k21 k31 k32 tβ z [GeV] mH1
[GeV] mH2

[GeV]

Min −3.99 −50.2 509. −29.9 15.4 −80.4 121. 21.2 29.4 29.0 885. 705 769
Max 2.47 −35.1 528. −20.6 24.9 −66.4 135. 36.8 45.9 40.0 1150 893 962
Example −3.26 −49.7 509. −28.6 23.0 −77.8 124. 25.3 37.1 36.9 969. 754 825
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singly charged Higgs bosons will relax the sum of the
contributions from two charged Higgs bosons H1;2 to a
larger values, while allow both Δa331ISSμ and Brðτ → μγÞ
satisfying the experimental constraints given in Eqs. (1)
and (2).
From the above discussion, we can see that max½Δaμ� ≃

108.5 × 10−11 predicted by the 331ISS model comes from
the experimental constraints Brðτ → μγÞ < 4.4 × 10−8,
which gets main contributions from cð32ÞR. On the other
hand, Brðτ → eγÞ can reach to zero for large Δaμ ≥ 10−9,
which is different from the normal behave of these
two branching ratios Brðτ → μγÞ ∼ Brðτ → eγÞ ∼ jcð23ÞRj2;
jcð13ÞRj2 ≫ jcð32ÞRj2; jcð31ÞRj2. After some numerical
checks, we see that the this difference is originated mainly
from the following property: each quantity Brðτ → μγÞ or
Brðτ → eγÞ contains only one type of terms with a factor
mμ

mτ
or me

mτ
appearing in cð32ÞR or cð31ÞR, respectively. These

terms are normally suppressed because of many other large
terms contained in cHk

ð23ÞR; c
Hk
ð13ÞR ≫ cHk

ð32ÞR; c
Hk
ð31ÞR. But when

huge destructive correlations between two charged Higgs
contributions and gauge contributions happen, there
appears a situation that jcð13ÞRj; jcð23ÞRj → 0, and also for
other normal large terms in jcð31ÞRj; jcð32ÞRj. Now, the terms
with factors mμ

mτ
and me

mτ
become significant, leading to the

consequence that Brðτ → eγÞ ∼ m2
e

m2
τ
can be close to 0, while

Brðτ → μγÞ ∼ m2
μ

m2
τ
≫Brðτ → eγÞ. It is reasonable to think

that the terms with factor mμ

mτ
and Δa331ISSμ get similar

contributions relating to μ, hence both of them must
be large if Δa331ISSμ is required to be large in order to
reach the experimental constraints. Our explanation is
confirmed by a numerical check, where we change
mμ → me in only the formula of cð32ÞR. We saw that Brðτ →
μγ; eγÞ can reach small values Brðτ → μγ; eγÞ < 10−9 with
Δa331ISSμ > 125 × 10−11. Other numerical checks also show
that the lower bound of Brðτ → μγÞ depends strictly on the
lepton mixing matrix UPMNS, which is the only cLFV
source in the 331ISS model. First, the case of large τ − e
mixing inputs s213 ¼ s223 ¼ 0.547 can give large Δa331ISSμ >
115 × 10−11 and both small Brðτ → μγ; eγÞ → 0. Second,
the small input s223 ¼ 0.0216 and the large input s213 ¼
0.547 will result in that max½Δa331μ � ≃ 90 × 10−11. In both
cases, max½Δa331ISSμ � is still constrained by Brðτ → μγÞ <
4.4 × 10−8. In conclusion, the regions of the parameter
space giving max½a331ISSμ � allows all small cðabÞR except the
terms with factor mμ

mτ
in cð32ÞR.

