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Abstract
We study a cascaded system of two subsystems repeatedly interacting with a bath prepared in
various non-thermal states. Effects of different types of bath coherence on dynamics of the
system heat flux are explored. For a single-qubit bath with the displacement coherence, heat
flux of each subsystem is divided into dissipative and coherent parts. In the stationary regime,
the dissipative heat fluxes are the same for the two subsystems, but the coherent parts are not
due to the cascaded feature. In the transient regime, heat fluxes occur even when the system
and the bath have the same temperature and, more surprisingly, heat flow reversal appears
when temperatures of the system and the bath differ. For a two-qubit bath we consider two
types of coherence: the squeezing and the heat-exchange ones. In the stationary regime, the
squeezing coherence establishes correlations between the subsystems, each of which is
evolving to its thermal state with a temperature identical to the bath’s. The squeezing
coherence slightly influences only the dynamics of the subsystem that interacts with the bath
later. As for the heat-exchange coherence, it forces the total system to thermalize to a state
with the temperature related to both magnitude and relative phase of the coherence.
Particularly, depending on the relative phases, the heat-exchange coherence can amplify or
suppress the heat flux during the time evolution.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The effort to explore the laws of classical thermodynamics in
the quantum domain results in the growing field of quantum
thermodynamics (QT) [1]. Of particular interest in this quest
is to clarify how the quantum effects, such as quantum coher-
ence and quantum correlation identified as resources in quan-
tum technology, influence the thermodynamics process. In a
pioneering work [2], Scully et al studied a quantum Carnot
engine where the randomly-injected atomic beam is treated

∗ Author to whom any correspondence should be addressed.

as an effective bath for the cavity field mode. It was found
out that, by exploiting the coherence of the three-level atoms
and properly tuning the relative phase therein, the field can be
thermalized to a temperature larger than that of the atoms with-
out coherence [2]. As a result, the quantum efficiency can be
improved to outperform the classical Carnot efficiency [2]. It
was shown that the coherence and correlation can be exploited
as resources to improve the performance and/or the power of
thermal machines [3–17], to enhance work extraction from a
quantum system [18–21] and to increase the system’s ther-
malization temperature [22–24]. On the other hand, ones also
design various thermal machines to produce and/or amplify
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the quantum coherence and correlation [25–27] embodying
their close interplay. Although the quantum coherence and
correlation of non-thermal baths have been studied extensively
in different contexts [3–24], their roles in manipulating heat
fluxes, particularly the different manners and components of
the heat fluxes, need further studies. We address this issue in
this work by focusing on the cascaded model since it involves
two manners of heat exchanges, namely, the local and nonlocal
ones. With the specific type of bath coherence, the heat flux can
be divided into different components, such as the coherent and
incoherent ones, whose detailed behaviors in both transient
and stationary regimes are to be compared as well.

Heat exchange between quantum systems is the essence of
QT and much work has been devoted to the study on its char-
acterization [28–35]. In addition to the fundamental relevance,
on-demand manipulation of heat flux is the prerequisite for its
exploitation, particularly in designing various quantum ther-
mal machines and devices [36–46]. In this connection, how the
quantum coherence and correlation affect the heat flux attracts
a lot of interest [47–58]. It was shown that the natural heat flux
from a hot quantum system to a cold one can be reverted in
the presence of initial quantum correlations between the two
systems [53, 54]. This anomalous phenomenon has recently
been realized in a nuclear magnetic resonance setup [55] and
explained from different points of view, such as the identifi-
cation of the nonclassical contribution [56] and the construc-
tion of the concept of apparent temperature [58]. The relation
between quantum coherence and heat flux is a subtle issue
since the coherence includes different types and the heat
exchange can also manifest various manners. In this work, by
classifying the bath coherences into different types, we inves-
tigate and compare their effects on different manners of heat
fluxes.

