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Abstract.
We study a Kitaev-Heisenberg model of spin 1/2 using the Popov-Fedotov fermionization

proccedure. We derive the free energy of the quantum spin system on a Bravais lattice within
one-loop approximation with exact on- site constraint. We discuss the obtained magnetic
excitation spectrum for a particular case of square lattice in relation to the data derived by
the equation of motion method and with the result of the linear spin wave theory in Holstein -
Primakoff representation.

1. Introduction
Recently the Kitaev model has been attracted a lot of attention because it may effectively
describe complicated magnetic properties of the strongly correlated transition metal compounds
with entangling spin and orbital degrees of freedom in 5d electrons [1]. A strong spin orbital
interaction in these materials results in an effective antiferromagnetic model for the pseudospin
s = 1/2 with the bond dependent Kitaev interaction [2]. Iridium oxide compounds such as
α Li2IrO3, Na2IrO3, α RaCl3... may be realistically described by Kitaev interaction together
with isotropic Heisenberg interation, so called Kitaev-Heisenberg model [3]. From a theoretical
viewpoint the Kitaev-Heisenberg model reveals very rich physics due to SU (2) broken symmetry
[1]. It may lead to quantum spin liquid states. Also a multitude of unconventional ordered states
may exist in Kitaev-Heisenberg model [1, 2]. In this paper we would like to see whether the
functional integral approach proposed by Popov-Fedotov may be applied for studying the Kitaev-
Heisenberg model. It is well known that the commutation relations for the spin operators are
neither fermionic nor bosonic, leading to the absence of the Wicks theorem, so it is impossible to
use an ordinary perturbation theory [4]. To resolve this problem one use different representations
of the spin operators in terms of the canonical auxiliary Fermi or Bose ones. However the
unphysical states in the Hilbert space, where the auxiliary operators are acting appear. These
spurious states should be excluded by some constraint on every site, which is difficult to treat
exactly. In 1988, Popov-Fedotov proposed a new fermionization procedure for quantum spin
systems, in which the spin operators are represented in terms of the bilinear combinations of the
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Fermi operators and an imaginary chemical potential is introduced for ensuring the exact local
constraint [5]. The Popov-Fedotov trick has been used for studying ordered phases in different
quantum spin systems [6, 7, 8]. It has been applied successfully also to the spin glass model [9],
the negative U-Hubbard model [10].

In this paper we derive a general analytical expression of free energy in s = 1/2 Kitaev-
Heisenberg model on a Bravais lattice. As an example, we discuss the result for the case
of square lattice in comparison with the magnon energy obtained by the equation of motion
method and by the approach using Holstein - Primakoff representation for the spin operators.
This paper is organized as follows. In Sec.2 we formulate the model and give formalism. The
general results are presented in Sec.3. Application to a square lattice and discussions are given
in Sec.4.

2. Model and formalism
We start from the spin-1/2 Kitaev-Heisenberg (K-H) model:

H =
1
2

∑

ij

Jij
~Si.~Sj +

1
2

∑

ijν

Γν
ijS

ν
i Sν

j . (1)

There are two types of interactions along bonds ν (ν = x, y, z): Heisenberg interactions Jij and
Kitaev interactions which couple Sν

i , Sν
j components along oriented bond. The strength and

sign of the coupling Jij and Γν
ij vary from material to material but a common feature in Kitaev

material is that
∣∣∣Γν

ij

∣∣∣ > |Jij |. It is convenient to rewrite Hamiltonian (1) in the form:

H =
1
2

∑

ijν

Jν
ijS

ν
i Sν

j , (2)

with

Jν
ij = Jij + Γν . (3)

For definity we suppose |Γx| , |Γz | > |Γy | so Oxz is the magnetic easy plane. In the classical
limit of S = ∞ we can parameterize the magnetic state by some magnetic ordering vector ~Q as
[11]:

~Si = S
(
~u sin ~Q~ri + ~v cos ~Q~ri

)
. (4)

with ~u and ~v being two orthogonal unit vectors in the Oxz plane. Inserting ~Si into Hamiltonian
(2) and minimizing obtained expression we can find for the given set of Jν

ij with a particular
lattice structure. Next step is to introduce a local reference frame where the local z axis is
along the classical magnetization direction, defined by ordering ~Q [10]. In result in the local
coordinate system K-H Hamiltonian reads:

H =
1
2

∑

i,j,α,β

Jαβ
ij Sα

i Sβ
j , (5)

with the following non-zero components Jαβ
ij :





Jyy
ij = Jy

ij ,

Jxx
ij = Jij cos ~Qδij + Γx

ijg1ij + Γz
ijg2ij ,

Jzz
ij = Jij cos ~Qδij + Γz

ijg1ij + Γx
ijg2ij,

Jxz
ij = −Jij sin ~Qδij + Γx

ijg3ij + Γz
ijg3ji,

Jzx
ij = Jij sin ~Qδij + Γx

ijg3ji + Γz
ijg3ij.

(6)
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where:




g1ij = 1
2

[
cos ~Q~δij + cos ~Q

(
2ri + ~δij

)]
,

g2ij = 1
2

[
cos ~Q~δij − cos ~Q

(
2ri + ~δij

)]
,

g3ij = −1
2

[
sin ~Q~δij − sin ~Q

(
2ri + ~δij

)]
.

(7)

~δij being a vector connecting site i and site j. According to the Popov-Fedotov [5] the spin
operators are represented in term of auxiliary Fermi operators a+

iσ, aiσ:

Sα
i =

1
2

∑

iσσ′

a+
iστα

σσ′aiσ′ . (8)

where τ = (τx, τy, τ z) are the Pauli matrices. The unphysical states have to be eliminated by
the constraint:

N̂i =
∑

σ

a+
iσaiσ= 1. (9)

It can be enforced by inserting the projection operator P̂ = 1
iN

ei π
2
N̂ to the partition function:

Z = Tr
[
e−βĤPF P̂

]
. (10)

where ĤPF is the Hamiltonian (5) in auxiliary fermion representation (8). As a result, the
fermionic Matsubara frequences are modified:

ω =
2π

β

(
n +

1
4

)
. (11)

The next step is to represent the partition function (10) in a functional integral over Grassmann
variables, where the products of four Grassmann variables are excluded by a Hubbard-
Stratonovich transformation. After integrating out the Grassmann variables the partition
function is given in the functional integral over the Bose auxiliary vector field ~ϕi, introduced
by the Hubbard-Stratonovich transformation. In order to apply a perturbation technique, we
decompose the auxiliary field ~ϕi:

~ϕi (Ω) = ~ϕio + δ~ϕi (Ω) . (12)

with the mean field value ~ϕio (Ω = 0) ≡ ~ϕio and the fluctuation component δ~ϕi (Ω).
The further calculations closely following Ref. [8] are straightforward but lengthy and are not
given in detail here.

3. General results
The zero order in the fluctuations gives rise to the mean-field free energy. The first order in
the fluctuation term is cancelled due to the least action principle. The mean-field value of the
auxiliary fields ~ϕio is related to the mean-field magnetization per site ~mio as follows:

ϕα
io = −

∑

jβ

mβ
joJ

βα
ij . (13)
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In a Bravais lattice all sites are equivalent and in the local reference frame only the z-component
of ~mio and ~ϕio are non-zero mα

io = mioδα,z; ϕα
io = ϕioδα,z.. Then the mean-field magnetization is

given by:

mo =
1
2

tanh
βmo

2

∑

j

Jzz
ij . (14)

The mean-field free energy reads:

FMF =
m2

o

2

∑

ij

Jzz
ij mio + ln 2 cosh

(
βϕo

2

)
. (15)

In one loop approximation the fluctuation contribution to the free energy is given by:

δFfl =
1
2β

ln det D̂ij (Ω) , (16)

where:

D̂ij (Ω) = Î + ĴijK̂ij (Ω) . (17)

It is convenient to evaluate (16) in a circular basic (+,−, z) instead of the Decartes one (x, y,
z). The elements of the interaction matrix Ĵij in the circular basic are written in the following
form:

Ĵ =




Jxx
ij − Jyy

ij Jxx
ij + Jyy

ij Jxz
ij

Jxx
ij + Jyy

ij Jxx
ij − Jyy

ij Jxz
ij

Jzx
ij Jzx

ij −Jzz
ij


 (18)

The none-zero components of the matrix K̂ij (Ω) in the circular basics read:

{
K+−

ij (Ω) =
(
K−+

ij (Ω)
)∗

= β
2

mo
ϕo+iΩδij ,

Kzz
ij (Ω) = −1

4

(
1− 4m2

o

)
δijδΩ,0.

