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Impact of magnetic dopants on magnetic and topological phases in magnetic topological insulators
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A topological insulator doped with random magnetic impurities is studied. The system is modeled by the
Kane-Mele model with a random spin exchange between conduction electrons and magnetic dopants. The
dynamical mean-field theory for disordered systems is used to investigate the electron dynamics. The magnetic
long-range order and the topological invariant are calculated within the mean-field theory. They reveal rich
phases, where different magnetic long-range orders such as antiferromagnetic or ferromagnetic one can exist in
the metallic or insulating phases, depending on electron and magnetic impurity fillings. It is found that insulator
only occurs at electron half filling, quarter filling and when electron filling is equal to magnetic impurity filling.
However, nontrivial topology is observed only in half-filling antiferromagnetic insulator and quarter-filling
ferromagnetic insulator. At electron half filling, the spin Hall conductance is quantized and it is robust against
magnetic doping, while at electron quarter filling, magnetic dopants drive the ground state from ferromagnetic
topological insulator to ferromagnetic metal. The quantum anomalous Hall effect is observed only at electron
quarter filling and dense magnetic doping.

DOI: 10.1103/PhysRevB.102.205124

I. INTRODUCTION

Magnetic topological quantum materials are a relatively
new type of materials, where topologically nontrivial electron
properties coexist with magnetic ordering [1–5]. These novel
materials include magnetic topological insulators (MTIs),
magnetic Weyl semimetals, magnetic Dirac semimetals, etc.
Experiments observed a remarkable quantization of the
anomalous Hall conductance in a number of materials, for
instance (Bi, Sb)2(Se, Te)3 doped with magnetic impurities
[3,4]. In these materials, the origin of the quantum anomalous
Hall (QAH) effect relies on the spin-orbital coupling (SOC)
and magnetism [6–11]. Upon magnetic impurity doping, the
spin exchange (SE) between conduction electrons and mag-
netic dopants induces a spontaneous magnetization at low
temperature. The macroscopic magnetization could act on
conduction electrons as the magnetic field in the anomalous
Hall effect. The SOC keeps the topologically nontrivial band
structure in the magnetic state. Without the topologically non-
trivial band structure, the magnetic impurity doping alone
could not cause the QAH effect. Indeed, in the dilute mag-
netic semiconductors (DMSs), magnetic dopants also induce
a magnetic ordering, but the anomalous Hall conductance
is not quantized, because the band structure of the DMSs
is topologically trivial [12]. The interplay between topology
and electron correlations has received a lot of research atten-
tion [13,14]. Electron correlations can induce a long range
ordering, for instance magnetism, and it can coexist with a
nontrivial topology [15–19].

Although the QAH effect emerges as a result of the in-
terplay between the SOC and magnetism, its occurrence also
depends on the filling level of conduction electrons and the
concentration of magnetic dopants [7–11]. The dopings of
conduction electrons and magnetic impurities can drive both

the topological and magnetic phase transitions [7–11]. In
particular, first principle calculations showed successive topo-
logical and magnetic phase transitions from quantum spin
Hall (QSH) to QAH state, and then to ferromagnetic state,
when the concentration of magnetic impurities increases [9].
In these phase transitions magnetic dopants alter the SOC and
the SE strengths, and the successive topological and magnetic
phases are established as a result of the interplay between
the SOC and the SE [9]. Moreover, when magnetic impu-
rities are doped, disorder and inhomogeneity are inevitably
introduced. As a consequence, the SE between conduction
electrons and magnetic impurities is a random variable. Disor-
der of magnetic dopants can also induce random deviations of
the magnetic moments from the macroscopic magnetization.
Therefore the induced magnetic ordering at low temperature
also depends on the concentration and the distribution of
magnetic dopants. In many materials such as the DMSs or the
colossal magnetoresistant materials, the doping of magnetic
impurities is crucially important in determining the electronic
and magnetic properties [20,21]. While the impact of electron
and magnetic dopings on the magnetic and topological prop-
erties of the MTIs was experimentally studied, it has received
less theoretical attention.

