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Abstract. In 1988 Popov and Fedotov (PF) proposed a new method for spin Hamiltonians
free of the local constraint problem for spin S = 1/2 and S = 1. Later, this approach has been
extended for arbitrary spin. PF formalism has been used to study magnetic orders in some spin
S = 1/2 and S = 1 Heisenberg models. In this report we show how to study the low temperature
phases of quantum Heisenberg models with arbitrary spin by means of PF method. We work out
the analytical expressions needed for studying ordered phases of Heisenberg models in one-loop
approximation.

1. Introduction

The study of quantum magnetic systems is a field of active both theoretical and experimental
research in recent years. From the theoretical viewpoint, the quantum spins pose a serious
problem connected with the fact that spin operators satisfy the commutation relations of the
angular algebra so they are neither Fermi nor Bose operators [1]. This leads to the absence of
a Wick theorem directly for spin operators, which is a basic of the powerful analytical methods
such as Feynman diagramatic expansions and functional integrations. In order to overcome this
problem different representations of spins such as Fermi or Bose canonical operators have been
proposed [1]. However, the representations of spin a as combination of canonical operators lead
to the unphysical states because the dimensionality of Fock space for canonical operators always
is higher than that of the spin space. For excluding the unphysical states from the consideration
one introduces some constraint requirement which has to be satisfied on every site containing
the spins. This local constraint cannot be exactly treated. For simplicity one relaxes the local
constraint on each site by a so-called global one, where the constraint is fulfilled only in the
average over all sites [2]. It is not sure that such an approximation is uncontrolled.
In 1988, Popov and Fedotov (PF) proposed a new method for spin systems with spin quantum
number S = 1/2 and S = 1 by representing spin operators as a combination of Fermi operators
with imaginary chemical potential (semi-fermionic representation) [3]. The PF formulation
provides a rigorous treatment of the local constraint. Recently, the PF fermionization trick
has been generalized for strongly correlated systems [4, 5]. The PF idea was also successfully
been developed in combination with bold diagrammatic Monte - Carlo simulation to investigate
frustrated quantum systems [6]. For specific systems, the PF procedure has been effectively
applied to the negative U Hubbard model [7], Kondo lattice Hamiltonian [8], spin glass
systems [9]... The PF approach has also been used to investigate ordered phases of Heisenberg
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Hamiltonians on various lattice structures for S = 1/2 [10 -13] and for S = 1 [14]. Later, the
PF technique is extended for arbitrary spin quantum number s by Veits et al with introducing
proper chemical potentials for spin fermions [15]. Nevertheless, the paper [15] is basically of a
methodological nature. In this report we derive general expressions needed for studying ordered
phases of Heisenberg models with arbitrary spins on the Bravais lattices. It is motivated by
the progress in the synthesis of new magnetic materials with spin S = 1, 3/2, 5/2... On the
theoretical side, although quantum fluctuations are larger for systems with lower values of the
spin quantum number s, totally new physical effect can also sometimes appear [16].
The organization of the paper is as follows. We first set up a general formalism in Sec.2. In Sec.
3 we represent our main results. We summarize this paper in Sec.4.

2. Formalism

We apply the extended PF trick to the quantum Heisenberg model given by the following
Hamiltonian:

H =
∑

ij

JijSiSj , (1)

where Jij is exchange interaction between sites i and j, Si is spin operators satisfying the non-
canonical commutation relations:

[

Sα
i , S

β
j

]

= i∈αβγδijS
γ . (2)

2.1. The extended PF procedure

The spin−S operators may be represented in terms of Fermi operators as follows [15]:

Sα
i =

S
∑

m,m′=−S

a+i,m′(S
α)m′mai,m′ , (3)

where (Sα)m′m are the spin−S matrices, given by:

(

S+
)

m′m
=

√

S (S + 1)−m (m+ 1)δm′,m+1
(

S−
)

m′m
=

√

S (S + 1)−m (m+ 1)δm′,m−1

(Sz)m′m = mδm′,m

(4)

and S± = Sx ± iSy.
Here and in the following we take ~ = 1.
For the case S = 1/2, 2(Sα)m′m are the Pauli matrices. The representation (3) satisfies the
commutation relation (2). The Fock space of the fermions aim is spanned by 2S + 2 states
including the vacuum. Thus every site in the Fock space may be occupied by N fermions of
spin S where 0 < N < 2S + 1. Among them only two states with N = 1 or N = 2S are
physical. (Due to electron hole symmetry the state with N = 2S is equivalent to the state with
N = 1). The unphysical states with N = 0 (empty sites), N = 2S + 1 (fully occupied sites),
0 < N < 2S+1 have to be removed by imposing a constraint. For spin S = 1/2, the unphysical
states |0〉 , |2〉 = a+i↑a

+
i↓ |0〉 are excluded by adding a term −µ

∑

i,σ
a+iσaiσ to the Hamiltomian with

an imaginary chemical potential µ = − iπ
2β , with β = 1

kBT [3]. For general S > 1, as proved

by Veits et al [15] it may be done with introducing a discrete set of 2S + 1 different imaginary
chemical potentials on every site. The partition function of the spin system in the fermionic
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representation (3) can be written in the following form:

