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Strongly confined 2D parabolic quantum dot: Biexciton or quadron? 
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A B S T R A C T   

Excitonic systems localized in a single InAs/GaAs parabolic quantum dot are studied theoretically using an 
unrestricted Hartree-Fock method. The binding energies of excitons, conventional biexcitons and quadrons - four 
particles system of two electrons and two holes, in the ground state have been obtained as functions of magnetic 
field and confinement potential. It is found that for strong confinement, while the binding energy of biexciton is 
negative, the binding energy of quadron is positive, suggesting the strong lateral confinement of the parabolic 
quantum dot supports the formation of a quadron rather than a biexciton.   

1. Introduction 

With recent fast development of nanotechnology, physics of semi
conductors actually becomes the physics of low-dimensional semi
conductor systems. Quantum confinement of nanostructures brings 
unique and new physics that have never been observed in traditional 
semiconductors and makes the nanostructures interesting objects of 
intensive studies (for reviews, see Refs. [1–4] and cited therein 
references). 

Excitons and exciton-related excitations, such as biexcitons, play a 
very important role in optical processes happening at or close to the 
band gap such as single-photon emissions. Due to both their basic 
physics nature and their promising applications in optical quantum in
formation technology such as quantum cryptography and quantum 
computing, they have attracted an enormous amount of research for 
various low-dimensional semiconductor systems [5–29]. Thus, the 
binding energies of biexcitons as a bound state of two separate excitons, 
were calculated in CuCl/NaCl and GaAs spherical quantum dots by 
Monte-Carlo method [7], in 2D systems by stochastic variational method 
[8,9] and by hyperspherical harmonics [10]. The theory of biexcitons 
formed by spatially separated electrons and holes have been studied by 
variational method in different nanosystems, such as ZnSe quantum dots 
in a borosilicate glassy matrix [14], CdS, ZnSe and Al2O3 quantum dots 

in a dielectric matrix [15], and in Ge/Si heterostructure with germanium 
quantum dots [16]. It is shown that in these nanosystems, biexciton 
formation is possible and of the threshold character when the spacing 
between the quantum dots surfaces is larger than a certain critical 
spacing. 

Of particular interest are semiconductor quantum dots with para
bolic confinement potential, including self-assembled semiconductor 
quantum dots [17–29], because this kind of quantum dots shows large 
binding energies of biexctions and, on the other hand, it has easily been 
incorporated in field-effect structures to study the influence of the 
external magnetic field while not breaking the system symmetry. It is 
expected that binding energies of excitons, biexciton are increased due 
to the spatial confinement, which reduces the exciton Bohr radius, and 
depend strongly on parameters of the quantum dot system such as the 
nanostructure materials, size, shape, spatial confinement and applied 
magnetic field. The binding energies of biexcitons have been studied 
both experimentally and theoretically for a large variety of quantum 
dots with different geometry, shape and composition [17–24]. The 
biexciton binding energy has been reported both positive and negative 
in small quantum dots, depending on the parameters of the system such 
as confinement, magnetic field, and other relationship of Coulomb in
teractions between electrons and holes [19–21]. The experimental data 
and theoretical calculations for biexciton binding energy in small 
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self-assembled InAs/GaAs quantum dots have shown negative values 
[22,23] and it is a very sensitive function of the lattice randomness. 

With all the studies up to now, however, there still exists an unclear 
picture about how these few electrons and holes interact with each other 
inside the quantum dot. To our knowledge, studying many-electron-hole 
systems in semiconductors nanostructures, almost all works done so far 
rely on exciton and biexciton formations and their interaction. That 
means, the biexcitons are assumed to be a priori formed in these many- 
electron-hole systems. However, while in other systems excitons have 
always been considered to be formed first and later the coupling of two 
excitons forms the biexciton, there are some evidences showing that in 
quantum dots with parabolic confinement potential the formation of a 
new state of two electrons and two holes with equal roles and pair 
interaction between each others - we will call this state quadron, is also 
possible, and in some cases even more preferable. In fact, it is still un
clear if the lateral confinement of the quantum dot supports the for
mation of conventional biexcitons as a bound state of two separate 
excitons or quadron, the four-particle excitations consisting of two 
electron and two holes of equal interaction. 

In this work, we try to answer this question by calculating the 
binding energies of biexcitons and quadrons in strongly confined 2D 
parabolic quantum dots using the unrestricted Hartree-Fock method. We 
are able to show that the binding energy of biexciton in the ground state 
is always negative in all ranges of parameters, indicating that in its 
ground state biexciton is antibinding. Our calculations agree very well 
with the experimental data and are consistent with the results calculated 
by other authors [20,22,23]. Furthermore, our results demonstrate that 
while the binding energy of biexciton as a state of two separate excitons 
is always negative, the binding energy of quadron as a four-particle 
states of two electrons and two holes all together is positive, and both 
are very sensitive to the electron-to-hole ratio of the confinement po
tentials. These results suggest that the strong lateral confinement of the 
parabolic quantum dot might support the formation of a quadron rather 
than a biexciton, and this point has never been noted so far. 