In this work, we study the impact of magnetic dopants on
the magnetic and topological phases existing in the MTIs. We
will construct a minimal model for MTIs. It should include at
least two terms: the SOC which is responsible for the topolog-
ically nontrivial band structure and the SE between magnetic
dopants and conduction electrons that could induce a mag-
netic ordering at low temperature. The QAH effect emerges as
a result of the interplay between the SOC and the SE [3,4,11].
In contrast to the first principle calculations, where the SOC
and the SE are altered by magnetic dopants [9], in the minimal
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model the SOC and the SE are fixed upon magnetic doping.
This allows us to study the direct impact of magnetic dopants
on the magnetic and topological properties. Our work relies
on the minimal model proposed in the previous study [11].
The model is based on a combination of the Kane-Mele model
[22] and the SE between conduction electrons and magnetic
dopants. It is essentially the double-exchange (DE) model
with a SOC [21,23]. We previously found that the proposed
model exhibits various magnetic insulating states, which oc-
cur at electron half and quarter (or three quarters) fillings,
and they are topologically nontrivial at appropriate values of
the SE [11]. However, the previous studies assumed that the
magnetic impurities are present at every lattice site [3,4,11].
The doping of magnetic impurities away from the full filling
and the random distribution of magnetic dopants were not
previously considered. In this work, we study the impact of
magnetic doping on the magnetic and topological properties,
taking into account disorder and inhomogeneity introduced by
magnetic dopants. The dynamical mean-field theory (DMFT)
for disordered systems is used to study the proposed model
[24–28]. Originally, the DMFT was introduced in order to
correctly treat local electron correlations in infinite dimen-
sional systems [29]. It has widely been used to study strong
electron correlations [30]. Especially, the DMFT has success-
fully treated the SE in the DE-based models [31–38]. By
adopting the DMFT for disordered systems, we calculate both
the spontaneous magnetization and the topological invariant
self-consistently. They reveal rich phase diagrams, depending
on electron and magnetic dopings. We find that the insulating
state only occurs at electron (hole) half, quarter fillings, and
at electron filling equaled to the concentration of magnetic
dopants. However, the insulating state is topologically non-
trivial only at electron (hole) half and quarter fillings. At
electron half filling, the QSH effect is observed and it is robust
against the magnetic impurity doping, while at electron quar-
ter filling, the magnetic doping away from full magnetic filling
suppresses the observed QAH effect. These findings reveal
that magnetic dopants impact differently on the topological
properties of the MTIs depending on electron filling.

The present paper is organized as follows. In Sec. II,
we describe the minimum model for MTIs and the DMFT
for treating the SE and disorder introduced by magnetic
dopants. The numerical results are presented in Sec. III. Fi-
nally, Sec. IV is the conclusion of the present work.

II. MODEL AND DYNAMICAL MEAN-FIELD THEORY

We consider a topological insulator doped with magnetic
impurities. For the sake of simplicity, the topological insulator
is modeled by the Kane-Mele Hamiltonian [22]. The Kane-
Mele model consists of a nearest-neighbor hopping and an
intrinsic SOC. In addition, magnetic impurities are randomly
distributed over the lattice. They are locally coupled with
conduction electrons via a SE. The Hamiltonian describing
the model reads

H = −t
∑

〈i, j〉,σ
c†

iσ c jσ + iλ
∑

〈〈i, j〉〉,s,s′
νi jc

†
isσ

z
ss′c js′

−
∑
i,ss′

JiSic
†
isσss′cis′ , (1)

A B A B

FIG. 1. The sign structure νi j of the SOC term in the honeycomb
lattice.

where c†
iσ (ciσ ) is the creation (annihilation) operator for elec-

tron with spin σ at site i of a honeycomb lattice. 〈i, j〉 and
〈〈i, j〉〉 denote the nearest-neighbor and next-nearest-neighbor
lattice sites, respectively. t is the hopping parameter for the
nearest-neighbor sites, and λ is the strength of the intrinsic
SOC. The sign νi j = ±1 depends on the hopping direction, as
shown in Fig. 1. σ = (σ x, σ y, σ z ) are the Pauli matrices. The
honeycomb lattice is chosen, since the SOC in this lattice in-
duces a topological insulating state [22]. Si is spin of magnetic
impurity at lattice site i. We also treat it classically, as widely
used in the studies of materials doped with magnetic impu-
rities [21,31–38]. Indeed, the magnetic moment of magnetic
dopants is often big, for instance doped Mn ions in topologi-
cal insulator Bi2−xMnxTe3 have the magnetic moment ∼4μB

[39]. This classical spin consideration excludes any possibility
of the Kondo effect [40–43]. In fact, no any signature of the
Kondo effect was observed in the MTIs. Ji is the strength of
SE at lattice site i. We consider only the substitutional doping
of magnetic impurities, and avoid any interstitial one. Indeed,
first-principle calculations show the substitutional doping is
energetically more favorable than the interstitial one [44]. In
contrast to the previous studies [3,4,11], in this work magnetic
impurities are randomly doped, and the SE is valid only on
the lattice sites, where magnetic impurities are located. We
consider a binary distribution of magnetic dopants

