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A B S T R A C T

We design a scheme to generate a new type of hybrid entanglement between a macroscopic
polarized coherent state and a single polarized photon. Concretely, a polarized Schrodinger
cat state, an entangled polarized photon pair, and a polarized coherent state, which have been
prepared off-line, are supplied as inputs to our scheme. Then, using conventional optical devices
such as beam splitters, polarizing beam splitters, half-wave plates, and photon-number-resolving
detectors, all the necessary operations can be effectively performed in-line. Conditioned on
photon detection results, creation of the desired hybrid entanglement is heralded. The total
success probability of our scheme is twice as high as that in existing schemes for unpolarized
coherent states. Our scheme is not only feasible but also economical with regard to resource
consumption because no active displacement operations must be utilized in-line. We also
consider practical factors affecting the scheme performance, including decoherence of the input
states, realistic resources, and device imperfections. Detailed analyses show that our scheme is
robust against small imperfection effects and could be implemented with current technology.
The proposed hybrid entanglement would serve as a vital resource for processing information
encoded in superpositions of differently polarized coherent states which represent a new format
of qubit.

. Introduction

Hybrid approach, which simultaneously harnesses quantum systems of dissimilar natures, promises potential applications in
uantum information processing and quantum computing within modern heterogeneous networks built on multiple physical
latforms with distinct types of qubit encodings [1–4]. For instance, hybrid entanglement between microscopic and macroscopic
ystems [5–12] has been created to illustrate the renowned Schrodinger’s thought experiment [13]. In the context of optical
uantum information processing, hybrid approach generally combines discrete-variable (DV) and continuous-variable (CV) systems,
ach of which possesses their own pros and cons [14,15]. Concretely, implementation of CV systems and tools features in its
eterminism but suffers from less-than-one fidelities [16,17], while implementation of DV systems and tools is probabilistic yet
ith unit fidelities [16,17]. Hybridizing both CV and DV approaches on an appropriate footing would exploit advantages and, at
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the same time, suppress downsides of each approach used separately [18]. Therefore, hybrid approach in general and in the optical
domain in particular has been attracting great attention and remarkable progress in quantum communication [18–25] as well as in
quantum computation [26–29] has been witnessed, paving the avenue for novel applications such as quantum metrology [6,30],
Bell inequality verification [31,32], and demonstration of Einstein–Podolsky–Rosen steering [33].

Indispensable quantum channels to bridge across remote nodes of a DV–CV heterogeneous quantum network are DV–CV
ybrid entangled states, whose generation schemes have been theoretically put forward and experimentally realized by several
roups [18,23–25,34–42] . These DV–CV hybrid entangled states, in general, can be categorized into two types. The first type
ntangles a CV state and a single-rail photonic qubit in the form [18,23,24,37–40]

1
√

2

(

|CV0⟩𝐴|0⟩𝐵 + |CV1⟩𝐴|1⟩𝐵
)

, (1)

where |CV0⟩𝐴 and |CV1⟩𝐴 are two orthogonal (or nearly orthogonal) CV states belonging to node 𝐴, while |0⟩𝐵 and |1⟩𝐵 are
espectively vacuum and single photon state of node 𝐵. Two typical examples of the above type of hybrid entanglement include
|𝛼⟩|0⟩ + |−𝛼⟩|1⟩)∕

√

2 where |±𝛼⟩ are coherent states with amplitudes ±𝛼 [37–39] and (|cat+𝛼 ⟩|0⟩ + |cat−𝛼 ⟩|1⟩)∕
√

2 where |cat±𝛼 ⟩ =
±
𝛼 (|𝛼⟩ ± |−𝛼⟩), with normalization factors 𝑁±

𝛼 , are even/odd Schrodinger cat states [18,23,24,40]. The second type of DV–CV
ybrid entanglement appears between a CV state and a polarized photon [25,41,42]

1
√

2

(

|CV0⟩𝐴|𝐻⟩𝐵 + |CV1⟩𝐴|𝑉 ⟩𝐵
)

, (2)

where |𝐻⟩ (|𝑉 ⟩) represents state of a horizontally (vertically) polarized single photon. The hybrid entangled states (2), compared to
those given by (1), could be more favorable for information processing owing to their polarization DV part. Specifically, a polarized
qubit state, unlike that of a single-rail qubit, is definitely a one-photon state in which information is encoded over polarization
degree of freedom (DoF), thus rendering it robust to losses and inefficient detections [25]. Moreover, single-qubit gates for polarized
qubits are straightforwardly implemented using quarter-wave plates (QWPs) and half-wave plates (HWPs) [43,44], while those for
single-rail qubits, which do not preserve photon number, are troublesome to realize [45]. The two above-mentioned types of hybrid
entanglement have been thoroughly compared with regards to quantum teleportation [46,47]. Recently, an attempt to produce
hybrid entanglement of the form

𝑎|cat+𝛼 ⟩𝐴|𝐻⟩𝐵 + 𝑏|cat−𝛼 ⟩𝐴|𝑉 ⟩𝐵 , (3)

with |𝑎|2 + |𝑏|2 = 1, has been made exploiting photon subtraction technique [25], but the actually generated state is mildly
approximate to the ideal one, with the addition of a large vacuum component in the DV mode. Also, theoretical proposals to prepare
hybrid entanglement of the form

1
√

2

(

|𝛼⟩𝐴|𝐻⟩𝐵 + |−𝛼⟩𝐴|𝑉 ⟩𝐵
)

, (4)

have been suggested in Refs. [41,42]. In these proposals, a small fraction of a Schrodinger cat state that is reflected from an
unbalanced beam splitter (BS) is interfered on a balanced beam splitter (BBS) with a displaced mode of an entangled polarization
photon pair. The interference erases “which-path’’ information while retains polarization information of the other mode of the
entangled photon pair [42]. Under perfect conditions the schemes in Refs. [41,42] can create the hybrid entangled state of the
form (4). However, in Refs. [41,42] the success probability is still quite low and use of displacement operators is required. Although
displacement operation can be implemented in practice with the help of an additional intense laser and a highly transmissive BS [48],
the practically displaced state is just an approximation to the desired theoretically displaced one, so unit fidelity cannot be achieved
in principle.

In this paper, we propose a displacement-free scheme to create a new type of hybrid entanglement of a form similar to that
defined in Eq. (4) but with the CV component being differently polarized coherent states, i.e., we aim at the state

|𝛹⟩𝐴𝐵 = 1
√

2

(

|𝛼𝐻 ⟩𝐴|𝐻⟩𝐵 + |−𝛼𝑉 ⟩𝐴|𝑉 ⟩𝐵
)

, (5)

where |±𝛼𝐻∕𝑉 ⟩ are horizontally/vertically polarized coherent states with amplitudes ±𝛼 [49]. The hybrid entangled state |𝛹⟩𝐴𝐵
connects two heterogeneous nodes: one working with the well-known DV qubit encoding 𝑥|𝐻⟩ + 𝑦|𝑉 ⟩, with |𝑥|2 + |𝑦|2 = 1, and the
ther with a new type of CV qubit encoding

|𝑞⟩ =  (𝑐|𝛼𝐻 ⟩ + 𝑑|−𝛼𝑉 ⟩), (6)

ith  = [|𝑐|2+|𝑑|2+2𝑒−|𝛼|2Re(𝑐𝑑∗)]−1∕2. Note that Eq. (6) is a superposition of two coherent states that are distinguishable not only
y opposite-in-sign amplitudes but also by sharply distinct polarizations. Such qubit encoding is different from the conventional qubit
ncodings ∝ 𝑐|𝛼⟩+𝑑|−𝛼⟩ [50] or ∝ 𝑐|𝛼𝐻∕𝑉 ⟩+𝑑|−𝛼𝐻∕𝑉 ⟩ [49] in which the two superposed coherent states are either unpolarized or of
he same polarization. The new type of encoding in Eq. (6) could play its own role in quantum information processing, since one can
xploit both the amplitude and the polarization DoF for readout and manipulation of the CV part. In fact, utilization of polarization
oF over coherent-state carriers has been applied in quantum key distribution protocols [51–54], which are shown to be robust
gainst losses. Remarkably, as will be elucidated, exploiting polarized coherent states instead of unpolarized ones for generation of
he hybrid entangled state (5) helps to avoid use of displacement operation and improves the above-mentioned limitations of the
2
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Fig. 1. (Color online) Scheme to generate the DV–CV hybrid entanglement between a polarized coherent state and a single polarized photon, involving two
main parts. Part 1 prepares a polarized Schrodinger cat state in mode 1 given by Eq. (10). Part 2 performs joint manipulations and measurements on modes 2
and 4; depending on the measurement outcomes, modes 1 and 3 will be projected onto the desired hybrid entanglement. Here |𝛤 ⟩ ≡ |𝛤 ⟩1 defined in Eq. (7),
𝛬⟩ ≡ |𝛬⟩1′ defined in Eq. (8), and |𝛩⟩ ≡ |𝛩⟩34 defined in Eq. (9) are the needed inputs, |𝛯⟩ ≡ |𝛯⟩12 is a CV polarization entangled state given by Eq. (12), and
𝛹⟩ ≡ |𝛹⟩13 is the target prepared state given in Eq. (5). BS is short for beam splitter, BBS balanced beam splitter, PBS polarizing beam splitter, HWP half-wave
late, D photon-number-resolving detector, M mirror, and the delaying circles in paths 1, 1’ and 4 can be adjusted to synchronize the time of incidence of modes
n an optical device.