2. Theoretical method and model 

Many different methods have been used to study excitons and biex
citons, such as few-body system method [4], diffusion Monte Carlo 
methods [7], variational method [8,9,14–16], hyperspherical har
monics [10], configuration interaction method [17,18,20–23], 
Hartree-Fock method [23–27] and perturbation theory [28,29]. Among 
these methods, the unrestricted Hatree-Fock method which seems to be 
a good approximation for many-electron systems in parabolic quantum 
dots [30], and spherical quantum dots [31], is especially appropriate for 
small self-assembled quantum dots. This method has been used suc
cessfully in our previous works [25–27] to study the charging effects, as 
well as external magnetic field effects on charged magneto-excitons in 
self-assembled quantum dots. Our results agree very well with experi
mental results [28,29] for the energy red-shift and exciton absorption 
spectra in small InAs/GaAs self-assembled quantum dots. In this work 
we use unrestricted Hatree-Fock method to study the exciton, biexciton 
and quadron in small self-assembled quantum dots with parabolic 
confinement potential in magnetic field. 

We consider excitonic systems as a system of interacting electrons 
and holes confined in a 2D quantum dot with parabolic lateral potential 

in the presence of a perpendicular magnetic field B
⃗
‖z. In the framework 

of the effective-mass approximation, the total Hamiltonian of the system 
of N electrons and M holes (for exciton N = M = 1, and for biexciton and 
quadron N = M = 2) with the full many-body approach can be written as 
follows: 

Ĥ=
∑N

i=1
h(r⃗i ) +

∑M

k=1
h′

(r⃗k) +

+
1
2

∑N

i,j=1;i∕=j

e2

εrij
+

1
2

∑M

k,l=1;k∕=l

e2

εrkl
−
∑N

i=1

∑M

k=1

e2

εrik
, (1)  

where the first two terms are Hamiltonians of single electrons h(r
⃗

i) and 

single holes h′

(r
⃗

k), and the last three terms are the total electron- 
electron, hole-hole and electron-hole Coulomb interactions, respec
tively, with ε being the material dielectric constant. 

The single-particle Hamiltonians for electron (with notations e, i) and 
hole (with notations h, k) in a quantum dot with parabolic confinement 
in a magnetic field are written as follows (ℏ = c = 1): 
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where m∗
e (m∗

h) and ωe (ωh) are the effective mass and the confinement 
potential of the electron (hole), respectively; ωce = eB/m∗

e (ωch = eB/m∗
h) 

and ̂Lzi (L̂zk) are the cyclotron frequency and the z-components of orbital 
angular momentum operators of the electron (hole), respectively. Note 
that as in Refs. [24–27] the terms describing the spin Zeeman splitting 
due to interaction of the spin with the magnetic field in (2) and (3) has 
been neglected because of its smallness. 

We note that in this calculation we only consider the system in the 
ground state, when the two electrons (as well as the two holes) have 
opposite spins and therefore there is no exchange interaction involved. 

In the framework of the unrestricted Hartree-Fock approximation, 
the total wave function of the system of N electrons and M holes can be 
found in the form of direct product of the Slater determinants for elec
trons and holes: 

Ψ(ξ1,…, ξN , ξ
′

1,…, ξ
′
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′

1(ξ
′
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M(ξ
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M)| ,
(4)  

where the electron and hole orbitals ψ i(ξ), ψ ′
k(ξ) in the Slater de

terminants are spin dependent: ψ i(ξ) = φα
i (r
⃗
)σ(α) or ψ i(ξ) = φβ

i (r
⃗
)σ(β)

for spin-up or spin-down electrons, and ψ ′

k(ξ) = φ′ α
k (r
⃗
)σ(α) or ψ ′

k(ξ) =

φ
′ β
k (r
⃗
)σ(β) for spin-up or spin-down holes. 