P(Ji ) = (1 − x)δ(Ji ) + xδ(Ji − J ), (2)

where x is the concentration of magnetic dopants. Basically,
only x fraction of lattice sites has the local SE between con-
duction electrons and magnetic dopants. The parameter x can
also be interpreted as the disorder measurement of magnetic
dopants. However, both x = 0 and x = 1 correspond to the
nondisordered cases. When the magnetic impurities are absent
(x = 0), the proposed model returns to the Kane-Mele model
[22]. The SOC causes a band gap at half filling, and the
insulating state has an integer spin Chern number [22]. This
yields the QSH effect. In the opposite limit, x = 1, magnetic
impurities are present at every lattice site. Hamiltonian in
Eq. (1) essentially describes the interplay between the SOC
and the SE [11]. It exhibits a coexistence of the QSH effect
and antiferromagnetism at electron half filling and a ferro-
magnetic topological insulator at electron (hole) quarter filling
[11]. Between these two limiting cases, 0 < x < 1, magnetic
dopants are randomly distributed. As we will see later, the
impact of magnetic dopants on the topological and magnetic
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properties of the ground state depends on the electron filling.
For instance, at half electron filling, the ground state topology
is robust against the magnetic doping, whereas at quarter elec-
tron filling, the magnetic doping suppresses it. For classical
impurity spin, the sign of the SE is irrelevant. Without loss of
generality, we adopt the ferromagnetic sign J > 0.

We divide the honeycomb lattice into two penetrating sub-
lattices A and B, as shown in Fig. 1. Then we denote aIσ (bIσ )
being the annihilation operator of electron at unit cell I for the
sublattice A (B). We introduce a four-dimensional spinor

�I =

⎛
⎜⎝

aI↑
bI↑
aI↓
bI↓

⎞
⎟⎠.

For a fixed configuration of magnetic impurities, we introduce
the Green function

GIJ (iωn, Ji ) = −
∫ β

0
dτ e−iωnτ 〈T �I (τ )�†

J 〉, (3)

where ωn is the Matsubara frequency and β = 1/T is the
inverse temperature. Disorder of magnetic dopants breaks the
lattice translation invariance. However, the lattice translation
invariance of the Green function is restored when the Green-
function averaging over the magnetic impurity distribution is
made. We obtain the averaged Green function in the momen-
tum space

G(k, iωn) =
∑
I,J

e−ik·(RI −RJ )GIJ (iωn, Ji ),

where the bar denotes the average over the magnetic impurity
distribution. The averaged Green function obeys the Dyson
equation

G(k, iωn) = [z − H0(k) − �(k, iωn)]−1,

where �(k, iωn) is the self energy, and H0(k) is the nonin-
teracting and nondisordered Bloch Hamiltonian. The Bloch
Hamiltonian reads

H0(k) =
(

h↑(k) 0
0 h↓(k)

)
, (4)

where

hσ (k) =
(

σλξk −tγk
−tγ ∗

k −σλξk

)
,

and γk = ∑
δ eik·rδ , ξk = i

∑
η νηeik·rη . Here δ and η denote

the nearest-neighbor and next-nearest-neighbor sites of a
given site in the honeycomb lattice, respectively. The self
energy �(k, iωn) includes all effects of interaction and dis-
order in an average manner. It renormalizes the dynamics of
noninteracting and nondisordered conduction electrons.

We calculate the electron Green function by means of
the DMFT. Here we will use the arithmetic average ver-
sion of the DMFT for disordered systems [24–28]. Since
the direct Coulomb interaction is absent in the considered
model, the arithmetic average version of the DMFT is in-
deed the coherent potential approximation (CPA) [27,28].
In addition, there is also a geometric average version of
the DMFT that is usually called the typical medium theory
[24–28]. The typical medium theory appropriately describes

the Anderson localization in disordered systems. In this work,
we focus on the effect of magnetic dopants on the mag-
netic and topological phases of MTIs, where the Anderson
localization is unlikely [6–10]. Apparently, the Anderson lo-
calization is induced by nonmagnetic diagonal disorder or by
off-diagonal disorder of conduction electron hopping [45,46].
Such disorders are absent in the proposed Hamiltonian in
Eq. (1). Within the DMFT, the self energy depends only
on frequency �(k, iωn) → �(iωn). The DMFT neglects non-
local correlations at finite dimensions. In the honeycomb
lattice, the DMFT overestimates the critical value of the
semimetal-insulator transition, but it is still capable to detect
the insulating or magnetic states [47–50]. Due to the local na-
ture, the DMFT does not mix the different spin and sublattice
sectors of the self energy, therefore �(iωn) is a 4 × 4 diagonal
matrix. The self energy obeys the Dyson equation