According to whether they come into being from the degen-
erate or the non-degenerate energy levels of the bath, the
coherences are classified into non-energetic and energetic
coherences [57] or internal and external coherences [59]. The
non-energetic (internal) coherence contributes to the excitation
(decay) rate of the system being coupled to the bath and deter-
mines the temperature [58] to which the system arrives in the
stationary regime. The non-energetic coherence is also called
heat-exchange coherence [4, 5] since the non-thermal bath in
their presence can still be identified as an effective thermal one
for the system. The energetic (external) coherence is associ-
ated with the energy levels connected by transition of different
numbers of excitation. The coherence between the levels with
one-excitation transition is termed displacement coherence [4,
5] since it exerts the coherent drive on the system akin to
quantum mechanical work [51]. The levels connected by two-
excitation transition lead to the so-called squeezing coherence
[4, 5], under which the bath can be thought of as an effec-
tive squeezed one. Therefore, the displacement and squeezing
coherences belong to the energetic coherences. We shall exam-
ine the effects of these three types of coherences on the heat
fluxes.

In practical situations, the subsystems of a composite quan-
tum system may be affected either by independent baths or by a

common one. When the subsystems are locally coupled to their
own independent baths, the heat flux of a subsystem is related
to its state evolution induced by the local dissipation of its bath.
In this case, only local heat flux appears for each individual
subsystem. By contrast, if two or more subsystems are coupled
to a common bath, the subsystems can be seen as a whole by
the bath even when there are no direct interactions among them
[60–63]. In this case, besides the local dissipation for each sub-
system due to the bath, there appears a collective dissipation
for the subsystems resulting in nonlocal heat fluxes. In addition
to those two configurations, the cascaded model [52, 64–66]
depicts a situation when subsystems, say, S1 and S2, interact
successively with a common bath, namely, the interaction of
S1 with the bath occurs first, which is then followed by that of
S2 with the bath leading to the unidirectional influence of S1 to
S2. The cascaded model has an intrinsic time structure allowing
to depict the sequence of interactions between subsystems and
the environment. For instance, the system of a linear array of
QED cavities can exchange information (energy) unidirection-
ally via the injected atoms passing through the cavities one by
one. From the perspective of thermodynamics, such a cascaded
manner of interaction does not influence the local heat flux of
S1 on the one hand, which is fully consistent with that in the
absence of S2, but, on the other hand, it induces the nonlocal
heat flux that is completely due to S2. Hence, among other fun-
damental and practical relevances, the cascaded model allows
one to deal with both local and nonlocal heat fluxes, which is
the reason for us to consider the cascaded model.

In this work, focusing on a bipartite system S1 and S2

interacting with a non-thermal bath in the cascaded manner,
we study the impacts of three types of coherences of the
bath, namely, the displacement, the squeezing and the heat-
exchange ones, on both the local and nonlocal heat fluxes. The
dynamics of the total system is described by a master equation
derived within the framework of the repeated interaction model
[22–24, 50–52, 65–70]. We first consider the bath constituted
by a single qubit whose coherence is completely attributed to
the displacement coherence. In this case, besides the usual dis-
sipative ones, both the heat fluxes regarding S1 and S2 contain
the contributions from coherent dynamics induced by the dis-
placement coherence, namely, the coherent ingredients of the
heat fluxes. We discuss the features of all these heat fluxes,
i.e., the local versus nonlocal ones as well as the dissipative
versus coherent parts, in both stationary and transient regimes,
respectively. Then, we turn to the two-qubit bath that possesses
the squeezing or heat-exchange coherences. For the bath with
squeezing coherence, S1 and S2 are thermalized to the same
thermal states and meanwhile possess nonzero global corre-
lations between them in the stationary regime. The dynamics
of heat flux of S1 is shown to be independent to the squeezing
coherence, which can however slightly influences that regard-
ing S2. For the bath with heat-exchange coherence, the total
system reaches the thermal state in the stationary regime with
the temperature being related to the magnitude and relative
phase of the heat-exchange coherence. The heat fluxes can be
amplified or suppressed in the time-evolution depending on the
relative phase of the coherence.
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2. The model and master equation

The non-thermal bath R in our model is assumed as a clus-
ter of N identical spin-1/2 particles (qubits). The system of
interest consists of two identical subsystems in form of two
qubits S1 and S2, which randomly and repeatedly interact with
an N-qubit cluster in a cascaded manner. The cascaded man-
ner means that the interaction of S1–R occurs first, which
is then followed by that of S2–R inducing an indirect cou-
pling between S1 and S2 and an unidirectional influence of the
dynamics of S1 on that of S2.