chemes in Refs. [41,42]. Namely, under the ideal conditions, in our scheme the total success probability doubles compared to that
n Refs. [41,42] and the fidelity is exactly equal to one.

The structure of this paper is the following. In Section 2, we describe our scheme for generation of the target hybrid entangled
tate |𝛹⟩𝐴𝐵 as defined in Eq. (5). Necessary input states are specified, steps to proceed are detailed, and the total success probability
s derived analytically in the same Section 2. We then in Section 3 analyze the scheme performance under practical circumstances;
amely, we take into account the effect of decoherence of the input states and consider possible realistic resources as well as
mperfect devices. Some discussions and conclusions are drawn in the final section, Section 4. Additionally, relevant appendices are
ncluded providing explicit calculations for the results in the main text.

. Scheme details

Our scheme to entangle a polarized coherent state and a single polarized photon into the hybrid entanglement of the form (5)
s visually illustrated in Fig. 1, consisting of two parts. In what follows, we present in detail the content and the purpose of each of
hese parts.

The required input states for the scheme include an horizontally polarized even Schrodinger cat state |𝛤 ⟩1, a horizontally
olarized coherent state |𝛬⟩1′ , and an entangled polarization photon pair |𝛩⟩34, which are respectively given by

|𝛤 ⟩1 = 𝑁(𝛽)
(

|𝛽𝐻 ⟩ + |−𝛽𝐻 ⟩

)

1 , (7)

|𝛬⟩1′ = |𝛽𝐻 ⟩1′ , (8)

|𝛩⟩34 =
1
√

2

(

|𝐻⟩3|𝑉 ⟩4 + |𝑉 ⟩3|𝐻⟩4
)

, (9)

where 𝛽 is assumed to be real for simplicity and 𝑁(𝛽) = [2(1 + 𝑒−2𝛽2 )]−1∕2 is a normalization factor.
Our scheme starts off by injecting |𝛤 ⟩1 and |𝛬⟩1′ respectively into path 1 and path 1′ of the first BBS (denoted by BBS1) in part

1 of the setup in Fig. 1. A HWP is placed on path 1′ after the BBS1 and the two modes along path 1 and path 1′ meet again at
a polarizing beam splitter (PBS). Since the HWP transforms horizontal polarization to vertical one (and vice versa) while the PBS
transmits horizontally polarized photons but reflects vertically polarized ones, it is straightforward to check that the output of part
1 is

|𝛺⟩1 = 𝑁(𝛽)
(

|(𝛽
√

2)𝐻 ⟩ + |(−𝛽
√

2)𝑉 ⟩
)

1
. (10)

Here since ⟨𝛽𝐻 |−𝛽𝐻 ⟩ =
⟨

(𝛽
√

2)𝐻 |(−𝛽
√

2)𝑉 ⟩ = 𝑒−2𝛽2 , both |𝛤 ⟩1 and |𝛺⟩1 have the same normalization factor 𝑁(𝛽), despite their
ifferences in amplitudes and polarizations. The state |𝛺⟩1, by means of a PBS, a HWP, and a phase shifter (PS), can be transformed
nto 𝑁(𝛽)

(

|(𝛽
√

2)𝐻 ⟩1|0⟩1′ + |0⟩1|(𝛽
√

2)𝐻 ⟩1′
)

, which is an infinite superposition of NOON states that are of great interest in quantum
metrology applications [30,55]. Noteworthily, the state |𝛺⟩1 is a particular case of the new type of encoding in Eq. (6) with 𝑐 = 𝑑 = 1
and 𝛼 = 𝛽

√

2. Moreover, it turns out that the general new-type qubit state (6) with arbitrary coefficients 𝑐 and 𝑑 can be prepared
3
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by the same part 1 in Fig. 1 with the input states |𝛤 ⟩1 in Eq. (7) and |𝛬⟩1′ in Eq. (8) replaced by  (𝑐|(𝛼∕
√

2)𝐻 ⟩ + 𝑑|(−𝛼∕
√

2)𝐻 ⟩)1
nd |(𝛼∕

√

2)𝐻 ⟩1′ , respectively.
The state |𝛺⟩1 outgoing from part 1 then enters part 2 of the setup where it is split by a general BS with reflectivity 𝑟 (and

transmissivity 𝑡 = 1 − 𝑟). With the convention for the action of a general BS on a pair of coherent states,

BS𝐴𝐵|𝛼⟩𝐴|𝛽⟩𝐵 = |𝛼
√

𝑡 + 𝛽
√

𝑟⟩𝐴|𝛼
√

𝑟 − 𝛽
√

𝑡⟩𝐵 , (11)

the single-mode state |𝛺⟩1 is transformed into a two-mode entangled one

|𝛯⟩12 = 𝑁(𝛽)
(

|𝛿𝐻 ⟩1|𝛾𝐻 ⟩2 + |−𝛿𝑉 ⟩1|−𝛾𝑉 ⟩2
)

, (12)

with 𝛿 = 𝛽
√

2𝑡 and 𝛾 = 𝛽
√

2𝑟. The state |𝛯⟩12 is characterized not only by coherent states’ amplitudes but also by their polarizations
and thus is different from the commonly used entangled coherent state ∝ (|𝛿⟩|𝛾⟩ + |−𝛿⟩|−𝛾⟩)12 [50]. More precisely, the state |𝛯⟩12
contains CV polarization entanglement quantified via quantum Stokes parameters [56]. In passing, another CV entangled state also
characterized by both coherent states’ amplitudes and polarizations in the form (|cat+𝛼,𝐻 ⟩|cat−𝛼,𝑉 ⟩− |cat−𝛼,𝐻 ⟩|cat+𝛼,𝑉 ⟩)∕

√

2, with |cat±𝛼,𝐻 ⟩

|cat±𝛼,𝑉 ⟩) being horizontally (vertically) polarized Schrodinger even/odd cat states with amplitude 𝛼, has been considered in the
ontext of entanglement duality [49].