Gaσ (iωn) = Gaσ (iωn) + Gaσ (iωn)aσ (iωn)Gaσ (iωn), (5)

where a is the sublattice notation (a = A, B), and Gaσ (iωn) =∑
k Gaσ (k, iωn)/N is the local averaged Green function (N is

the number of sublattice sites). The Green function Gaσ (iωn)
actually represents the effective dynamical mean field of
conduction electrons. Within the DMFT, the self energy is de-
termined from an effective single-site action, where Gaσ (iωn)
serves as the bare noninteracting Green function. The action
of the effective single site of sublattice a with a fixed SE Ja is

Sa(Ja) = −
∑

s

∫ β

0

∫ β

0
dτdτ ′�†

as(τ )G−1
as (τ − τ ′)�as(τ

′)

−
∑
αss′

∫ β

0
dτJaSα (τ )�†

as(τ )σα
ss′�as′ (τ ). (6)

For classical impurity spin S, this effective single-site action
can exactly be solved [11]. Since the direct electron-electron
interaction is absent in the considered model, the local self
energy does not come from a many-body impurity solver.
Equation (6) just describes an one-particle action. Thus, the
presented DMFT is indeed the CPA [27,28]. After solving
the effective single-site problem, we obtain the local Green
function Gaσ (iωn, Ja) for a fixed SE Ja. The averaged local
Green function can be calculated by

Gaσ (iωn) =
∫

dJaP(Ja)Gaσ (iωn, Ja)

= (1 − x)Gaσ (iωn, Ja = 0) + xGaσ (iωn, Ja = J ).

(7)

Then, the self energy is determined by the Dyson equation (5)
again. So far, we have obtained the self consistent equations
of the DMFT. They can be solved by simple iterations. After
solving the DMFT equations, we obtain the self energy and
the averaged Green function. The spontaneous magnetizations
of sublattice A and B are defined as

mA = 1

2N

∑
I,σ

σ 〈a†
Iσ aIσ 〉,

mB = 1

2N

∑
I,σ

σ 〈b†
Iσ bIσ 〉,
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where σ = ±1. When mA = ±mB 
= 0 the ground state is
ferromagnetic or antiferromagnetic, respectively. Due to the
local nature, the DMFT does not mix different spin sectors
of the Green function, hence the magnetization is not non-
coplanar. The topological property can be determined through
the disorder-average transport [51] or by the topological Bott
index [52,53]. The Bott index is defined in the real space with
a realized configuration of random magnetic impurities. How-
ever, calculating the Bott index requires extensive numerical
calculations. Instead of calculating the Bott index, here we
will use the disorder-average approach proposed in Ref. [51].
Within this approach the self energy of the disorder-average
Green function renormalizes the noninteracting and nondisor-
dered Bloch Hamiltonian. Therefore, the renormalized Bloch
Hamiltonian Heff(k) = H0(k) + �(i0) = −[G(k, i0)]−1 de-
termines the topological invariant, like in the nondisor-
dered interacting case [54]. The topological invariant is
determined by

Cν = 1

2π

∫
d2kF ν

xy, (8)

where F ν
i j = ∂iAν

j − ∂ jAν
i , Aν

i = i〈kν|∂ki |kν〉, and |kν〉 is the
orthonormalized eigenstate of matrix Heff(k), corresponding
to the eigenvalue Eν (k). This topological invariant is actually
the Chern number of the effective Hamiltonian, where its
renormalization is given by disorder and interaction in the
mean-field approximation. For weak disorder the disorder-
average approach gives consistent results with the Bott index
approach [55]. In fact, the disorder-average approach has
widely been used in determining the ground state topology
[55–59]. In numerical calculations one can use the efficient
method of discretization of the Brillouin zone to calculate the
Chern number in Eq. (8) [60].

III. NUMERICAL RESULTS

We numerically solve the DMFT equations by iteration
for a given magnetic doping x. The numerical calculations
are performed at fixed fictitious temperature T = 0.01, which
serves as the cell size of the Matsubara frequency mesh. The
emergence of magnetism and topology occurs in insulator,
therefore we focus on detecting the insulating state. It is
detected by a plateau in the curve n(μ), the dependence of
electron filling on the chemical potential [11]. Actually, the
plateau reflects the band gap as well as the vanishing of the
charge compressibility. They are the signals of the insulating
stability.