The free Hamiltonians HS and HR of the system and the N
bath particles are respectively given as (� = 1)

HS =

2∑
j=1

HS j =

2∑
j=1

ω0

2
σz

S j
, HR =

ωb

2

N∑
k=1

σz
k, (1)

with σz
X = |1X〉 〈1X | − |0X〉 〈0X| the Pauli z matrix for the qubit

X. In the following, we assumeω0 = ωb = ω, i.e., the resonant
interactions of S j–R. We adopt the central spin model for the
interaction of S j–R where the subsystem S j interacts at random
times with the cluster of N qubits of the bath. The interaction
Hamiltonian of S j–R can be expressed as

H( j)
int = g j

N∑
k=1

(
σ−

S j
σ+

k + σ+
S j
σ−

k

)
= g j

(
σ−

S j
A+ + σ+

S j
A−

)
,

(2)
where gj is the coupling constant between S j and all the bath
qubits, σ−

X = |0X〉 〈1X| and σ+
X = |1X〉 〈0X| are the lowering

and raising operators for qubit X, while A± =
∑N

k=1 σ
±
k denote

the collective lowering and raising operators of the bath qubits.
For simplicity, we let g1 = g2 = g.

The interaction of S j–R for a short time τ can be described
by the unitary propagator U j(τ ) = exp(−iH( j)

intτ ) which is
approximated up to the second order in τ as

U j(τ ) ≈ I − iτH( j)
int −

τ 2

2

(
H( j)

int

)2

= I − igτ
(
σ−

S j
A+ + σ+

S j
A−

)

− (gτ )2

2

(
σ−

S j
σ+

S j
A+A− + σ+

S j
σ−

S j
A−A+

)
. (3)

After the sequential interactions of S1 and S2 with R under the
governments of U1(τ ) and U2(τ ), respectively, the state ρ(t) of
the system evolves to

ρ(t + 2τ ) = TrR

[
U2(τ )U1(τ )ρ(t) ⊗ ρRU†

1(τ )U†
2(τ )

]
≡ M(2τ )ρ(t), (4)

where ρR is the initial state of the bath R. According to the
framework of repeated interaction model, we assume that after
each round of system-bath interactions, the bath state is reiniti-
ated to ρR or equivalently, is replaced by an identical bath with
the same state.

Similarly to the micromaser model [4], we introduce
a rate p to depict the random action of system-bath

interaction. In the given time interval [t, t + δt], the system-
bath interaction governed by M(2τ )ρ(t), equation (4), takes
place with a probability pδt. During the time δt we also
take into account the free evolution of the system being
described by the unitary propagator US(δt) = exp[−iHSδt].
Thus, the system’s state after the evolution time δt takes
the form ρ(t + δt) = US(δt)M(2τ )ρ(t)U†

S(δt) = M(2τ )ρ(t)
− iδt[HS, ρ(t)], in which we have approximated US(δt) to the
first order in δt. Otherwise, with a probability 1 – pδt, the sys-
tem–bath interaction does not occur and the system only freely
evolves under the unitary propagator US(δt). Putting these two
aspects together, the state of the system at time t + δt can be
expressed as

ρ(t + δt) = pδt(M(2τ )ρ(t) − iδt[HS, ρ(t)])

+ (1 − pδt) (ρ(t) − iδt[HS, ρ(t)]) . (5)

Taking the limit of δt → 0, we obtain the following master
equation for the dynamics of the system

ρ̇(t) ≡ lim
δt→0

ρ(t + δt) − ρ(t)
δt

= p (M(2τ ) − 1) ρ(t) − i [HS, ρ(t)]

= −i [HS, ρ(t)] − i

⎡
⎣ 2∑

j=1

H( j)
eff, ρ(t)

⎤
⎦

+
2∑

j=1

(
L( j)

s ρ(t) + L( j)
h ρ(t)

)
+ L(12)

s ρ(t) + L(12)
h ρ(t),

(6)

in which
H( j)

eff = p̃g
(

dσ+
S j
+ d∗σ−

S j

)
, (7)

L( j)
s ρ(t) = p̃g2

(
sσ+

S j
ρ(t)σ+

S j
+ s∗σ−

S j
ρ(t)σ−

S j

)
, (8)

L( j)
h ρ(t) = p̃g2hg

(
σ−

S j
ρ(t)σ+

S j
− 1

2

[
σ+

S j
σ−

S j
, ρ(t)

]
+

)