Up to this point, the input state |𝛩⟩34 of Eq. (9) has not been used yet. Recalling the Fock-state representation of a coherent
tate with real amplitude 𝑥, |𝑥⟩ =

∑∞
𝑛=0 𝑓𝑛(𝑥)|𝑛⟩ with the coefficient 𝑓𝑛(𝑥) = 𝑒−𝑥2∕2𝑥𝑛∕

√

𝑛! featuring the photon-number (Poisson)
istribution 𝑓 2

𝑛 (𝑥) = 𝑒−𝑥2𝑥2𝑛∕𝑛!, the product state |𝛯⟩12|𝛩⟩34 ≡ |𝛴⟩1234 at the beginning of part 2 of the setup in Fig. 1 can be
rearranged as |𝛴⟩1234 → |𝛴⟩1324 ≡ |𝛴⟩:

|𝛴⟩ =
𝑁(𝛽)
√

2

∞
∑

𝑛=0

[

𝑓𝑛(𝛾)|𝟏⟩13|𝑛𝐻 ⟩2|𝑉 ⟩4 + 𝑓𝑛(𝛾)|𝟐⟩13|𝑛𝐻 ⟩2|𝐻⟩4 + 𝑓𝑛(−𝛾)|𝟑⟩13|𝑛𝑉 ⟩2|𝑉 ⟩4 + 𝑓𝑛(−𝛾)|𝟒⟩13|𝑛𝑉 ⟩2|𝐻⟩4
]

, (13)

here for convenience we have set |𝟏⟩13 = |𝛿𝐻 ⟩1|𝐻⟩3, |𝟐⟩13 = |𝛿𝐻 ⟩1|𝑉 ⟩3, |𝟑⟩13 = |−𝛿𝑉 ⟩1|𝐻⟩3, and |𝟒⟩13 = |−𝛿𝑉 ⟩1|𝑉 ⟩3 and |𝑛𝐻 ⟩(|𝑛𝑉 ⟩)
s a Fock state containing 𝑛 horizontally (vertically) polarized photons. While modes 1 and 3 of the state |𝛴⟩ are left untouched,
odes 2 and 4 are let be interfered at a BBS (denoted by BBS2 in Fig. 1). Since

BS𝐴𝐵|𝑗⟩𝐴|𝑘⟩𝐵 =
𝑗
∑

𝑝=0

𝑘
∑

𝑞=0
𝐵𝑗,𝑘
𝑝,𝑞 (𝑟, 𝑡)|𝑗 − 𝑝 + 𝑞⟩𝐴|𝑘 − 𝑞 + 𝑝⟩𝐵 , (14)

ith

𝐵𝑗,𝑘
𝑝,𝑞 (𝑟, 𝑡) =

(

𝐶𝑝
𝑗 𝐶

𝑞
𝑘𝐶

𝑝
𝑘−𝑞+𝑝𝐶

𝑞
𝑗−𝑝+𝑞𝑡

𝑗+𝑘−𝑝−𝑞𝑟𝑝+𝑞
)1∕2(−1)𝑘−𝑞 , (15)

fter the BBS2 the state |𝛴⟩1324 ≡ |𝛴⟩ in Eq. (13) becomes |𝛴′
⟩1324 ≡ |𝛴′

⟩:

|𝛴′
⟩ =

𝑁(𝛽)𝑓1(𝛾)
2

[

(|𝟏⟩ + |𝟒⟩)13
√

2
(|1𝑉 ⟩2|1𝐻 ⟩4 − |1𝐻 ⟩2|1𝑉 ⟩4) +

(|𝟏⟩−|𝟒⟩)13
√

2
(|1𝐻 ⟩2|1𝑉 ⟩2 − |1𝐻 ⟩4|1𝑉 ⟩4)

+ |𝟐⟩13(|2𝐻 ⟩2−|2𝐻 ⟩4) − |𝟑⟩13(|2𝑉 ⟩2−|2𝑉 ⟩4)
]

+ OT. (16)

n Eq. (16) only terms with 𝑛 = 1 are explicitly written, while terms with 𝑛 ≠ 1 are absorbed in “OT’’ (short for “other terms’’). It
an be verified that all the terms in “OT’’ do not contribute to the success of the scheme. Next, to obtain the desired state |𝛹⟩13
f the form (5) we measure modes 2 and 4 to figure out not only their photon numbers but also their polarizations. We can see
ntuitively from Eq. (16) that there are 5 situations.

Situation 0: if mode 2 or mode 4 each is found to contain two photons with the same polarization, then modes 1 and 3 will be
rojected onto a product state |𝟐⟩13 ≡ |𝛿𝐻 ⟩1|𝑉 ⟩3 or |𝟑⟩13 ≡ |−𝛿𝑉 ⟩1|𝐻⟩4, implying the failure to generate the target hybrid entangled
tate.

Situation 1: if mode 2 is found to contain one photon with vertical polarization and mode 4 is found to contain one photon with
orizontal polarization, then modes 1 and 3 in the state |𝛴′

⟩ will be collapsed into
(|𝟏⟩ + |𝟒⟩)13

√

2
≡ 1

√

2

(

|𝛿𝐻 ⟩1|𝐻⟩3 + |−𝛿𝑉 ⟩1|𝑉 ⟩3
)

. (17)

Such state is nothing but the desired hybrid entanglement |𝛹⟩13 in Eq. (5) with amplitude

𝛼 = 𝛿 ≡ 𝛽
√

2𝑡. (18)

Situation 2: if mode 2 is found to contain one photon with horizontal polarization and mode 4 is found to contain one photon
ith vertical polarization, then modes 1 and 3 in the state |𝛴′

⟩ will also be collapsed into the state (17).
Situation 3: if mode 2 is found to contain two photons with different polarizations, then the collapsed state will be

(|𝟏⟩ − |𝟒⟩)13
√

2
≡ 1

√

2

(

|𝛿𝐻 ⟩1|𝐻⟩3 − |−𝛿𝑉 ⟩1|𝑉 ⟩3
)

, (19)
4

implying another successful event because the above state can be unitarily transformed to the state (17).
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Fig. 2. (Color online) Total success probability of the scheme 𝑃𝑇 = 4𝑃 with 𝑃 given in Eq. (24) as a function of the input amplitude square 𝛽2 and the reflectivity
𝑟. The (black) dashed line represents the optimal reflectivity, 𝑟peak = 1∕(2𝛽2), optimizing the total success probability 𝑃𝑇 for 𝛽2 > 1∕2. Selected contour values for
𝑃𝑇 are marked.

Situation 4: if mode 4 is found to contain two photons with different polarizations, then the collapsed state will be nothing else
but the state (19).

To observe both photon number and polarization of the modes of interest, two PBSs and four photodetectors are arranged behind
the BBS2 as seen in part 2 of the setup in Fig. 1. The successful event in Situation 1 is associated with the outcome of a projective
measurement specified by the operator

𝛱1 = |0⟩2⟨0|⊗ |1⟩2′ ⟨1|⊗ |1⟩4⟨1|⊗ |0⟩4′ ⟨0|, (20)

and happens when the detectors D2′ and D4 each register one photon. Similarly, the other three successful Situations 2, 3, and 4 are
associated with the projective measurements specified respectively by the operators

𝛱2 = |1⟩2⟨1|⊗ |0⟩2′ ⟨0|⊗ |0⟩4⟨0|⊗ |1⟩4′ ⟨1|, (21)

𝛱3 = |1⟩2⟨1|⊗ |1⟩2′ ⟨1|⊗ |0⟩4⟨0|⊗ |0⟩4′ ⟨0|, (22)

𝛱4 = |0⟩2⟨0|⊗ |0⟩2′ ⟨0|⊗ |1⟩4⟨1|⊗ |1⟩4′ ⟨1|. (23)

It is straightforward to check that the failure events in Situation 0 are excluded by the projective measurements specified by the
above operators {𝛱𝑗 ; 𝑗 = 1, 2, 3, 4} and each of the four successful events in Situations 1, 2, 3, and 4 occurs with an equal probability

𝑃 = ⟨𝛴′
|𝛱1(2,3,4)|𝛴

′
⟩ =

𝑁2(𝛽)𝑓 2
1 (𝛾)

4
=

𝑟𝛽2𝑒−2𝑟𝛽2

4(1 + 𝑒−2𝛽2 )
. (24)

Therefore, the total success probability of our scheme is 𝑃𝑇 = 4𝑃 , which is twice as high as that reported in Refs. [41,42] where
the coherent states are either unpolarized or of the same polarization.

The total success probability 𝑃𝑇 = 4𝑃 , with 𝑃 given in Eq. (24), is plotted in Fig. 2 as a function of 𝛽2 and 𝑟. For 𝛽2 ≤ 0.5, the
probability 𝑃𝑇 increases monotonically with increasing 𝑟. For 𝛽2 > 0.5, as 𝑟𝛽2 exp(−2𝑟𝛽2) peaks at 2𝑟𝛽2 = 1, the probability 𝑃𝑇 peaks
at 𝑟 = 𝑟peak = 1∕(2𝛽2) which is displayed as a (black) dashed line in Fig. 2. This in turn yields 𝑃 peak

𝑇 = 1∕
[

2𝑒(1 + 𝑒−2𝛽2 )
]

approaching
1∕(2𝑒) for large 𝛽2. Specifically, for 𝛽2 = {2, 3, 4,…} corresponding to 𝑟peak = {1∕4, 1∕6, 1∕8,…} (i.e., 𝑡peak = {3∕4, 5∕6, 7∕8,…}),
the desired hybrid entangled state |𝛹⟩13 with good amplitudes 𝛼 = {1.732, 2.236, 2.646,…} is obtained with optimal total success
probabilities 𝑃 peak

𝑇 = {18.063%, 18.348%, 18.388%,…}.
Before considering possible imperfect conditions that may be encountered in practice we note that the polarizations of the input

states (7) and (8) can also be chosen to be vertical. In this case our scheme would generate a state of the form (5) but with the
polarizations of the two coherent-state components to be exchanged, which is equally useful. The trick is that both the input states
(7) and (8) should have the same polarization (i.e., they must be either horizontally or vertically polarized).