In the Hartree-Fock method with the Roothaan formulation [24–27], 

the spatial parts of electron and hole orbitals φα,β
i (r
⃗
) and φ

′ α,β
k (r

⃗
) are 

written in the form of expansions in the basis functions χe
ν(r
⃗
) and χh

μ(r
⃗
), 

which are chosen as the eigen-functions of the single particle Hamilto
nians (2) and (3): 
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where indexes - quantum numbers ν, μ ≡ (n, m) run over all single 
electron or hole states described by the wave-functions in polar co

ordinates χe
ν(r
⃗
) and χh

μ(r
⃗
): 
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(7) 
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where L|m|
n (r) is generalized Laguerre polynomial, and 
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(8) 

Note that in the chosen basis (7), the electron-electron, hole-hole and 
electron-hole Coulomb interaction matrix elements in Hartree-Fock 
Roothaan equations can be calculated analytically (see e.g. Ref. [32]). 
We solve self-consistently the unrestricted Hartree-Fock Roothaan 
equations to obtain the total energy of the system for exciton (EX), 
biexciton (EXX), and quadron (EQ) in the dependence on magnetic field 
and confinement. Then the binding energies of the excitonic systems are 
found by the following equations: 

Eb
X = (Ee + Eh) − EX , for ​ exciton,

Eb
XX = (EX + EX) − EXX , for ​ biexciton,

Eb
Q = (2Ee + 2Eh) − EQ, for ​ quadron.

(9)  

3. Numerical results and discussions 

In this section, in order to compare with the experimental results 
obtained in Ref. [22] for biexciton binding energy, we will present the 
numerical results using the parameters appropriate for InAs/GaAs 
self-assembled quantum dots: m∗

e = 0.067mo, m∗
h = 0.25mo, ωe = 49 

meV, ωh = 25 meV, ε = 12.53 [24–27]. The effective Bohr radius a∗
B = ε/

m∗
ee2 = 9.9 nm has been adopted as an unit of length and two times of 

the effective Rydberg 2Ry∗ = m∗
ee4/ε2 = 11.61 meV as an unit of energy. 

For small InAs/GaAs self-assembled quantum dots, the oscillator lengths 
for electrons and holes in the absence of magnetic fields le,h =

(m∗
e,hωe,h)

− 1/2 are 4.8 nm and 3.5 nm, respectively. These values are 
much smaller than the effective excitonic Bohr radius which is about 13 
nm, what means electrons and holes in small InAs/GaAs dots are 
strongly confined. 

In the investigation of the impact of magnetic field, for comparison 
purpose, beside the above-mentioned parameters (called parameter set 
1), in order to see the sensitive changes of binding energy depending on 
related parameters, the numerical calculation using another parameter 
set (called parameter set 2), with m∗

e = 0.067mo, m∗
h = 0.067mo, ωe =

49 meV, ωh = 25 meV, has also been performed. 
The dependence of the biexciton binding energy on the magnetic 

field has been studied and presented in Fig. 1, where the calculations 
performed for two parameters sets have been compared. The results 
show that for both parameter sets the biexciton binding energy are 
increased with the magnetic field, as expected, due to the additional 
confinement the magnetic field applies on the electron and hole, how
ever the increase is rather small. 

It is important to note that for all variation range of magnetic field for 
both parameter sets, the biexciton binding energy in ground state is 
always negative. The difference of binding energies calculated by two 
sets is about 2 meV. The result shows that the biexciton in ground state is 
antibinding and unstable in these systems. Our calculation results agree 
well with the experimental results [22]. Indeed, from the calculation for 
parameter set 1 and set 2, the biexciton binding energy is − 0.45(2Ry*) 
and − 0.25(2Ry*) (see Fig. 1), (or − 5.1 meV and − 2.9 meV), respec
tively, which is in very good agreement with the range from − 6 meV to 
− 1 meV of experimental data for different dots [22]. Note that these 
results also agree with the negative biexciton binding energies calcu
lated by the configuration interaction method in Refs. [20,23]. The 
antibinding property of an biexciton is a consequence of the strong 
confining potential, which assists direct Coulomb repulsive interaction 

between excitons. But our study shows it is not the case for the quadtron 
- the four-particle excitation of two electrons and two holes. 

In order to understand the nature of the interactions in the quatron, 
the binding energy of quadron - the four-particle excitation of two 
electrons and two holes with the full many-body approach [23] when 
the interactions between all pairs of particles have been taken into ac
count equally-has been calculated. In Fig. 2 the binding energies of a 
quadron in the ground state as a function of magnetic field for the 
above-mentioned two sets of parameters is presented. In contrast to 
biexciton case, the quadron binding energy is always positive for both 
parameter sets, what means the quadron is bound as a whole. 