+ p̃g2he

(
σ+

S j
ρ(t)σ−

S j
− 1

2

[
σ−

S j
σ+

S j
, ρ(t)

]
+

)
,

(9)

L(12)
s ρ(t) = p̃g2s

([
σ+

S1ρ(t), σ+
S2

]
+
[
σ+

S2, ρ(t)σ+
S1

])
+ p̃g2s∗

([
σ−

S1ρ(t), σ−
S2

]
+
[
σ−

S2, ρ(t)σ−
S1

])
,

(10)

L(12)
h ρ(t) = p̃g2hg

([
σ−

S1ρ(t), σ+
S2

]
+
[
σ−

S2, ρ(t)σ+
S1

])
+ p̃g2he

([
σ+

S1ρ(t), σ−
S2

]
+
[
σ+

S2, ρ(t)σ−
S1

])
,

(11)

and g̃ = gτ , d = 〈A−〉, d∗ = 〈A+〉, s =
〈
(A−)2

〉
, s∗ =〈

(A+)2
〉
, he = 〈A+A−〉, hg = 〈A−A+〉 with 〈. . .〉 =

Tr {(. . .)ρR} and [. . . , . . .]+ the anticommutator. The
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master equation (6) contains two types of actions of the bath
on the system: the terms given by equations (7)–(9) represent
the local actions on S j coinciding with the case when only one
subsystem S j exists in the absence of the other subsystem,
while those given by equations (10) and (11) represent the
collective actions on the two subsystems due to the cascaded
interaction of the system with the bath [52, 64–66]. In the
master equation (6), there are three types of coherences of the
initial bath state characterized by the coefficients d(d∗), s(s∗)
and he(hg), respectively. Note that we treat the correlations
of the constituent qubits of the bath as the coherences by
regarding them as a single quantum system. The displacement
and squeezing coherences determine the coefficients d(d∗)
and s(s∗) appearing in the effective Hamiltonian (7) and the
Liouvillians (8) and (10), respectively. The heat-exchange
coherence contributes to the excitation (decay) rate in terms
of he(hg) and appears in the Liouvillians (9) and (11).

In the following, we assume that the subsystem S j is pre-
pared in the thermal state of the form

ρS j =
[
(1 + q j)/2

]
|0〉 〈0|+

[
(1 − q j)/2

]
|1〉 〈1| , (12)

where q j = tanh
(
βS jω/2

)
with βS j = 1/TS j the inverse tem-

perature of S j (we set Boltzmann constant kB = 1). We shall
consider TS1 = TS2 = TS throughout the paper. As for the bath,
we shall consider two scenarios: the first one consists of a sin-
gle qubit with the displacement coherence and the second one
consists of two qubits with the squeezing or the heat-exchange
coherence.

3. Single-qubit bath with displacement coherence

We first deal with a situation in which the bath comprises only
one qubit (i.e., N = 1). Instead of the thermal state, such as that
considered in reference [52], we assume the qubit being pre-
pared in non-thermal state with a finite coherence. The coher-
ence of the qubit is bound to the energetic coherence, or rather,
the displacement coherence, therefore the master equation (6)
of the system is reduced to

ρ̇(t) = −i [HS, ρ(t)] − i

⎡
⎣ 2∑

j=1

H( j)
eff , ρ(t)

⎤
⎦

+

2∑
j=1

L( j)
h ρ(t) + L(12)

h ρ(t). (13)

The energy evolution of the total system, namely, the total heat
flux Jtot(t), can be evaluated as

Jtot(t) ≡ Tr {ρ̇(t)HS} = Jtot
1 (t) + Jtot

2 (t), (14)

where Jtot
1 (t) = J1(t) + W1(t) and Jtot

2 (t) = J2(t) + W2(t)
+ J12(t) represent the total heat fluxes of S1 and S2,
respectively, with

W j(t) ≡ −i Tr
{[

H( j)
eff, ρ(t)

]
HS

}
= −i Tr

{
ρ(t)

[
HS j , H( j)

eff

]}
,

(15)

J j(t) ≡ Tr
{
L( j)

h ρ(t)HS

}
= Tr

{
L( j)

h ρ(t)HS j

}
, (16)

J12(t) ≡ Tr
{
L(12)

h ρ(t)HS

}
= Tr

{
L(12)

h ρ(t)HS2

}
. (17)

From equations (14)–(17), we note that the total heat flux
Jtot(t) contains both coherent and incoherent contributions due
to different physical processes. The terms W1(t) and W2(t)
stand for the heat fluxes taking the form of coherent work
[12], which is dependent on and driven by the displacement
coherence of the bath. Therefore, the displacement coherence
of non-thermal bath can be regarded as a thermodynamics
resource to transform the disordered energy to the ordered one
[12]. The other terms of Jtot(t) embody the usual heat with J1(t)
and J2(t) stemming from the local dissipators L(1)

h and L(2)
h ,

respectively, while J12(t) from the nonlocal one L(12)
h .