Z = Trspine
−(βHspin) =

∏

i=1

∫

P (µi) dµiTrFocke
−β

(

HFock−
∑

i

µiN̂i

)

(5)

where HFock means that all operators Si are replaced by (3) and N̂i are the number operators

of site i, N̂i =
S
∑

m=−S
a+i,mai,m. The distribution P (µi) reads as:

P (µi) =

2S
∑

l=0

γlδ (µi − µl), (6)

where the imaginary potentials are given by:

µl =
iπ

β

2l + 1

2S + 1
, (7)

and the coefficients γl take the following values:

γl =
e−βµl

2S + 1
. (8)

The eqs. (5) − (8) will be used for considering the ordered phases of the Heisenberg model (1).

2.2. Classical ground state and local reference frame

For taking into account the fluctuations around the classical it is convenient to parameterize in
the classical limit the spin on site i as:

~Si = S
(

~u sin ~Q~ri + ~v cos ~Q~ri

)

, (9)

with ~u and ~v are two orthonormal unit vectors. The classical ground state is assumed to
have coplannar magnetic structure, which may be shown for Hamiltonian (1) with the isotropic

exchange interactions. The magnetic ordering vector ~Q can be derived by minimizing the
classical energy. Depending on the exchange interactions Jij and on the lattice structure of the

model there may exist different sets of vectors ~Q corresponding to different ordered phases, so
by parameterizing the classical ground state one could consider all ordered phases of the system
in one common scheme [14]. Next, following Myiake [17] we transform the spin components
from the laboratory reference frame to the local reference frame with the spin quantization axis
on each site being along its classical direction. This transformation gives us the possibility of
introducing only one type of the fermion (3) in term of the ordering vector ~Q for each spin for
all possible ordered phases such as Neel, spiral, canted state...
In result, the Hamiltonian (1) is rewritten in the form [14]:

H = −
1

2





∑

i,j,α,β=x,y,z

Jαβ
ij Sα

i S
β
j



 (10)

where:

Jxx
ij = Jzz

ij = Xij = −Jijcos ~Q (~rj − ~ri)

Jyy
ij = Yij = −Jij

Jzx
ij = −Jzx

ij = Wij = Jijsin~Q (~rj − ~ri)

Jxy
ij = Jyx

ij = Jyz
ij = Jzy

ij = 0

(11)
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2.3. Perturbation technique

Now we apply the extended PF trick given in subsection 2.1 to the Hamiltonian (10).
We represent the partition function (5) with the Hamiltonian (10), where the spin operators
are replaced by the fermion ones according to (3). Then we replace the fermion operators by
Grassmann variables and eliminate the 4 fermions in the partition function by a Hubbard -
Stratonovich transformation, introducing the Bose auxiliary field ~ϕi, which plays the role of
magnetization. After integration over the Grassmann variables we get:

Z =
N
∏

i

∫

dµiP (µi)Z (µi) , (12)

where

Z (µi) =
1

Zo

∫

D~ϕe−Seff [~ϕi,µi], (13)

with

Zo =
[

det Ĵ−1
]−1/2

(14)

Here Ĵ−1 is the inverse matrix of the exchange interaction Ĵij . Reasoning similarly as in Refs.
18, 19, after decomposing the Hubbard - Stratonovich auxiliary fields into the mean field values
~ϕio and the fluctuations δ~ϕi (Ω) (Ω being boson Matsubara frequencies) and introducing a fictive
magnetic field into the Hamiltonian we get in one-loop approximation:

Seff [~ϕi, µi] = S
(0)
eff [~ϕio, µi] + S

(1)
eff [δ~ϕi, µi] + S

(2)
eff [δ~ϕi, µi] , (15)

where

S
(0)
eff [~ϕio, µi] =

1

2

∑

ijαβ

(ϕα
io +Bα

i )
(

J−1
)αβ

ij

(

ϕβ
jo +Bβ

j

)

−
∑

i

A (µi) (16)

S
(1)
eff [δ~ϕi, µi] =

1

2

∑

ijαβ

[

(

J−1
)αβ

ij
(ϕα

i0 +Bα
i ) δϕ

β
j (0) + δϕα

i (0)
(

ϕβ
j0 +Bβ

j

)

(

J−1
)αβ

ij

]

+
∑

iαΩ

Kα
1i (Ω, µi)δϕ

α
i (Ω)

(17)

S
(2)
eff [δ~ϕi, µi] =

1

2

∑

ijαβ

[

(

J−1
)αβ

ij
+Kαβ

2ij (Ω, µi)
]

δϕα
i (−Ω) δϕβ

j (Ω). (18)

Analogously to Refs. 18, 19, one can get explicit expression of free energy and thermodynamic
quantities in one loop approximation for any Bravais lattice and some Bravais lattice if one knows

analytical results for the expression of A (µi) ,K
α
1i (Ω, µi) ,K

αβ
2ij (Ω, µi) in the above equations.