B. New contributions from additional singly
charged Higgs bosons h�3

Adding contributions of the new singly charged Higgs
boson, the allowed values of Δaμ≡Δa331ISSμ ≥192×10−11

corresponding to the lower bound of the 1σ confidence
level are explained successfully, see an illustration shown in
Fig. 2, where Δaμðh3Þ and Brðτ → μγÞ½h3� show the
respective one-loop contributions from only h�3 to Δaμ
and Brðτ → μγÞ, which are defined as follows:

Δaμ½h3� ¼ −
4m2

μ

e
Re½ch3ð22ÞR�;

Brðeb → eaγÞ½h3� ¼
48π2

G2
F

ðjch3ðabÞRj2 þ jch3ðbaÞRj2ÞBrðeb → eaνaνbÞ: ð45Þ

FIG. 2. Correlations between Δaμ ≡ Δa331ISSμ with Δaμðh3Þ and Brðτ → μγÞ½h3�.
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The corresponding benchmark is calculated numerically with 30 digits of precision number. The numerical values of the
free parameters are

k11 ≃ −19.19; k22 ≃ −94.53; k33 ≃ 428.75; k12 ≃ −89.46;

k13 ≃ 29.47; k23 ≃ −211.84; k21 ≃ 60.09; k31 ≃ −262.44; k32 ≃ 30.53;

tβ ¼ 49.86; z ¼ 1169 GeV; mH1
¼ 657.1 GeV; mH2

¼ 734 GeV: ð46Þ

In this case, the heavy neutrino masses are mn4 ¼
mn5 ¼ 137.2 GeV, mn6 ¼ mn7 ¼ 4709.4 GeV, mn8 ¼
mn9 ¼ 11958 GeV. For simplicity we assume that
Y3
11 ¼ Y3

12 ¼ Y3
21 ¼ Y3

13 ¼ Y3
31 ¼ 0, therefore the contribu-

tion from h3 does not change the two cLFV decays Brðμ →
eγÞ ≃ 3.93 × 10−13 and Brðτ → eγÞ ≃ 1.11 × 10−8. They
always satisfy the experimental data. The non-zero Yukawa
couplings are scanned in the ranges Y3

ab ∈ ½−3.5; 3.5� that
satisfy the perturbative limit. This results in the following
allowed range of the charged Higgs boson mass
500 GeV ≤ mh3 ≤ 1158 GeV. Numerical values of cðabÞR
is shown in Table V.
The numerical results shown in Fig. 2 have some

interesting properties. In the left panel, the contribu-
tions from h�3 to Δaμ are always negative, but much
smaller than the total one: 0 < −Δaμðh�3 Þ ≤ 1.5 × 10−10 ≪
200 × 10−11 ∼ Δaμ. On the other hand, the one-loop

contributions ch3ð32ÞR and cH2

ð32ÞR have the same order, but

opposite signs. Therefore, the total jcð32ÞRj is small enough
to guarantee that Brðτ → μγÞ < 4.4 × 10−8. This is reason
why in the right panel, we see that jcð32ÞRj < jch3ð32ÞRj, i.e.,
Brðτ → μγÞ < Brðτ → μγÞ½h3� may happen. More specifi-
cally, this property can be seen from a particular numerical
illustration presented in Table V. We can see a property
that jcð22ÞRj ≫ jch3ð22ÞRj ∼ jch3ð32ÞRj ∼ jcH2

ð32ÞRj ∼ jcð32ÞRj, which
explains why the contributions from h3 affect strongly
Brðτ → μγÞ but weakly Δaμ.
The allowed regions of parameters allowing Δa331ISSμ

around the value 200 × 10−11 can be found easily in the
ranges given in Eq. (44). The allowed regions with larger
Δa331ISSμ are shown in Fig. 3, where charged Higgs masses
have to be smaller than 600 GeV. It is noted that large
Δa331ISSμ > 300 × 10−11 require light charged Higgs boson
massesmH1

→ 500 GeV, z→1223GeV, and large tβ → 60.
The region of parameter space corresponding to the Fig 3 is:

k11 ∈ ½−21.77;−17.84�; k22 ∈ ½−101.9;−93.76�; k33 ∈ ½420.1; 429.4�;
k12 ∈ ½−96.22;−88.92�; k13 ∈ ½26.95; 31.12�; k23 ∈ ½−220.2;−210.4�;
k21 ∈ ½59.19; 66.55�; k31 ∈ ½−268.6;−262.9�; k32 ∈ ½25.35; 33.64�;
tβ ∈ ½41.68; 59.97�; z ∈ ½1051; 1223� GeV; mH1