Suppose the bath qubit is prepared in the state

ρR = ρth
R + λρcoh

R (18)

where ρth
R =

[
(1 + ξ)/2

]
|0〉 〈0|+

[
(1 − ξ)/2

]
|1〉 〈1| is a

thermal state of the bath at the inverse tempera-
ture βR = 1/TR with ξ = tanh

(
βRω/2

)
, and ρcoh

R =√
(1 − ξ2)/4

(
e−iφ |0〉 〈1|+ eiφ |1〉 〈0|

)
denotes the coherent

part of the bath state with λ ∈ [0, 1] controlling the value of
coherence and φ ∈ [0, 2π]. Though we use TR to measure the
temperature of bath qubit, it is actually an effective one when
the qubit possesses nonzero coherence (i.e., λ 
= 0). For this
state, we have d = λ

√
(1 − ξ2)/4 eiφ, he = (1 − ξ)/2 and

hg = (1 + ξ)/2. By means of equations (15)–(17), we then
derive the explicit expressions of all the contributions to the
total heat flux Jtot(t) as

J j(t) = p̃g2ω
[
heρ

g
S j

(t) − hgρ
e
S j

(t)
]

, (19)

W j(t) = 2 p̃gω|d|Im
[
eiφ ρge

S j
(t)
]

, (20)

J12(t) = 2 p̃g2ω(he − hg)Re[ρ23(t)], (21)

where ρg
S j

(t) = 〈0| ρS j(t) |0〉, ρe
S j

(t) = 〈1| ρS j(t) |1〉
and ρge

S j
(t) = 〈0| ρS j(t) |1〉 with ρS j(t) the reduced

state of S j at time t, while ρkl(t) =
〈

k̃
∣∣∣ ρ(t)

∣∣∣̃l〉 with{∣∣∣1̃〉=|00〉S1S2
,
∣∣∣2̃〉=|01〉S1S2

,
∣∣∣3̃〉= |10〉S1S2

,
∣∣∣4̃〉=|11〉S1S2

}
the ordered basis of the subsystems S1 and S2.

3.1. The stationary regime

By solving ρ̇(t) = 0 in equation (13), we can derive the sta-
tionary state of the system and the stationary heat fluxes. The
heat fluxes regarding the subsystem S1, i.e., J1 ≡ J1(t →∞)
and W1 ≡ W1(t →∞), can be expressed as

J1 = −W1 =
4p3|d|2g̃4ω(he − hg)

8p2g̃2|d|2 + (he + hg)2 p2g̃4 + 4ω2
. (22)

The expression (22) indicates that for d 
= 0, namely, when the
bath has nonzero coherence (with λ 
= 0), the nonzero J1 and
W1 can always be achieved, which are also true for the heat
fluxes regarding S2, i.e., J2 ≡ J2(t →∞), W2 ≡ W2(t →∞)

4



J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 205505 Z-X Man et al

Figure 1. The stationary heat fluxes J1, W1, J2, W2 and J12 versus
the magnitude of coherence of the bath in terms of λ. The other
parameters are chosen as TR/ω = 1, p = 0.3, g̃/ω = 1 and φ = 0.

and J12 ≡ J12(t →∞). The analytic expressions of W2 and
J12 are provided in the appendix, i.e., equations (A.1)–(A.4),
while J2 = J1. As can be seen from equation (20), W j 
= 0
implies that the subsystems S1 and S2 possess nonzero coher-
ences in the stationary regime, which means that the sta-
tionary states of S1 and S2 are non-thermal. These nonzero
stationary coherences are induced by the bath’s displacement
coherence which can be seen as the classical drive. For the dis-
sipative qubit driven by real field, its quantum non-equilibrium
steady state can also carry coherences [71], which is a gener-
ical fact for non-adiabatically driven quantum open systems
[72]. Therefore, it appears to be that the steady coherence of
the system can always arise irrespective of the real driving field
and the drive provided by the bath coherence.