First, we consider the case of dilute magnetic doping (x <

0.5). In Fig. 2, we plot the dependence of electron filling n
and the sublattice magnetizations mA, mB on the chemical
potential μ for a small value x. It shows that the plateau can
occur at fillings n = 1, n = x and n = 2 − x. At electron half
filling n = 1, the system is transformed from an insulating
state to a metallic state when the SE increases. When the SE
vanishes (J = 0), the SOC opens a band gap in the electron
structure [22]. A weak SE does not change the insulating state,
however, it reduces the band gap. As a consequence, at an
appropriate value of the SE, the band gap closes, and ground
state becomes metallic. At the same time, the SE also drives
a magnetic phase transition [21,34]. At electron half filling, it

FIG. 2. The electron filling n and the sublattice magnetization
mA, mB via the chemical potential μ for different values of the SE
at magnetic doping x = 0.3 and SOC λ = 0.5. For guiding the eye
electron fillings n = 0.3, 1.0, and 1.7 are indicated by the horizontal
dotted lines.

can induce the antiferromagnetic (AF) long range order with
mA = −mB 
= 0 at low temperature [21,34]. In a mean-field
picture, the AF magnetization can act on conduction electrons
like a staggered magnetic field, and this field reduces the gap
opened by the SOC. Indeed, when a staggered magnetic field
is present, the energy spectra of conduction electrons become

E (k) = ±
√

t2|γk|2 + (λξk − h)2, (9)

where h is the strength of the staggered magnetic field. Actu-
ally, in the mean-field approximation h ∼ J . At the corners
of the Brillouin zone K = 2π (1/3,±1/3

√
3), γk vanishes,

whereas ξk remains finite. When h = λξK, the gap closes.
However, in contrast to the nondisordered magnetic case (x =
1), at finite magnetic doping (x < 1) strong SE does not open
the band gap again, as can be seen in Fig. 2. At strong SE, in-
stead of antiferromagnetic insulator (AFI), antiferromagnetic
metal (AFM) is established. This is an effect of magnetic
impurity doping. Upon the magnetic doping, some lattice
sites are free of the magnetic impurity occupation. Therefore,
at these sites, conduction electrons are also free of the SE
coupling. As a consequence, these conduction electrons give a
contribution to the electrical conductivity. However, this effect
occurs only for strong SE, which aligns electron spins and
magnetic moments in order to optimize the electron kinetic
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FIG. 3. The electron filling n and the sublattice magnetization
mA, mB via the chemical potential μ for different values of the SE
at magnetic doping x = 0.9 and SOC λ = 0.5. For guiding the eye
electron fillings n = 0.5, 0.9, 1, 1.1, and 1.5 are indicated by the
horizontal dotted lines.

energy [23]. As can be seen in Fig. 2, when the SE is strong,
additional plateaus appear in the curve n(μ) at n = x and
n = 2 − x. Actually, n = x and n = 2 − x are equivalent due
to the particle-hole symmetry. In this case, the concentrations
of conduction electrons (holes) and of magnetic impurities
are the same. As we will see later, depending on magnetic
doping x and the SE strength, the ground state at n = x (or
n = 2 − x) may become magnetic. In particular, when the SE
is strong and the magnetic doping closes to x = 1, the ground
state at n = x and n = 2 − x is AFI. In the limit x → 1, these
AFI states at n = x and n = 2 − x merge into the single AFI
at electron half filling n = 1. As a consequence, at filling
n = x = 1, AFI occurs again when the SE is strong. It can also
be interpreted that the AFI at half filling in the full magnetic
case (x = 1) is actually split into two AFI states in the electron
and hole domains upon doping of magnetic impurities. This
makes the ground state no longer insulator at electron half
filling when magnetic impurities are doped (x < 1).

In dense magnetic doping (x � 0.8), additional plateaus in
the curve of n(μ) are observed at n = 0.5 and 1.5 and strong
SE, as can be seen in Fig. 3. Electron fillings n = 0.5 and
n = 1.5 are equivalent due to the particle-hole symmetry. At
electron quarter filling the insulating state is ferromagnetic be-
cause mA = mB 
= 0. This ferromagnetic insulator (FI) is also
established in the nondisordered magnetic case (x = 1) [11].

FIG. 4. Phase diagram at electron half filling n = 1 (λ =
0.5). Abbreviations PTI, AFTI, and AFM denote paramagnetic
topological insulator, antiferromagnetic topological insulator, and
antiferromagnetic metal, respectively.