3. Decoherence effect, realistic resources, and device imperfections

Towards an implementation of our proposed scheme considerations of several practical issues should be paid attention to. Firstly,
quality of the input states could be degraded at the moment of their utilization due to the decoherence effect caused by their
interaction with the surrounding environments. Secondly, production of the genuine input states themselves is usually very hard
and can thus be approximated by some other resources that are easier to prepare in practice. Thirdly, the optical devices used
in our scheme, despite being readily available in the lab, may still suffer from certain imperfections, e.g., a BBS could be slightly
unbalanced or a photodetector could be not 100% efficient. In the forthcoming subsections, we sequentially take into account the
above-mentioned practical factors evaluating their influence on the success probability of the scheme and on the fidelity of the
prepared state compared to those under ideal conditions.
5
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Fig. 3. (Color online) Total success probability 𝑃 de
𝑇 (solid line) and fidelity 𝐹 de (dashed line) given in Eqs. (31) and (32), respectively, as functions of the

decoherence strength 𝜇 defined in Eq. (33). Here to generate the plot we choose the input amplitude 𝛽 = 1.2 and the corresponding optimal reflectivity
𝑟peak ≈ 0.347.

3.1. Decoherence of the input states

The decoherence process we are interested in is photon loss, which is modeled by the master equation
𝑑𝜌
𝑑𝜏

= ̂𝜌, (25)

where 𝜌 is the density operator of the total input state, 𝜏 denotes time, and ̂ is the Linblad superoperator acting on 𝜌 as
̂𝜌 = (𝜅∕2)

∑

𝑗 (2𝑎𝑗𝜌𝑎
†
𝑗 − 𝜌𝑎†𝑗𝑎𝑗 − 𝑎†𝑗𝑎𝑗𝜌). Here the subscript 𝑗 indexes all the modes present in 𝜌, 𝑎𝑗 (𝑎†𝑗 ) is the annihilation (creation)

operator of mode 𝑗, and 𝜅 is the decay rate which for simplicity has been assumed to be identical for all the modes. Initially, at
𝜏 = 0 the input density operator 𝜌 is

𝜌(0) = |𝛤 ⟩1⟨𝛤 |⊗ |𝛬⟩1′ ⟨𝛬|⊗ |𝛩⟩34⟨𝛩|, (26)

where |𝛤 ⟩1, |𝛬⟩1′ , and |𝛩⟩34 are respectively defined in Eqs. (7) - (9). Before arriving at the setup, the three inputs supposedly
interacted with their environments for some time 𝜏 and experienced photon loss. The actual input density operator 𝜌 then depends
on the interaction time 𝜏 and the decay rate 𝜅. Formally the time-dependent input density operator 𝜌(𝜏) can be written in the form
𝜌(𝜏) = 𝑒̂𝜏𝜌(0) and using the results in Refs. [21,57] it is explicitly given by

𝜌(𝜏) = 𝜌1(𝜏)⊗ 𝜌1′ (𝜏)⊗ 𝜌34(𝜏), (27)

where

𝜌1(𝜏) =𝑁2(𝛽)
[

|𝜆𝐻 ⟩1⟨𝜆𝐻 | + 𝐶1|𝜆𝐻 ⟩1⟨−𝜆𝐻 | + 𝐶1|−𝜆𝐻 ⟩1⟨𝜆𝐻 | + |−𝜆𝐻 ⟩1⟨−𝜆𝐻 |

]

, (28)

𝜌1′ (𝜏) = |𝜆𝐻 ⟩1′ ⟨𝜆𝐻 |, (29)

𝜌34(𝜏) =
1
2
[

𝜌3𝐻 (𝜏)⊗ 𝜌4𝑉 (𝜏)+𝜌3𝑉 (𝜏)⊗ 𝜌4𝐻 (𝜏) + 𝜈2(|𝐻⟩3⟨𝑉 |⊗ |𝑉 ⟩4⟨𝐻|+|𝑉 ⟩3⟨𝐻|⊗ |𝐻⟩4⟨𝑉 |)
]

, (30)

ith 𝜆 = 𝛽𝜈, 𝐶1 = ⟨−𝛽|𝛽⟩1−𝜈2 , 𝜈 = 𝑒−𝜅𝜏∕2, and 𝜌𝑗𝐾 (𝜏) = 𝜈2|𝐾⟩𝑗⟨𝐾| + (1 − 𝜈2)|0⟩𝑗⟨0| for 𝑗 = 3, 4 and 𝐾 = 𝐻,𝑉 .
Repeating calculations in Section 2 with the decohered inputs in Eqs. (28)–(30) yields the following total success probability and

idelity under the effect of decoherence

𝑃 de
𝑇 = 𝜈2𝑃𝑇 , (31)

𝐹 de = 1
2
𝜈2|⟨𝛼|𝛼𝜈⟩|2(1 + 𝐶1), (32)

where 𝑃𝑇 is defined below Eq. (24) and 𝛼 is given in Eq. (18). A quick check for 𝜏 = 0 (for which 𝜈 = 𝐶1 = 1) gives 𝑃 de
𝑇 = 𝑃𝑇 and

𝐹 de = 1, recovering the results obtained in Section 2 without the decoherence effect. This is a should-be fact, since 𝜏 = 0 means that
the input states did not interact with their environments (i.e., there is no decoherence). Let us define a new notation 𝜇 as

𝜇 = 1 − 𝜈 ≡ 1 − 𝑒−𝜅𝜏∕2 ∈ [0, 1], (33)

which represents the decoherence strength: 𝜇 = 0 for 𝜏 = 0 and 𝜇 = 1 for 𝜏 = ∞. In Fig. 3 we plot the total success probability 𝑃 de
𝑇

(solid line) and the fidelity 𝐹 de (dashed line) versus the decoherence strength 𝜇. Roughly speaking, 𝑃 de
𝑇 and 𝐹 de degrade severely

with increasing 𝜇. For 𝜇 ≥ 0.8, both 𝑃 de
𝑇 and 𝐹 de almost vanish. This is understandable, since in this case the input states in Eqs.

(28)–(30) are getting more and more decohered (even becoming almost completely vacuum for 𝜇 → 1), thus making the scheme
performance worse and worse. However, it can be seen that 𝑃 de

𝑇 is seemingly less susceptible to 𝜇 than 𝐹 de. Discretely, when 𝜇
rom 0 reaches 0.2, 𝑃 de

𝑇 reduces from over 0.16 to around 0.11, losing about 31% of its initial value, whereas 𝐹 de witnesses roughly
0% degradation decreasing from 1 to around 0.4. Quite acceptable total success probability and fidelity can be retained for a weak

de de
6

nough strength of decoherence: at 𝜇 = 0.01 we have 𝑃𝑇 ≈ 0.17 and 𝐹 ≈ 0.95.