Though both J1 and W1 can retain nonzero, the expres-
sion in equation (22) also indicates that their sum becomes
zero, namely, the heat transferred in terms of coherent work
W1 between the bath and S1 is completely transferred back via
the dissipative heat J1. For S2, we also obtain that J2 + J12 =
−W2, which implies that the heat exchange in terms of W2

between the bath and S2 can be totally offset via the sum of
the local and nonlocal dissipative heats J2 and J12. This result
further demonstrates that, although J12 is induced by the non-
local dissipator, it totally contributes to S2 (but not at all to S1)
due to the cascaded manner of the interaction.

It is known that with the thermal bath both the two sub-
systems S1 and S2 will be thermalized to the same tempera-
ture TR of the bath and there are no heat exchanges of any
forms between the system and the bath. Here, in the presence
of non-thermal bath with λ 
= 0, it can be verified that S1 and
S2 can still be thermalized to the same effective temperature
which, however, is not equal to that of the bath, i.e., T̃S1 =

T̃S2 
= TR with T̃S j the effective temperature of S j in the station-
ary regime. This can also be derived from equation (19) that
J j 
= 0 leads to T̃S j =

ω

ln

(
ρ̃

g
S j
/ρ̃ e

S j

) 
= TR with ρ̃g(e)
S j

= ρg(e)
S j

(t →

∞). Correspondingly, we haveJ1 = J2 even though S1 and S2

interact with the bath successively. The cascaded feature of the
interaction actually embodies in the discrepancy between W1

and W2, i.e., the coherent parties of the exchanged heat. That
is, by virtue of J2 + J12 = −W2 and J1 = J2 = −W1, we
have J12 = W1 −W2 
= 0, namely, W1 
= W2. These obser-
vations can be visualized in figure 1, where we exhibit the
relations of all the stationary heat fluxes, i.e., J1, W1, J2, W2

and J12, with the coherence of the bath in terms of λ.

3.2. The dynamics of heat fluxes

In this subsection, we further study the effects of the displace-
ment coherence of the bath on the dynamics of heat fluxes
before reaching stationary regime. Of particular interest is the
fact that when TS = TR there are no heat fluxes between the
system and the bath if the bath is prepared in a thermal state
with λ = 0. By contrast, as shown in figure 2, when λ 
= 0 all
the constituent heat fluxes regarding S1 (cf figure 2(a)), i.e.,
J1(t) and W1(t), as well as that regarding S2 (cf figures 2(b)
and (c)), i.e., J2(t), W2(t) and J12(t), become oscillatory with
nonzero amplitudes which are amplified by increasing λ.

As given in its explicit expression (19), the emergence
of dissipative heat flux J j(t) requires ρg

S j
(t)/ρe

S j
(t) 
= hg/he =

exp(ω/TR), otherwise it does not occur. At time t = 0, we have
ρg

S j
(0)/ρe

S j
(0) = (1 + q j)/(1 − q j) = exp(ω/TS) (cf the initial

state (12) of S1). If TS = TR and meanwhile the bath is in the
thermal state, the relation ρg

S j
(0)/ρe

S j
(0) = hg/he will always

hold for t � 0 implying J j(t) = 0. By contrast, even with
TS = TR at t = 0, the effective Hamiltonian H( j)

eff of the coher-
ent bath with λ 
= 0 can trigger the time-dependence of ρg

S j
(t)

and ρe
S j

(t) leading to ρg
S j

(t)/ρe
S j

(t) 
= hg/he and thus J j(t) 
= 0
in this case. In the other words, the dynamics of the system
induced by H( j)

eff of the non-thermal bath leads to the deviations
of the temperature of S j from its initial value, namely, TS(t >
0) 
= TS = TR, so that the temperature gradient is formed and
we can still observe nonzero J j(t). On the other hand, if at t = 0
the temperature gradient already exists, namely, TS 
= TR, the
nonzero J j(t) can always appear but with a fixed sign (direc-
tion) in the presence of the thermal bath. Nevertheless, for the
non-thermal bath with λ 
= 0, the reversal of the direction of
J j(t) can be achieved due to the temperature reversal of S j and
R by the action of H( j)