Figure 3 also shows discontinuities of the electron filling n and
the sublattice magnetizations mA, mB at certain values of the
chemical potential. At these values of the chemical potential,
the electron filling is uncertain, and actually the ground state
is spontaneously separated into two phases with the electron
fillings corresponding to the extremes of the discontinuity in
the curve n(μ). This constitutes a phase separation [21,32].
The phase separation is not a disorder effect, because it also
occurs in the nondisordered magnetic case x = 1 [11]. It
occurs at the phase boundary between different symmetry
phases, such as the magnetic and paramagnetic phases. In the
magnetic phase, the electron ground-state energy is optimized
by aligning electron spins and magnetic moments through
the SE coupling, while in the paramagnetic phase electron
spins are not aligned with the magnetic moments, and the
optimization of the ground-state energy via the SE coupling is
not operative [21,32]. As a result of the competition of these
two phases, a magnetic pattern is energetically formed at the
phase boundary. The phase separation often occurs in the DE
model upon electron doping [21,32].

So far, we have observed the insulating state at electron
(hole) fillings n = 1, n = 0.5, and n = x. However, the insu-
lating state at quarter filling (n = 0.5) occurs only when the
doping of magnetic impurities closes to x = 1. In the case of
dilute magnetic doping, it is absent. Electron fillings n = 1
and n = 0.5, where insulator is stable, reflect the number of
occupied bands in the proposed model. At half filling n = 1,
the insulating state occurs when two lowest bands are fully
occupied, whereas at quarter filling n = 0.5, the full occupa-
tion of the lowest band yields the insulating state. For other
models, where the number of energy bands is larger, the filling
condition for the insulating stability may change [62].

A. Half filling n = 1

In Fig. 4, we plot the phase diagram for a fixed SOC at
electron half filling n = 1. It shows when the SE is weak the
insulating state exists regardless of magnetic impurity doping.
This insulator is paramagnetic because of mA = mB = 0. We
have also calculated the Chern number defined in Eq. (8).
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It turns out this paramagnetic insulator (PI) is topological
with the spin Chern number C = 1. Actually, it adiabatically
connects to the Z2 topological insulator in the noninteracting
and nondisordered case x = 0 [22]. The topological invariant
is robust against the SE coupling until the SE closes the band
gap. On the other hand, the SE coupling aligns electron spins
with the magnetic moments in order to optimize the ground
state energy [21,23]. When the SE strength is larger a certain
value, AF ordering is established at low temperature. At elec-
tron half filling the ground state is insulating, hence there are
no mediated itinerant electrons that can generate the magnetic
long-range order by the DE mechanism [21,23]. However, the
spontaneous magnetization in the insulating states can occur
due to the direct coupling between the magnetic moments and
electron spins through the van Vleck mechanism [6]. We find
that the AFI at half filling is also the topological insulator
with the spin Chern number C = 1. Actually, the SE coupling
drives only the magnetic phase transition from paramagnetic
to antiferromagnetic state. Across this phase transition the
topological invariant does not change until the band gap is
closed by the SE. The magnetic phase transition is quite
similar to the one in the nondisordered magnetic case (x = 1)
[11]. With further increase of the SE coupling, the band gap is
closed and the ground state is AFM, except for x = 1, where
the ground state is AFI. As we have previously discussed, in
the nondisordered magnetic case (x = 1) the AFI at strong SE
adiabatically connects to the insulating states at equal filling
n = x and n = 2 − x, when x → 1. Therefore the ground state
at magnetic dopings x < 1 and x = 1 has different origins.
Figure 4 also shows that the nontrivial topology of the AF
ground state at electron half filling is robust against magnetic
doping. The topological invariant remains the same regardless
of magnetic doping x. This indicates that the QSH effect is
protected even in the presence of magnetic dopant disorder as
long as the band gap is still open. Some MTI materials doped
with magnetic impurities favor the AF state, for instance,
first-principle calculations show an AF state in Bi2Se3 doped
with Fe ions [44]. However, it is still a challenge to find the
coexistence of the QSH effect and AF ordering in the MTIs
doped with magnetic impurities.