Optik 225 (2021) 165820D.T. Le et al.

w
|

b

w

p
a
p

i
|

o
o
t

g
t
c
i
t
l
(
t

3.2. Realistic input resources

We emphasize that our scheme works not only for the input even cat state |𝛤 ⟩1 in Eq. (7) but also for an odd cat one and which
type of cat states to be used would result in distinct success probability and fidelity. Precise generation of these cat states in general
is a daunting task; in most practical experiments, they are replaced with squeezed resources. Specifically, for small amplitudes
even and odd cats can be very well approximated respectively by a squeezed vacuum and a squeezed single photon. While the
former state can be generated deterministically via vacuum squeezing [58], production of the latter typically involves subtracting
one photon which is of probabilistic nature and of low efficiency [59,60]. In that sense, approximate even cat states would be more
experimentally accessible than approximate odd ones. In the Fock-state basis, the squeezed vacuum state |sv⟩ and the squeezed
single photon state |ss⟩ are respectively of the forms

|sv⟩ =
∞
∑

𝑛=0

(− tanh 𝑠)𝑛

(cosh 𝑠)1∕2

√

(2𝑛)!
2𝑛𝑛!

|2𝑛⟩, (34)

|ss⟩ =
∞
∑

𝑛=0

(tanh 𝑠)𝑛

(cosh 𝑠)3∕2

√

(2𝑛 + 1)!
2𝑛𝑛!

|2𝑛 + 1⟩, (35)

here in both equations 𝑠 is the squeezing parameter which is assumed to be real. The fidelity between the squeezed vacuum state
sv⟩ and the ideal even cat state of amplitude 𝛽 is given by [61]

𝐹 sv-even = 2𝑒−𝛽2(tanh 𝑠+1)

(1 + 𝑒−2𝛽2 ) cosh 𝑠
, (36)

whereas that between the squeezed single photon state |ss⟩ and the ideal odd cat state of amplitude 𝛽 is [62]

𝐹 ss-odd =
2𝛽2𝑒𝛽2(tanh 𝑠−1)

(1 − 𝑒−2𝛽2 )(cosh 𝑠)3
. (37)

Fixing 𝛽, we find 𝑠 that optimizes 𝐹 sv-even and 𝐹 ss-odd respectively as 𝑠opteven = −arcsinh(2𝛽2)∕2 and 𝑠optodd = arcsinh(2𝛽2∕3)∕2. Substituting
these optimal values of 𝑠 into Eqs. (36) and (37), we find that for small values of 𝛽 (≤ 1) the two fidelities 𝐹 sv- even and 𝐹 ss-odd can
e very high. For instance, for 𝛽 = 0.7 we have 𝐹 sv-even ≈ 0.9934 when 𝑠 = −0.43358 and 𝐹 ss-odd ≈ 0.9998 when 𝑠 = 0.16056.

Besides the cat states, the entangled polarization photon pair |𝛩⟩34 in Eq. (9) is also a requisite input state in our scheme.
In practice, the state |𝛩⟩34 is routinely generated via the type-II spontaneous parametric down conversion (SPDC) process, in
which a single mother optical pumping beam creates two daughter photon beams (signal and idler) which are entangled in
orthogonal polarizations [63]. The output state |SPDC⟩ of such SPDC process unavoidably includes a large vacuum component
and is approximately given by [44]

|SPDC⟩34 ≃
√

1 − 𝜆2|0⟩3|0⟩4 + 𝜆|𝛩⟩34 + O(𝜆2), (38)

here 𝜆 is the (dimensionless) SPDC interaction strength typically of order 10−2.
In this subsection, we analyze the scheme performance when using either the squeezed vacuum state |sv⟩ or the squeezed single

hoton state |ss⟩ in Eqs. (34) and (35) as a possible realistic input state for mode 1 and the SPDC output state |SPDC⟩34 in Eq. (38) as
possible realistic input state for modes 3 and 4. As a result of using such realistic input resources, expressions of the total success
robability 𝑃 re

𝑇 and the fidelity 𝐹 re are derived as

𝑃 re
𝑇 = (1 − 𝜆2)𝑃 re

𝑇 ,0 + 𝜆2𝑃 re
𝑇 ,𝛩, (39)

𝐹 re =
(1 − 𝜆2)𝑃 re

𝑇 ,0𝐹
re
0 + 𝜆2𝑃 re

𝑇 ,𝛩𝐹
re
𝛩

𝑃 re
𝑇

=
𝜆2𝑃 re

𝑇 ,𝛩

𝑃 re
𝑇

𝐹 re
𝛩 , (40)

where 𝑃 re
𝑇 ,0 and 𝐹 re

0 (𝑃 re
𝑇 ,𝛩 and 𝐹 re

𝛩 ) are the total success probability and the fidelity when the initial input state of modes 3 and
4 is solely vacuum (the entangled polarization photon pair |𝛩⟩34). The expression for the total success probability 𝑃 re

𝑇 in Eq. (39)
s interpreted as the sum of 𝑃 re

𝑇 ,0 and 𝑃 re
𝑇 ,𝛩 weighted respectively by the populations of vacuum and the state |𝛩⟩34 in the state

SPDC⟩34. As for the fidelity 𝐹 re in Eq. (40), we see contribution from 𝐹 re
𝛩 only. This is owing to the fact that if the initial input state

f modes 3 and 4 is vacuum, mode 3 will remain being vacuum, making the generated hybrid state have no overlap with the ideal
ne |𝛹⟩13 in Eq. (5), of which mode 3 is a definite one-photon state. In other words, we have 𝐹 re

0 = 0, explaining disappearance of
he contribution due to 𝐹 re

0 in the second equality of Eq. (40).
Some essential details for numerical calculations of the total realistic success probability 𝑃 re

𝑇 and the realistic fidelity 𝐹 re are
iven in Appendix A. In Fig. 4, we plot 𝑃 re

𝑇 (solid line) and 𝐹 re (dashed line) versus the type-II SPDC strength 𝜆 for two cases: (a)
he squeezed vacuum as the approximate input cat state for mode 1 and (b) the squeezed single photon as the approximate input
at state for mode 1. Generally speaking, under consideration of the realistic inputs both 𝑃 re

𝑇 and 𝐹 re are reduced compared to the
deal case with the genuine input states. In particular, the total success probability 𝑃 re

𝑇 in both panels is of order 10−4, which is
hree orders of magnitude lower than that in the ideal case (which is of order 10−1 as in Fig. 2). The fidelity 𝐹 re in both panels is
ess than one; for example, at 𝜆 = 4 × 10−2 one has 𝐹 re ≈ 0.25 in panel (a) and 𝐹 re ≈ 0.94 in panel (b). Comparing panels (a) and
b) at higher values of 𝜆 we see a clear outperformance of the squeezed single photon over the squeezed vacuum in terms of the

−2 re −4 re
7

otal success probability and especially the fidelity. Discretely, at 𝜆 = 8 × 10 in panel (a) 𝑃𝑇 ≈ 3.3 × 10 and 𝐹 ≈ 0.57, while in
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Fig. 4. (Color online) Total success probability 𝑃 re
𝑇 (solid line) and fidelity 𝐹 re (dashed line) in dependence on the type-II SPDC strength 𝜆 when using (a) the

queezed vacuum in Eq. (34) with 𝑠 = −0.43358 as an approximation to an even cat state of amplitude 0.7 and (b) the squeezed single photon in Eq. (35) with
= 0.16056 as an approximation to an odd cat state of amplitude 0.7. In both panels, the dot-dashed line represents the unit fidelity (i.e., when the input states
re perfect) and the reflectivity 𝑟 is chosen to be 0.1.

anel (b) 𝑃 re
𝑇 ≈ 4.6 × 10−4 and 𝐹 re ≈ 0.98. Such superiority of the squeezed single photon is mainly thanks to its strong suppression

n 𝑃 re
𝑇 ,0. Numerically, we find 𝑃 re

𝑇 ,0 ≈ 1.4 × 10−4, 𝑃 re
𝑇 ,𝛩 ≈ 3.1 × 10−2, and 𝐹 re

𝛩 ≈ 0.972 for the case of the squeezed vacuum in panel (a)
nd 𝑃 re

𝑇 ,0 ≈ 6.9 × 10−6, 𝑃 re
𝑇 ,𝛩 ≈ 7.1 × 10−2, and 𝐹 re

𝛩 ≈ 0.999 for the case of the squeezed single photon in panel (b). By this, for large
(say, 𝜆 ≥ 7 × 10−2) the prefactor 𝜆2𝑃 re

𝑇 ,𝛩∕𝑃
re
𝑇 in Eq. (40) for the case of the squeezed vacuum varies from 0.52 to 0.69, but for the

ase of the squeezed single photon it is very close to 1 ranging from 0.98 to 0.99, which in turn renders the average fidelity 𝐹 re

oughly equal to 𝐹 re
𝛩 .