To compare and see the relationship of the binding energy between 
three excitonic systems, in Fig. 3 all the binding energies of the exciton, 
biexciton and quadron have been shown for the case of parameter set 1. 
As seen from Fig. 3, the impact of a magnetic field on the binding en
ergies in the strong confinement is rather small, but it is very important 
to notice that while the biexciton binding energy is negative, the 
quadron binding energy is positive. Since the energy of the system of 
four particles is the same in our calculation, EQ = EXX, the equation 
describing the relationship between the binding energies of the quadron, 
exciton, and biexciton defined by (9), could be written as follows: 

Eb
Q = 2Eb

X + Eb
XX . (10) 

Self-assembled quantum dots, although relatively homogeneous, in 

Fig. 1. The binding energy of biexciton as function of magnetic fields for two 
sets of parameters (see in the text). (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. The binding energy of quadron as function of magnetic fields for two 
sets of parameters (see in the text). (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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practice are still different in size resulting in different confinements for 
electron and holes. Therefore to provide more information on the effect 
of random fluctuations of sizes, we investigate the dependence of 
binding energies on the various confinement values via the ratio of 
confinement potential between electrons and holes ωe/ωh. Thus, the 
binding energies of exciton, biexciton and quadron have been calculated 
for a wider range of the electron-to-hole lateral confinement ratio ωe/ωh 
with two sets of parameters: (ωe = 49 ​ meV,m∗

e = 0.067,m∗
h = 0.25) as 

in parameter set 1 and (ωe = 49 ​ meV,m∗
e = 0.067,m∗

h = 0.067) as in 
parameter set 2, respectively, but with ωh changing. 

Figs. 4 and 5 show the binding energy of the exciton, biexciton, and 
quadron in the absence of magnetic field for the parameter set 1 and set 
2, respectively. As seen from Figs. 4 and 5, the binding energy of biex
citon is always negative while the binding energy of quadron is positive. 
One can also see that the relationship between the binding energies of 
exciton, biexciton and quadrons defined by (10) holds exactly for all 
range of magnetic field and confinement potential in the present study 
(see Figs. 3–5). 

Comparing the results obtained for two parameter sets in Figs. 4 and 
5, one can see that the binding energies of exciton, biexciton and 
quadron are very sensitive to the system parameters. This can be un
derstood qualitatively as the variation of mass and confinement ratio 
between electron and hole results in the changes of the effective lengths 

of the electron and hole. As a consequence, this changes magnitudes and 
correlations between the Coulomb interactions of electron-electron, 
hole-hole, and electron-hole pairs, which result in changes of the bind
ing energies. These results are indicative for studies of quantum dots 
with different material parameters, and can be verified by experiments. 

To see the influence of the magnetic field on the binding energies, in 
Fig. 6 the biexciton and quadron binding energies are compared for two 
cases with and without magnetic field: B = 0 T and B = 8 T. One can see 
that the magnetic field plays a significant role at a large difference in 
confinements of electron and hole, or in other words, large difference in 
effective lengths of the electron and hole. For all ranges of calculation in 
our present study, while the binding of biexciton is negative, the binding 
of quadron is positive. This very interesting result leads us to a serious 
conclusion that the strong lateral confinement in parabolic quantum dot 
tends to support the equal multi-interaction between particles and the 
formation of the quadron, rather than conventional biexciton. The 
question of preferability of the system to form either biexciton or 
quadron in the quantum dots has never been raised in literature so far 
and needs more study. 

Fig. 3. The binding energies of exciton, quadron and biexciton as function of 
magnetic fields for parameters set 1 (see in the text). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 4. The binding energy of exciton, biexciton, and quadron as function of 
ratio ωe/ωh with B = 0 T, ωe = 49 ​ meV, m∗

e = 0.067, m∗
h = 0.25. (For inter

pretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 5. The binding energy of exciton, biexciton, and quadron as function of 
ratio ωe/ωh with B = 0 T, ωe = 49 ​ meV,m∗

e = m∗
h = 0.067. (For interpretation 

of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 6. The quadron and biexciton binding energy as function of ratio ωe/ωh 
with ωe = 49 ​ meV,m∗

e = m∗
h = 0.067, at B = 0 T and B = 8 T. (For interpre

tation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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4. Conclusion 

In conclusion, in this paper the properties of excitons, biexcitons and 
quadrons in small InAs/GaAs self-assembled quantum dots with strong 
lateral parabolic confinement have been studied. Our theoretical cal
culations by using Hartree-Fock-Roothan method show that the biexci
ton binding energy in the ground states is always negative for all 
variation range of magnetic field and of quantum dots parameters, 
indicating that the biexciton in the ground state is antibinding, which 
agree very well with the experimental data and the previous results by 
other authors. The dependence of the binding energies as functions of 
electron-to-hole confinement ratio for a wider range of quantum dots 
has been showed. The results can be useful for experimental checks for 
various quantum dots with different material parameters. Finally, we 
introduced the first time quadron, the new excitation of two electrons 
and two holes with their pair interaction taken into account equally. Per 
our results while the binding energy of biexciton is always negative, the 
binding energy of quadron is positive, and both are very sensitive to the 
quantum dots parameters. The relationship between the binding en
ergies of the exciton, biexciton and quadron has been established. Our 
results suggest that the strong lateral confinement of the parabolic 
quantum dot preferably supports the formation of a quadron rather than 
a biexciton. These findings might serve as a suggestion for experimental 
detection of quadrons in quantum dots. 
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