For spin-1/2, spin-1 it may be done by manipulating directly with Pauli or spin-1 matrices. For
arbitrary spin−S, it is essential to use angular momentum algebra of spin operators.

3. Results

In order to derive explicit expressions of A (µi) ,K
α
1i (Ω, µi) ,K

αβ
2ij (Ω, µi), we use the relations

(4) and perform summation over fermion Matsubara frequencies. The calculation is lengthy but
straightforward and will be published elsewhere. The results read:

A (µi) =
S
∑

k=−S

ln
(

1 + e−βkϕio−βµi

)

, (19)
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Kα
1i (Ω, µi) =

S
∑

kmin

k∆(kϕi0, µi) δα,zδΩ,0, (20)

Kzz
2ij (Ω, µi) = −

S
∑

kmin

k2

sinh2β |µi|

[

1− sinh2β |µi|∆
2 (kϕi0, µi)−

√

1− sinh2β |µi|∆2 (kϕi0, µi)

]

δij ,

(21)

K+−
2ij (Ω, µi) =

(

K−+
2ij (Ω, µi)

)∗

=
δij

(iΩ+ ϕi0)
B (S, µi) . (22)

In the above expressions kmin= 1/2 for half integer spin and kmin= 0 for integer spin. The
following notations are used:

∆ (ε, µi) = −
Sinhβε

Coshβµi + Coshβε
, ε = kϕio. (23)

B (S, µi) =
1

4

S−1
∑

k=0

(S (S + 1)− k (k + 1)) [∆ ((k + 1)ϕi0, µi)−∆(kϕi0, µi)], (24)

for integer spin, and

B (S, µi) =

(

S (S + 1) +
1

4

)

∆
(ϕi0

2
, µi

)

+
1

4

S−1
∑

k=1/2

(S (S + 1)− k (k + 1)) [∆ ((k + 1)ϕi0, µi)−∆(kϕi0, µi)].

(25)

for half integer spin.

We note that due to the least action principle
δSeff

δϕi

∣

∣

∣

δϕi=0
the linear term in the fluctuations of the

effective action S
(1)
eff [δ~ϕi, µi] = 0. Therefore the functional integral over the auxiliary boson field

~ϕi in eq. (13) has a Gaussian form and may be performed explicitly. In the result, it is ready
to derive the analytical expression for the partition function (12) of the generic Hamiltonian
(10). Once given the partition function, it is straightforward to calculate F = − 1

β lnZ and

related thermodynamical quantities such as magnetization in a site mα
i = − ∂

∂Bα
i
F ; susceptibility

χαβ = − ∂2F

∂Bα
i
∂Bβ

i

, specific heat Cv = −β2
(

α∂F
∂β + β ∂2F

∂β2

)

...

For checking we consider the case of the quantum spin number S = 1/2 and S = 1. For S = 1/2
the eq. (7) and (27) yield:

µ =
iπ

2β
, ∆(ε, µ) = −Tanhβε. (26)

And Eqs.(19) − (23) give:

A (µ) =
∑

i

2 ln 2Cosh
βϕio

4
(27)

Kα
1i (Ω, µ) = −

1

2
Tanh

(

βϕio

2

)

δΩ,0δα,z (28)

Kzz
2ij (Ω, µ) = −

1

4

[

1−∆2
(ϕio

2

)]

δΩ,0δα,z, (29)
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K+−
2ij (Ω, µ) =

β

4

∆
(ϕio

2 , µ
)

ϕio + iΩ
δij , (30)

Thus we recover the results of the Refs.12, 18. Analogously we get for S = 1:

µ =
iπ

3β
, ∆(ε, µ) = −

2Sinhβε

1 + 2Coshβε
. (31)

Kα
1i (Ω, µ) = ∆ (ε, µ) δΩ,0δz,0 (32)

Kzz
2ij (Ω, µ) = −

1

3

[

4− 3∆2 (ϕio, µ)−
√

4− 3∆2 (ϕio, µ)
]

(33)

K+−
2ij (Ω, µ) =

β

2

∆ (ϕio, µ)

ϕio + iΩ
δij , (34)

The Eqs.(31) − (34) are the same as obtained in Ref.19.

4. Summary

In this report we have shown how to apply the extended PF formalism for studying the ordered
phases of the Heisenberg model with arbitrary quantum spin numbers S. By parameterizing a
classical phase by an ordering vector and transforming to local coordinates one can investigate
the ordered phases of the Heisenberg model with different lattice structures and different
exchange interactions Jij in an unified procedure. The fluctuation contributions may be taken
into account by means of Hubbard - Stratonovich transformation and keeping up to second
order of the auxiliary Hubbard - Stratonovich fields. We have derived the general analytical

expressions for the kernels Kz
1i (Ω, µ) and Kαβ

2ij (Ω, µ) presented in the functional integral over
auxiliary fields of the partition function. Given the above kernels it is straightforward to derive
the partition function and the other related quantities such as the magnetization, the entropy,
the internal energy..., as it have been shown in Refs.12, 18.
The results of the present paper can be applied to study specific cases with quantum spin number
S = 3/2, 5/2... on different lattices, including non Bravais one.
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