.3. Imperfections in balanced beam splitters

The setup in Fig. 1 requires using two BBSs (i.e., BBS1 and BBS2) as well as several PBSs and one HWP. We assume that the PBSs
nd the HWP are perfect but consider the circumstance when the two BBSs could be slightly unbalanced. To this end, we introduce
mall imperfection parameters 𝜖𝑘 with 𝑘 = 1, 2 defined via the reflectivity and the transmissivity of the imperfect BBS1 and BBS2
s

𝜖𝑘 = 1∕2 − 𝑟𝑘 = 𝑡𝑘 − 1∕2. (41)

easonably, we assume |𝜖𝑘| ≪ 1 to ensure a slight unbalance of the BBSs.
Because of the asymmetry of the two imperfect BBSs, the outcomes of the four measurements characterized by the operators

𝛱𝑗 ; 𝑗 = 1, 2, 3, 4} defined respectively in Eqs. (20)–(23) will herald successful generation of the hybrid entangled state with different
uccess probabilities 𝑃 im

𝑗 and fidelities 𝐹 im
𝑗 . Analytical expressions for 𝑃 im

𝑗 and 𝐹 im
𝑗 are derived in Appendix B and in this subsection

e highlight essential results only. Generally, 𝑃 im
𝑗 and 𝐹 im

𝑗 depend not only on 𝜖1 and 𝜖2 but also on 𝑗. For example, regarding the
easurement 𝛱1 we find that

𝑃 im
1 = 𝑁2(𝛽)

[

(𝑟22 + 𝑡22)𝑟𝛽
2𝑒−2𝑟𝛽

2
+ (𝑟22 − 𝑡22)𝛾1𝛾2𝑒

−2𝛽2
]

(42)

nd

𝐹 im
1 =

𝑁2(𝛽)𝑒−2𝑟𝛽2

4𝑃 im
1

[

𝛾2𝑓0(𝛿1)(𝑟2⟨𝛿|𝛿2⟩ − 𝑡2⟨−𝛿|𝛿2⟩) + 𝛾1𝑓0(𝛿2)⟨𝛿|𝛿1⟩
]2 , (43)

here 𝛿 is defined below Eq. (12) and 𝑓𝑛(𝑥) is defined above Eq. (13), while 𝛾1, 𝛾2, 𝛿1, and 𝛿2 are some constants dependent on 𝛽, 𝑟, 𝑡
and 𝜖1,2 (see the corresponding formulae in Appendix B). As for 𝑃 im

2,3,4 and 𝐹 im
2,3,4, their expressions are given explicitly in Appendix B,

which are 𝑗-dependent. However, we find out that the total success probability 𝑃 im
𝑇 turns out to be the same as in the ideal case.

That is,

𝑃 im
𝑇 =

4
∑

𝑗=1
𝑃 im
𝑗 = 𝑃𝑇 , (44)

where 𝑃𝑇 = 4𝑃 with 𝑃 given in Eq. (24). This shows that the total success probability of our generation scheme is insensitive to
small BBS imperfections. For analysis of the fidelity, we define its average as

𝐹 im =

∑4
𝑗=1 𝑃

im
𝑗 𝐹 im

𝑗
∑4

𝑗=1 𝑃
im
𝑗

, (45)

hich depends on both 𝜖1 and 𝜖2. In Fig. 5 we plot 𝐹 im as a function of 𝜖1 and 𝜖2. As seen clearly from the plot, 𝐹 im remains very
igh (i.e., 𝐹 im ≥ 0.980) for |𝜖1,2| ≤ 0.08. The value of 𝐹 im is approaching 1 when 𝜖1,2 are tending to zero. More concretely, 𝐹 im ≥ 0.999
8

or |𝜖1,2| ≤ 0.02.
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Fig. 5. (Color online) Average fidelity 𝐹 im defined in Eq. (45) in variation with respect to the BBS imperfection parameters 𝜖1 and 𝜖2. Here to generate the plot
𝛽 and 𝑟 are chosen similarly to those in Fig. 3.

Fig. 6. (Color online) Total probability 𝑃𝑇 ,𝜂 (solid line) given in Eq. (48) and fidelity 𝐹𝜂 (dashed line) given in Eq. (49) in dependence on (a) the detector
efficiency 𝜂 and (b) the reflectivity 𝑟. In panel (a) the reflectivity 𝑟 is 0.1, while in panel (b) the photodetector efficiency 𝜂 is 0.9. In both panels, we assume
perfect input states of which the input even cat state has an amplitude 𝛽 = 1.

3.4. Inefficient photodetectors

A crucial requirement in our scheme is that the photodetectors are able to resolve photon numbers. However, practical
photodetectors are often inefficient operating with some errors. We thus take into account such imperfect photodetectors whose
figure of merit is characterized by the efficiency 𝜂 ∈ [0, 1]. Mathematically, a detection of 𝑛 photons with efficiency 𝜂 is modeled by
a positive operator-valued measurement (POVM) [44]

𝐸(𝑛)
𝜂,𝑎 =

∞
∑

𝑘=0
𝐶𝑘
𝑛+𝑘𝜂

𝑛(1 − 𝜂)𝑘|𝑛 + 𝑘⟩𝑎⟨𝑛 + 𝑘|, (46)

where 𝑎 denotes the mode whose photon number is detected. For 𝜂 = 1, 𝐸(𝑛)
𝜂=1,𝑎 ≡ |𝑛⟩𝑎⟨𝑛|, representing a perfect projective

measurement. For 𝜂 → 0 and 𝑛 ≠ 0, 𝐸(𝑛)
𝜂→0,𝑎 → 0, implying no information about the measured state can be obtained. The perfect

measurement 𝛱1 in Eq. (20) is then replaced by an imperfect one 𝛱1,𝜂 which is of the form

𝛱1,𝜂 = 𝐸(0)
𝜂,2 ⊗𝐸(1)

𝜂,2′ ⊗𝐸(1)
𝜂,4 ⊗𝐸(0)

𝜂,4′ , (47)

and similar replacements are made for 𝛱2,𝛱3, and 𝛱4.
For the input states of the forms given in Eqs. (7)–(9) the total success probability 𝑃𝑇 ,𝜂 and the fidelity 𝐹𝜂 in the presence of

inefficient photodetectors are derived as

𝑃𝑇 ,𝜂 =
𝑟𝛽2𝜂2𝑒−2𝑟𝛽2𝜂

1 + 𝑒−2𝛽2
, (48)

𝐹𝜂 =
1 + 𝑒−2𝑟𝛽2(1−𝜂)

2
. (49)

In Fig. 6 we plot 𝑃𝑇 ,𝜂 (solid line) and 𝐹𝜂 (dashed line) as a function of (a) the detector efficiency 𝜂 and (b) the reflectivity 𝑟. For
panel (a), variations of the total success probability 𝑃 and the fidelity 𝐹 share the same pattern, that is, monotonic increase
9
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Table 1
Comparisons of types of hybrid entangled state to be generated, total success probabilities, and resource
consumptions between our scheme and others.

Our scheme The schemes in Refs. [41,42]

Type of hybrid entanglement 1
√

2
(|𝛼𝐻 ⟩|𝐻⟩ + |−𝛼𝑉 ⟩|𝑉 ⟩) 1

√

2
(|𝛼⟩|𝐻⟩ + |−𝛼⟩|𝑉 ⟩)

Total success probability 4𝑃 with 𝑃 given in Eq. (24) 2𝑃

Resource consumption Passive devices and
photon-number-resolving
detectors

Active displacement, passive
devices, and
photon-number-resolving
detectors

with the efficiency 𝜂. This is as expected, since the better the detectors are the better the scheme performance is. By contrast,
n panel (b) we observe a tradeoff between 𝑃𝑇 ,𝜂 and 𝐹𝜂 in terms of the reflectivity 𝑟. Concretely, an increase in 𝑟 results in a

higher 𝑃𝑇 ,𝜂 with a sacrifice of a lower 𝐹𝜂 . For example, with 𝑟 = {0.1, 0.2, 0.3,…} we have 𝑃𝑇 ,𝜂 = {0.0596, 0.0996, 0.1247,…} and
𝐹𝜂 = {0.990, 0.980, 0.971,…}. This can be qualitatively explained as follows. Increasing 𝑟 leads to improvements in both the single-
photon population, i.e., the function 𝑓 2

1 (𝛾) with 𝛾 = 𝛽
√

2𝑟 in Eq. (24), and the 𝑛-photon populations, 𝑓 2
𝑛 (𝛾) (𝑛 > 1), in mode 2 of

he state |𝛯⟩12 in Eq. (12). The first improvement directly links to an increase in the total success probability (see Eq. (24)). As
or the second one, it deserves noting that the detectors are now imperfect, so that the collapsed state of modes 1 and 3 after a
easurement, say, 𝛱1,𝜂 , contains not only the desired hybrid entangled state in Eq. (17) but also irrelevant terms hidden in “OT’’

f Eq. (16) whose weights increase with 𝑓 2
𝑛 (𝛾). The second improvement in 𝑓 2

𝑛 (𝛾) thus enhances the populations of these unwanted
erms in the generated state which have no overlap with the target one and, as a result, degrades the fidelity. Furthermore, we note
rom Eqs. (48) and (49) that lim𝑟→0 𝑃𝑇 ,𝜂 = 0 and lim𝑟→0 𝐹𝜂 = 1, implying that for any given efficiency 𝜂 an arbitrarily high fidelity

can be achieved by decreasing the reflectivity 𝑟 yet with a price of an arbitrarily low success probability.