∈ ½500.6; 631.3� GeV;
mH2

∈ ½571.3; 703.8� GeV; mh3 ∈ ½500.5; 778.6� GeV; jY22j ∈ ½0.11; 3.49�;
jY23j ∈ ½0.51; 3.5�; jY32j ∈ ½0.06; 3.49�; jY33j ∈ ½0.009; 3.5�: ð47Þ

TABLE V. Particular contributions cXðabÞR½GeV−2� to Δaμ and Brðeb → eaγÞ with the free parameters shown in Eq. (46). The last
column shows values of Δaμ and Brðeb → eaγÞ.
Notations cWðabÞR − cW;SM

ðabÞR cYðabÞR cH1

ðabÞR cH2

ðabÞR ch3ðabÞR cðabÞR Process

Δaμ∶cð22ÞR × 1010 5.3 −0.386 −211. 61.1 3.7 −141.1 Δaμ ¼ 20.5 × 10−10

μ → eγ∶cð12ÞR × 1013 449.16 61.536 −75957. 75443. 0 −2.5234 Brð12RÞ ¼ 2.2174 × 10−13

μ → eγ∶cð21ÞR × 1013 2.1388 0.29303 −361.70 357.43 0 −1.8329 Brð21RÞ ¼ 1.1699 × 10−13

τ → eγ∶cð13ÞR × 1010 −0.00510 0.0540 4.25 −2.96 0 1.34 Brð13RÞ ¼ 111: × 10−10

τ → eγ∶cð31ÞR × 1010 ∼0 ∼0 0.00120 0.0664 0 0.0676 Brð31RÞ ¼ 0.284 × 10−10

τ → μγ∶cð23ÞR × 1010 −0.00721 −0.0445 1.20 −2.51 0.164 −1.20 Brð23RÞ ¼ 86.7 × 10−10

τ → μγ∶cð32ÞR × 1010 −0.000426 −0.00263 0.0708 −5.18 2.77 −2.33 Brð32RÞ ¼ 330: × 10−10
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The heavy neutrino masses are in the following
ranges: mn4 ¼ mn5 ∈ ½109.2; 172.3� GeV, mn6 ¼ mn7 ∈½3.66; 5.87� TeV,mn8 ¼mn9 ∈ ½8.99;14.92�TeV. The cLFV
branching ratios are in the following ranges: Brðμ → eγÞ×
1013 ∈ ½5.8 × 10−16; 4.2 × 10−13�, Brðτ→eγÞ∈ ½4×10−11;
3.3×10−8�, and Brðτ → μγÞ ∈ ½1.6 × 10−12; 4.4 × 10−8�.

VI. CONCLUSION

In this work, we have pointed out that the one of
the versions of the 3-3-1RN model, namely the 331ISS
model, can predict large values of Δaμ ≃ 108 × 10−11

under the recent constraint of all cLFV decays eb → eaγ.
This large value corresponds to the upper bound
Brðτ → μγÞ ≃ 4.4 × 10−8, while the two remaining decay
branching ratios are still well below the recent experi-
mental constraints. This model predicts the existence of
the two charged Higgs bosons which can give large con-
tributions of the order Oð10−9Þ −Oð10−8Þ to the Δaμ, so
that it can reach the maximal values around 10−9, which is
still much smaller than the allowed values given by the
recent experimental data. On the other hand, the two other
charged Higgs bosons contributions to Brðeb → eaγÞ will
be at the orders of Oð10−10Þ −Oð10−9Þ½GeV−2�. But the
huge destructive correlations can happen between these
contributions, leading to a small values of Brðeb → eaγÞ.

Although the model contains many free parameters, maybe
the antisymmetry of the Dirac mass matrix mD does not
allow large destruction enough to keep the Brðτ → μγÞ
below the experimental constraint, while allow large
Δa331ISSμ ≥ 192 × 10−11. The model needs to include an
additional singly charged Higgs boson so that all exper-
imental data of Δaμ and the cLFV decays can be explained
simultaneously. As a consequence, all of the cLFV decays
eb → eaγ are predicted that their branching ratios can
be large closely the recent experimental bounds.
Therefore, our model can also explain simultaneously all
cLFV decays eb → eaγ once they are observed by upcom-
ing experiments.
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