(19)

To calculate det D̂ij (Ω) we perform a Fourier transformation so:

det D̂ij (Ω) = det D̂ (~p, Ω) . (20)

From (18) - (20) it is straightforward to derive the fluctuation contribution to the free energy
(16).

From the expressions for the interaction matrix (6) - (7) one can see that for the isotropic
Heisenberg part Jij depends only on the neighboring vectors ~δij = ~ri − ~rj , but the Kitaev part
depends on 2~ri + ~δij . As a consequence, for the Heisenberg model D̂ (~p, Ω) is 3 × 3 matrix but
for K-H model D̂ (~p, Ω) is 6 × 6 matrix because the fluctuation of boson field δ~ϕ (~p) is coupled
with δ~ϕ

(
~p + ~Q

)
. The determinant of is 6× 6 matrix may be reduced to a determinant of 3× 3

matrices by the following formula [13]:

det

(
ÂB̂
ĈD̂

)
= det

(
ÂD̂− B̂D̂−1ĈD̂

)
. (21)
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In result we get:

δF =
1
2β

∑

~p∈BZ

∏

Ω

det Ê, (22)

The component of the 3 × 3 matrix Ê is given by:




E11 = 1 + (Xo + Y o) k∗ − X+X−k∗b − W+W−k∗kz,
E12 = (Xo − Y o)k − X+X−kb − W+W−kkz ,
E13 = −W okz − X+W−bkz + W+X−k2

z ,
E21 = (Xo − Y o)k

∗ − X+X−bk∗ − W+W−k∗kz,
E22 = 1 + (Xo + Y o) k − X+X−bk − W+W−kkz ,
E23 = −W okz − X+W−bkz + W+X−k2

z ,
E31 = W ok∗ − W+X−bk∗ + X+W−k∗kz ,
E32 = W ok − W+X−bk + X+W−kkz ,
E33 = 1 + Xokz − W+W−bkz − X+X−k2

z .

(23)

here:




k = 1
2

mo
ϕo−iΩ ,

kz = −1
4

(
1 − 4m2

o

)
δΩ,0,

b = moϕo

ϕ2
o−(iΩ)2

,

ϕo = −mo
∑
j

Jzz
ij .

(24)





Xo = −1
2

[
2J+(~p) + Γx

+(~p) + Γz
+(~p)

]
,

Y o = −J(~p),
Zo = −1

4

[
2J+(~p) + Γx

+(~p) + Γz
+(~p)

]
,

W o = − i
4

[
2J−(~p) + Γx

−(~p) − Γz
−(~p)

]
,

X± = −1
4

[
Γx(~p± ~Q) − Γz

+(~p ± ~Q)
]
,

W± = iX±.

(25)

{
J±(~p) = J(~p + ~Q)± J(~p − ~Q),
Γα
±(~p) = Γα(~p + ~Q) ± Γα(~p − ~Q).

(26)

J (~p) is Fourier transformation of Jij and Γα (~p) is Fourier transformation of Γα
ij .

The Kitaev-Heisenber model (1) may possess many different classical ordered states: Neel
type antiferromagnetic, ferromagnetic, columnar antiferromagnetic phases [3]. Each of the
ordered states may be characterized by some ordering vector ~Q, depending on the lattice
structure and on the interaction strengths. Hence, in principle the above results give us a
possibility to study the K-H s = 1/2 model on any Bravai lattice by means of Popov-Fedotov
trick.

4. Application to a square lattice and discussion
As an example we apply the obtained results to the K-H model on a square lattice, investigated
in [14, 15, 16]. We consider only the nearest neighbor interaction so the Heisenberg interaction
reads:

Jij = Jδ
~rj ,~ri+~δ.