4. Discussion and conclusion

For a glance at the differences in our generation scheme in comparison with others we first provide the main concerned features
in Table 1 and then go into detailed discussions.

Unlike the scheme in Ref. [41], where the input mode of the first party is an unpolarized Schrodinger cat state and thus his/her
two-mode entangled state is also unpolarized, in our scheme the input mode of the first party is a polarized Schrodinger cat state
(see Eq. (7)) and thus his/her two-mode entangled state is also polarized (see Eq. (12)). The advantage of using polarized modes is
that now a mode is characterized at the same time by two DoFs: path DoF and polarization DoF. Since a photon in the two-particle
entangled polarization state in Eq. (9) also has both path and polarization DoFs and after the second BBS (i.e., BBS2) in Fig. 1 all
the path and polarization information are erased, we have four successful events in our scheme rather than only two in the schemes
of Refs. [41,42]. This explains why our total success probability doubles in comparison to that in Refs. [41,42].

Another positive point of our scheme is that we do not use displacement operation as in Refs. [41,42]. Since in practice
displacement operation can only be implemented approximately by means of a highly transmissive BS plus a strong local coherent
beam [48], avoiding such operation as in our scheme allows achieving exact unit fidelity and relaxes resource consumption.

Analyses of decoherence effect on the input states and imperfection of the BBSs show that our scheme remains resilient against
small perturbations. Particularly, reasonable success probability (> 0.1) and high fidelity (> 0.9) can be retained, provided that
he decoherence strength is weak enough and the BBSs’ imperfections are small enough. The former condition can be satisfied
y properly designing an experimental setup that minimizes the interaction time of the input states with their surrounding
nvironments, whereas the latter condition by carefully engineering optical devices.

To obtain the desired hybrid entanglement |𝛹⟩13 =
(

|𝛼𝐻 ⟩1|𝐻⟩3 + |−𝛼𝑉 ⟩1|𝑉 ⟩3
)

∕
√

2 with a reasonably large amplitude 𝛼, two
equirements should be simultaneously met: (i) the amplitude 𝛽 of the input state |𝛤 ⟩1 = 𝑁(𝛽)

(

|𝛽𝐻 ⟩ + |−𝛽𝐻 ⟩

)

1 should be large
nough and (ii) the reflectivity 𝑟 of the general BS (i.e., BS(𝑟) in part 2 of the setup in Fig. 1) should be low enough. Schrodinger
ven and odd kitten states (i.e., cat states with small amplitudes) can be approximated by the squeezed vacuum and the squeezed
ingle photon with very high fidelities [25,40,58–60] and it is also possible to feed such a kitten to grow up to a cat [64]. Hence
he requirement (i) could in principle be met. As for the requirement (ii), it stems from the relation (18) and is straightforwardly
atisfied, since a BS with arbitrarily low reflectivity (high transmissivity) can be engineered with current technologies. In addition,
t is significant to take into account the realistic entangled polarization photon pair |𝛩⟩34, which is typically mixed with a strong
acuum. Such vacuum mixing in general reduces the scheme success probability and the fidelity. One way to deal with this issue
s to use a heralded entangled photon source [65–67], which however could complicate the whole experimental setup. A simpler
olution is to employ an (approximate) odd cat state as the input for mode 1, by which a high fidelity can still be achieved (see
ection 3.2).

Another practical issue of great concern is that failure occurs whenever a detector registers multiple photons that is caused by
he terms contained in “OT’’ of Eq. (16). To correctly discriminate between success and failure, photon-number-resolving detectors
re necessitated. On the one hand, photon-number-resolving detectors with efficiency as high as 95% have been demonstrated [68]
nd employed in various experiments [69–71]. On the other hand, as pointed out in Section 3.4, even with photodetectors of low
fficiency, reduction of the reflectivity of the general BS used in our scheme would yield a rather high fidelity but at the cost
10



Optik 225 (2021) 165820D.T. Le et al.

p
n
f
r
w
b
a
s
o
i

D

t

A

N
o
F

A

p
s
p

w

r
t

A

of a quite low success probability. Additionally, propagation of modes along different optical paths may cause bad effects if the
differences in modal accumulated phases become big. In that case the relative phase needs to be kept constant in order to achieve
the generated state with high fidelity. One approach to do so is by means of the phase-locking technique described in Ref. [40]
which employs ancillary seed weak beams and photodiodes.

To conclude, we have presented a new scheme to prepare an entangled state between a polarized coherent state and a polarized
hoton. The proposed scheme is of interest from both theoretical and experimental points of view. It is interestingly associated with a
ew, promising qubit encoding in Eq. (6). As a possible application, our generated entangled state can serve as a quantum channel
or two parties, Alice and Bob, to do hybrid teleportation: either Alice teleports an unknown DV qubit 𝑐|𝐻⟩ + 𝑑|𝑉 ⟩ to Bob who
eceives a CV qubit  (𝑐|𝛼𝐻 ⟩+𝑑|−𝛼𝑉 ⟩) or, in the opposite direction, Bob teleports an unknown CV qubit  (𝑐|𝛼𝐻 ⟩+𝑑|−𝛼𝑉 ⟩) to Alice
ho receives a DV qubit 𝑐|𝐻⟩+𝑑|𝑉 ⟩. Of great benefit is the fact that all of the in-line operations in our scheme are manipulated only
y means of commonly available passive optical elements such as BSs, BBSs, HWPs, and PBSs once the necessary inputs including
cat state, a coherent state, and a pair of entangled polarized photons are supplied off-line. Besides achieving a doubled total

uccess probability compared with that in Refs. [41,42], our scheme is also economical because no resource-consuming displacement
perators are needed. Moreover, detailed analyses have shown that our scheme is robust against small decoherence effect and device
mperfections and its relevant technical requirements can be met within current technology making it experimentally feasible.
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ppendix A. Realistic resources for the input states

Using the squeezed vacuum state |sv⟩ in Eq. (34) as the approximate input even cat state for mode 1 and the entangled
olarization photon pair state |𝛩⟩34 in Eq. (9) as the input for modes 3 and 4 and noting the application of a general BS on Fock
tates in Eq. (14), the total state |𝛴⟩ in Eq. (13) of modes 1, 2, 3, and 4 which already passed through part 1 and the general BS in
art 2 of the setup in Fig. 1 is altered to be

|𝛴ap
⟩ =

∞
∑

𝑛,𝑚=0

𝑛̄
∑

𝑝=0

𝑚
∑

𝑞=0

𝑛̄−𝑝+𝑞
∑

𝑝′=0

𝑚−𝑞+𝑝
∑

𝑞′=0
𝐹 𝑛,𝑚
𝑝,𝑞,𝑝′ ,𝑞′ (𝑠, 𝛽, 𝑟, 𝑡) |(𝑛̄−𝑝+𝑞−𝑝

′)𝐻 , (𝑚−𝑞+𝑝−𝑞′)𝑉 ⟩1|𝑝′𝐻 , 𝑞′𝑉 ⟩2 ⊗
1
√

2

(

|𝐻⟩3|𝑉 ⟩4 + |𝑉 ⟩3|𝐻⟩4
)

, (A.1)

here 𝑛̄ = 2𝑛, and

𝐹 𝑛,𝑚
𝑝,𝑞,𝑝′ ,𝑞′ (𝑠, 𝛽, 𝑟, 𝑡) = 𝑐𝑛(𝑠)𝑓𝑚(𝛽)𝐵𝑛̄,𝑚

𝑝,𝑞 (
1
2 ,

1
2 )𝐵

𝑛̄−𝑝+𝑞,0
𝑝′ ,0 (𝑟, 𝑡)𝐵𝑚−𝑞+𝑝,0

𝑞′ ,0 (𝑟, 𝑡), (A.2)

𝑐𝑛(𝑠) =
(− tanh 𝑠)𝑛

(cosh 𝑠)1∕2

√

(2𝑛)!
2𝑛𝑛!