B. Quarter filling n = 0.5

In Fig. 5, we plot the phase diagram at electron quarter
filling n = 0.5. The insulating state exists only at strong SE
coupling and large values of magnetic impurity doping (x �
0.8). At small values of x, only metallic state exists. The
insulating state is ferromagnetic, since strong SE coupling
energetically favors the parallel alignment of electron spins
like in the DE mechanism [21,32,34]. In the ferromagnetic
insulator (FI), only the lowest band is fully occupied, and
three other bands are empty. It turns out that the FI is topo-
logical since the Chern number calculated by Eq. (8) gives
C = 1 for the lowest band. This yields the QAH effect. First
principle calculations for real material Bi2Se3 doped with Cr
ions also reveal the QAH effect [6,7]. The phase diagram
plotted in Fig. 5 also shows that the magnetic doping can drive
the ground state from topological FI to nontopological ferro-
magnetic metal (FM). However, this topological phase tran-
sition is actually an insulator-metal transition. At the phase

FIG. 5. Phase diagram at electron quarter filling n = 0.5 (λ =
0.5). Abbreviations PM, FM, FTI denote paramagnetic metal,
ferromagnetic metal, and ferromagnetic topological insulator,
respectively.

boundary, the gap closes. However, a further decrease of mag-
netic doping does not open the gap again, because electron
filling is fixed n = 0.5 and the chemical potential lies within
the energy band. In comparison with the magnetic topological
phase transition at electron half filling, the phase transition
at electron quarter filling is quite different. At electron quar-
ter filling, the spontaneous ferromagnetic magnetization is
kept across the insulator-metal transition, while the nontriv-
ial topological invariant is determined in the insulating side
only. Doping of magnetic impurities away from full filling
suppresses the band gap, hence simultaneously destroys the
topological invariant. The anomalous Hall effect was also sug-
gested to exist in conduction ferromagnets, however it cannot
be quantized in metals [61].

Figure 5 also shows a magnetic topological phase transition
driven by SE at a fixed magnetic doping. When the SE is
weak, the ground state is paramagnetic metal (PM) although
the SOC is present. Actually, the SOC opens a band gap
only at electron half filling. Therefore at quarter filling, the
SOC does not affect the metallic properties. Both the metal-
insulator and the magnetic transitions are driven solely by the
SE. However, the SOC causes nontrivial topological invariants
of two lowest bands. One lowest band has the Chern number
C = 1, and the other one has C = −1. Since the two lowest
bands are characterized by opposite spins, this yields the QSH
effect. When the two lowest bands are separated by a gap, the
ground state is insulator at electron quarter filling. Since its
topological invariant is integer, the QAH effect occurs. The
separation of two lowest bands at electron quarter filling also
indicates the fully ferromagnetic state. This can be achieved
by strong SE [11]. Therefore the QAH effect occurs only at the
FI state. However, the SE coupling separates two lowest bands
only at dense magnetic doping. At dilute magnetic doping, the
SE is valid only at a small number of lattice sites, and in an
average manner, it cannot open a band gap at electron quarter
filling. In real MTI materials, the QAH effect was observed at
certain range of magnetic impurity concentration [6–10].

C. Equal filling n = x

In this filling case, the concentration of electrons (holes) is
equal to the concentration of magnetic dopants. The extreme
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FIG. 6. Phase diagram at equal filling n = x = 0.3. Abbrevia-
tions PM, PI, FM, and AFI denote paramagnetic metal, paramagnetic
insulator, ferromagnetic metal, and antiferromagnetic insulator, re-
spectively. All insulating phases are topologically trivial.

case n = x = 1 is nondisorder and was previously studied
[11]. In Fig. 6, we plot the phase diagram at a fixed equal
filling n = x < 1. It exhibits different magnetic states depend-
ing on the SOC and the SE. As we have previously discussed,
the SOC opens a band gap only at electron half filling n = 1
regardless of the SOC strength. When filling n = x < 1, the
valence band is partially occupied, therefore the ground state
is metal. Weak SE does not change this paramagnetic metal
(PM). However, the SE polarizes electron spins and shifts the
energy bands of opposite spins in opposite directions. This
effect of the SE looks like the one of an external magnetic
field. Actually, in a mean-field approximation, the SE can be
treated as a magnetic field. As a consequence, depending on
the relation between the SOC and the SE, the ground state
may become FM as can be seen in Fig. 6 (see also Fig. 2).
This phase transition is similar to the one obtained in the
interplay between the SOC and external magnetic field [62].
With further increasing SE, a band gap can be opened by the
SE, and the ground state becomes paramagnetic insulator (PI).
Actually, Fig. 2 also shows when the SE increases, the ferro-
magnetic state occurs not at a fixed electron filling. It moves
toward the domain of lower electron filling. Therefore, when
the magnetic doping x = n is fixed, the FM state only occurs
in a finite range of the SE. When the SE is strong enough,
the ground state is AFI. Indeed, upon magnetic doping, the
AFI at electron half filling is split into two AFIs at fillings
n = x and n = 2 − x, as we have previously discussed. In
Fig. 7, one can also see the impact of magnetic doping on
the magnetic states at equal filling n = x. The FM state exists
only in a finite range of x, because the band shift due to the
SE lowers the energy band of one spin component, and hence
it can maintain the FM state only at certain electron filling
n. Since n = x, as x varies, the electron filling n varies too.
Therefore, the phases presented in Fig. 7 have varying electron
filling, from almost empty filling to almost half filling. The
insulating state only exists when the SE is strong enough.
A strong SE aligns spins of conduction electrons and mag-
netic moments of impurities. Since the numbers of conduction
electrons and of magnetic dopants are the same, there are no
free conduction electrons. As a consequence, the insulating
state is established. In the domain of dilute magnetic doping,