(27)
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And the Kitaev interaction is given by:

Γα
ij = Γαδ

~rj ,~ri+~δα
(α = x, z). (28)

~δ is the nearest neighbor vector, ~δ = (±1,±1) and ~δα is the nearest neighbor vector along α

direction, ~δx = (±1, 0);~δy = (0,±1) and the lattice constants a is taken to be 1. As it was
shown in [13] the classical ground states of K-H model may be antiferromagnetic, ferromagnetic,
columnar antiferromagnetic phases [3]. We study the case where Γz > Γx > J > 0 and the
classical ordered phase is Neel-type antiferromagnetic with the ordering vector ~Q = (π, π) [14-
16]. The Fourier components of the interaction are written in the form:





J(~p) = 2J (cos px + cos pz) ,
Γα(~p) = 2Γα cos pα.
(α = x, z)

(29)

From (14) the equations for the mean-field magnetization and free energy read:

mo =
1
2

tanh βmo (2J + Γx + Γz) . (30)

FMF = −m2
o

2
(2J + Γx + Γz) + ln 2 cosh [βmo (2J + Γx + Γz)] . (31)

The fluctuation contribution to the free energy in one-loop approximation is found to be:

δF =
1
2β

∑

~p∈BZ

lnAo (~p) +
1
2β

∑

~p∈BZ
ν=1,2

ln
shβEν(~p)

2

shβmo (2J + Γx + Γz)
, (32)

The first term in right hand of Eq.(32) is the contribution from the longitudinal fluctuation
which is given by:

Ao = 1 + a(p)
(
1 − 1

4
m2

o

)
, (33)

where a(p) is some function of ~p and mo satisfies Eq.(14). At low temperature mo ' 1
2 so the

longitudinal contribution is negligible in comparison with the tranverse one given by second
term in right hand of Eq.(32). The magnon energy Eγ (~p) reads:

E1,2 (~p) =
[
ϕ2

o − P (~p) ±
[
P 2 (~p) + Q (~p)

]1/2
]1/2

, (34)

where:

P (~p) =
1
4
moϕo (Γx (~p) + Γz (~p)) − 1

2
m2

oJ (~p)
[
J (~p) +

1
2
Γx (~p) +

1
2
Γz (~p)

]
, (35)

Q (~p) =
1
4
(moϕo)

2(Γx (~p)− Γz (~p))2
(
1 − mo

ϕo
J (~p)

)
. (36)

ϕo = 2mo [2J (~p) + Γx (~p) + Γz (~p)] . (37)
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In the limit Γα = 0, Eqs.(29)-(32) reduce to the results obtained by means of Popov-Fedotov
approach for the Heisenberg model on the square lattice [7, 8]. In the limit of zero temperature
Eqs.(34)-(37) give the similar magnon spectrum derived in linear spin wave theory based on
Hostein-Primakoff representations of spin operators [13, 14]. In comparison with the results in
[15] obtained by spin rotation invariant Green function method we list the following points.

i) The equations for magnon spectrum are similar if in our equations we replace mo by σ
of Ref. [15], which is the sublattice magnetization at T = 0K renormalized due to zero point
fluctuations.

ii) Note that in our results mo depends on temperature by Eq.(14). Then the temperature
dependence of the thermodynamic quantities in one loop approximation within Popov-Fedotov
formalism is not only due to Bose distribution function of magnon but also the sublattice
magnetization mo. As a consequence, at finite temperature the Popov Fedotov method
improves the thermodynamic quantities in comparison with the other approaches, where the
exact constraint is relaxed by the average one.

In summary, we showed that functional integral method with exact constraint may be
developed for anisotropic magnetic systems described by Kitaev-Heisenberg model. The essential
point is that the fluctuations at momentum ~p are coupled with the fluctuations at momentum
~p + ~Q making the calculation complicate. We sketched a common scheme for studying different
ordered phases of the model in any Bravais lattices. As an example we studied the Neel type
antiferromagnetic phase in a square lattice and compared with the other methods. The above
results may be applied to study other ordered states or may be extended for Kitaev materials
on non-Bravais lattices or with S > 1

2 . It should be left for future.
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