, (A.3)

with 𝑐𝑛(𝑠) the coefficient of the squeezed vacuum state |sv⟩ in Eq. (34) and 𝑓𝑛(𝑥) and 𝐵𝑗,𝑘
𝑝,𝑞 (𝑟, 𝑡) defined by Eqs. (13) and (15),

espectively. Modes 2 and 4 then interfere at the BBS2 and afterwards enter two PBSs (see part 2 of the setup in Fig. 1), yielding
he output state as

|𝛴ap′
⟩ = 1

√

2

∞
∑

𝑛,𝑚=0

𝑛̄
∑

𝑝=0

𝑚
∑

𝑞=0

𝑛̄−𝑝+𝑞
∑

𝑝′=0

𝑚−𝑞+𝑝
∑

𝑞′=0

𝑝′
∑

𝑘=0

𝑞′
∑

𝑘′=0

1
∑

𝑙′=0
𝐹 𝑛,𝑚
𝑝,𝑞,𝑝′ ,𝑞′ (𝑠, 𝛽, 𝑟, 𝑡)

× 𝐵𝑝′ ,0
𝑘,0 (

1
2 ,

1
2 )𝐵

𝑞′ ,1
𝑘′ ,𝑙′ (

1
2 ,

1
2 )|(𝑛̄ − 𝑝 + 𝑞 − 𝑝′)𝐻 , (𝑚 − 𝑞 + 𝑝 − 𝑞′)𝑉 ⟩1|1𝐻 ⟩3|(𝑝′ − 𝑘)𝐻 ⟩2|𝑘𝐻 ⟩4|(𝑞′ − 𝑘′ + 𝑙′)𝑉 ⟩2′ |(1 − 𝑙′ + 𝑘′)𝑉 ⟩4′

+ 1
√

2

∞
∑

𝑛,𝑚=0

𝑛̄
∑

𝑝=0

𝑚
∑

𝑞=0

𝑛̄−𝑝+𝑞
∑

𝑝′=0

𝑚−𝑞+𝑝
∑

𝑞′=0

𝑝′
∑

𝑘=0

1
∑

𝑙=0

𝑞′
∑

𝑘′=0
𝐹 𝑛,𝑚
𝑝,𝑞,𝑝′ ,𝑞′ (𝑠, 𝛽, 𝑟, 𝑡)

× 𝐵𝑝′ ,1
𝑘,𝑙 (

1
2 ,

1
2 )𝐵

𝑞′ ,0
𝑘′ ,0(

1
2 ,

1
2 )|(𝑛̄ − 𝑝 + 𝑞 − 𝑝′)𝐻 , (𝑚 − 𝑞 + 𝑝 − 𝑞′)𝑉 ⟩1|1𝑉 ⟩3|(𝑝′ − 𝑘 + 𝑙)𝐻 ⟩2|(1 − 𝑙 + 𝑘)𝐻 ⟩4|(𝑞′ − 𝑘′)𝑉 ⟩2′ |𝑘′𝑉 ⟩4′ .

(A.4)

fter the measurement 𝛱1 defined in Eq. (20), modes 1 and 3 in the state |𝛴ap′
⟩ are projected onto

𝜌(13)1 =
Tr22′44′

(

𝛱1|𝛴ap′
⟩⟨𝛴ap′

|

)

re , (A.5)
11
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where

𝑃 re
1,𝛩 = ⟨𝛴ap′

|𝛱1|𝛴
ap′

⟩ (A.6)

is the heralding probability. This yields the fidelity between the prepared state 𝜌(13)1 and the genuine hybrid entangled state |𝛹⟩13
s

𝐹 re
1,𝛩 = 13⟨𝛹 |𝜌(13)1 |𝛹⟩13. (A.7)

Similarly, we can calculate the probabilities 𝑃 re
𝑗,𝛩 and the fidelities 𝐹 re

𝑗,𝛩 for the other three measurements 𝛱𝑗=2,3,4 defined in Eqs.
21)–(23) . The above procedure is repeated when replacing the entangled polarization pair (|𝐻⟩|𝑉 ⟩+ |𝑉 ⟩|𝐻⟩)∕

√

2 of modes 3 and
4 in Eq. (A.1) with vacuum to obtain 𝑃 re

𝑗,0 and/or replacing the squeezed vacuum state |sv⟩ as the input state for mode 1 with the
queezed single photon state |ss⟩ in Eq. (35). We also would like to note that in performing our numerical calculations the cutoff
pper limit for the indexes 𝑛 and 𝑚 in Eq. (A.4) is chosen to be 7 [41].

ppendix B. Balanced beam splitter imperfections

For consideration of BBS imperfections in Section 3.3, we respectively replace the two perfect BBSs in the setup of Fig. 1
i.e., BBS1 and BBS2) by the imperfect ones BS(𝑟1, 𝑡1) and BS(𝑟2, 𝑡2), with 𝑟𝑘 and 𝑡𝑘 being different from 1∕2 by small imperfection
arameters 𝜖𝑘 as defined in Eq. (41). We then recalculate Section 2 with these general BSs for the measurement 𝛱1 defined in

Eq. (20) and find 𝑃 im
1 and 𝐹 im

1 as in Eqs. (42) and (43) with

𝛾1 = 𝛽(
√

𝑡1 +
√

𝑟1)
√

𝑟, (B.1a)

𝛾2 = 𝛽(
√

𝑟1 −
√

𝑡1)
√

𝑟, (B.1b)

𝛿1 = 𝛽(
√

𝑡1 +
√

𝑟1)
√

𝑡, (B.1c)

𝛿2 = 𝛽(
√

𝑟1 −
√

𝑟1)
√

𝑡. (B.1d)

nalogously for the other three measurements {𝛱𝑗 ; 𝑗 = 2, 3, 4} defined in Eqs. (21)–(23), we find correspondingly the success
probabilities 𝑃 im

𝑗 and the fidelities 𝐹 im
𝑗 as the following

𝑃 im
2 = 𝑁2(𝛽)

[

(𝑟22+𝑡
2
2)𝑟𝛽

2𝑒−2𝑟𝛽
2
− (𝑟22−𝑡

2
2)𝛾1𝛾2𝑒

−2𝛽2
]

, (B.2)

𝐹 im
2 =

𝑁2(𝛽)𝑒−2𝑟𝛽2

4𝑃 im
2

[

𝛾2𝑓0(𝛿1)(𝑡2⟨𝛿|𝛿2⟩ − 𝑟2⟨−𝛿|𝛿2⟩) + 𝛾1𝑓0(𝛿2)⟨𝛿|𝛿1⟩
]2 , (B.3)

𝑃 im
3 = 𝑃 im

4 = 4𝑟2𝑡2𝑃 , (B.4)

𝐹 im
3 = 𝐹 im

4 =
𝑁2(𝛽)
4𝑃 im

3

(𝐴3 + 𝐵3)2, (B.5)

𝐴3 = 2𝑓0(𝛿2)
√

𝑟2𝑡2𝛾1𝑒
−𝑟𝛽2

⟨𝛿|𝛿1⟩, (B.6)

𝐵3 = 𝑓0(𝛿1)
√

𝑟2𝑡2𝛾2𝑒
−𝑟𝛽2 (⟨𝛿|𝛿2⟩ − ⟨−𝛿|𝛿2⟩), (B.7)

where 𝑓𝑛(𝑥) is the coherent-state coefficient defined above Eq. (13) and 𝑃 is given in Eq. (24). Without difficulty one can check
that

4
∑

𝑗
𝑃 im
𝑗 = 4𝑃 ≡ 𝑃𝑇 , (B.8)

where 𝑃𝑇 is the total success probability in the ideal case.
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