FIG. 7. Phase diagram at equal filling n = x (λ = 0.5). Abbrevi-
ations PM, PI, FM, AFM, and AFI denote paramagnetic metal, para-
magnetic insulator, ferromagnetic metal, antiferromagnetic metal,
and antiferromagnetic insulator, respectively. All insulating phases
are topologically trivial.

the insulator is paramagnetic, while in the opposite domain,
when the magnetic doping is dense, it is antiferromagnetic.
This yields a magnetic phase transition driven by magnetic
dopants. In the case of dense magnetic doping, the ground-
state energy is optimized when the AF state is formed like in
the limit case n = x = 1. However, in the dilute doping case,
the aligning orientation of electron spins at each lattice site is
random. Therefore the macroscopic magnetization vanishes
and the PI is established. We want to emphasize that the
magnetic phase transition driven by magnetic dopants occurs
not at a fixed electron filling n, but at the constraint n = x. In
the insulating states at n = x, the Chern number calculated by
Eq. (8) vanishes. Although magnetic dopants can maintain the
insulating states at equal filling n = x, and they can drive the
magnetic phase transition from PI to AFI, neither QAH nor
QSH effect occurs. Nevertheless, the phase diagram at equal
filling n = x shows rich phase diagrams. Despite the fact that
the SOC does not cause any topologically nontrivial insulator
at n = x, its interplay with magnetic dopants gives rise to rich
magnetic phases.

IV. CONCLUSION

We have studied the impact of magnetic dopants on the
magnetic and topological phases which could occur in MTIs.
When magnetic impurities are doped into MTIs, they are
coupled with conduction electrons via the SE, and simulta-
neously introduce disorder and inhomogeneity. The interplay
between the random SE and the SOC causes rich magnetic
and topological phases in MTIs. However, nontrivial topology
of the insulating ground state exists only at electron (hole)
half and quarter fillings. At electron half filling the AFI is
stable between the PI and AFM. It exhibits the QSH effect
that is robust against the magnetic impurity doping. How-
ever, disorder and inhomogeneity which are introduced by
magnetic dopants induce the AFM at strong SE, while in the
nondisordered case, the AFI is instead established. Actually,
the AFI at electron half filling is split into two AFIs in the
electron and hole domains upon magnetic doping. Although
the AFI is topologically nontrivial at electron half filling,
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its split AFI states upon magnetic doping are topologically
trivial. At electron quarter filling, the QAH effect could occur
at the strong SE and dense magnetic doping. However, the
magnetic doping also drives the ground state from FI to FM,
when it decreases, and therefore the QAH effect is suppressed
at its appropriate value. These findings reveal that magnetic
dopants impact differently on the topological properties of the
MTIs, depending on electron filling. At electron half filling
the topological invariant is robust against magnetic dopants,
while at electron quarter filling it is suppressed by magnetic
doping. In addition to the electron half and quarter fillings,
we also observed the insulating ground states at equal fillings
(i.e., the concentration of electrons (holes) is equal to the
concentration of magnetic dopants). However, the insulating
states are topologically trivial. In comparison with the nondis-
ordered case, the phase diagram becomes very rich. Disorder
and inhomogeneity cause different magnetic orderings in both
insulating and metallic states.

Despite the explicit presence of magnetic impurities, the
proposed model is also appropriate for intrinsic MTIs, where
instead of magnetic impurities, the d-band correlated elec-

trons establish magnetic long-range ordering [63,64]. The
intrinsic MTIs were recently discovered and have attracted in-
tensive attention [63,64]. Actually, in the intrinsic MTIs only
the spin degree of freedom of the d-band correlated electrons
is relevant for establishing magnetism, and the charge degree
of freedom can be discarded. The SE between the d-band
correlated electrons and conduction electrons may interplay
with the SOC of conduction electrons and this emerges the
topologically nontrivial magnetic ground state [11]. We leave
this problem for further studies.
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