eff . In figure 3(a), we show the dynamics of
J1(t) and J2(t) for TS 
= TR in the non-thermal bath with λ = 1.
One can see that for TS < TR (e.g., TS = 0.1TR, 0.5TR), both
J1(t) and J2(t) experience a transition from positive to nega-
tive in the dynamical process implying the transformation from
heat absorption to heat release of the system. Here, we also
observe a cascaded feature of the model, namely, J2(t) takes
more time than J1(t) to experience such a direction reversal (for
TS < TR) and also to reach the stationary regime, as shown in
figure 3(a).

As is shown in equation (20), the dynamics of W j(t) is
related to both the magnitude and relative phase of the coher-
ence of S j that is formed in the time evolution for the given
coherence of the bath. This is confirmed in figure 3(b) where
generally |W j(t)| are inversely proportional to the temperature
TS of the system since the lower the temperature, the purer the
state of the system and thus the more coherence it can acquire
via the interaction with the coherent bath. Due to the varia-
tions of the relative phases of the system’s coherence in the

5
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Figure 2. The dynamics of heat fluxes J1(t) (red curves) and W1(t) (black curves) regarding S1 (a), J2(t) (red curves) and W2(t) (black
curves) regarding S2 (b), and J12(t) (c) for different magnitudes of displacement coherences of the bath in terms of λ and for the identical
effective temperatures of the system and the bath with TS/ω = TR/ω = 1. The other parameters are the same as those given in figure 1.

Figure 3. The dynamics of heat fluxes J1(t) (black curves) and J2(t) (red curves) in (a) as well as W1(t) (black curves) and W2(t) (red
curves) in (b) for different TS. We set λ = 1 for the bath. The other parameters are the same as those given in figure 1.

time evolution, W j(t) manifest alternations between positive
and negative values before reaching stationary values. From
figures 3(b) and 2, we also observe the clear discrepancies for
the dynamics of W1(t) and W2(t), namely, the oscillations of

W1(t) are more severe, while W2(t) take more time to reach the
stationary regime. From both figures 3(a) and (b), it shows that
the smaller the ratio TS/TR the more pronounced the fluxes’
direction change.
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At last, we point out that the dynamics of J12(t), as given in
equation (21), is determined by the correlation of S1 and S2 in
terms of ρ23(t) constructed in the time evolution. The possible
change of direction of this nonlocal heat flux is related to the
variation of the phase of ρ23(t) resembling the case of W j(t).

4. Two-qubit bath with squeezing and
heat-exchange coherences

In this section, we proceed to the situation in which
the bath comprises two qubits (i.e., N = 2) being
prepared in the state ρR =

∑4
m,n=1 cmn |m̃〉 〈ñ|, with

cmn = 〈m̃| ρR |ñ〉 the matrix elements of ρR in the ordered

basis
{∣∣∣1̃〉 = |00〉 ,

∣∣∣2̃〉 = |01〉 ,
∣∣∣3̃〉 = |10〉 ,

∣∣∣4̃〉 = |11〉
}

of

the two bath qubits. In this case, we obtain coefficients
of the master equation (6) as d = c21 + c31 + c42 + c43,
s = 2c41, he = c22 + c33 + 2c44 + 2 Re[c23] and hg =
2c11 + c22 + c33 + 2 Re[c23] with Re[cmn] the real part
of cmn. We can see that N = 2 is the minimal number of the
qubits in the bath that could include all the three types of
coherences. Since we have explored the effect of displacement
coherence in single-qubit bath on the heat flux dynamics, in
the following we concentrate on two specific states of the
bath containing squeezing and heat-exchange coherences,
respectively.

4.1. The effect of squeezing coherence

We first consider that the two qubits in the bath are prepared
in the state

ρR =
(1 + ξ)2

4
|00〉 〈00|+ 1 − ξ2

4
|01〉 〈01|+ 1 − ξ2

4
|10〉 〈10|

+
(1 − ξ)2

4
|11〉 〈11|+ c14 |00〉 〈11|+ c41 |11〉 〈00|,

(23)

where |c14| � 1
4 (1 − ξ2) to ensure ρR to be positive and ξ =

tanh
(
βRω/2

)
. This state contains the squeezing coherence and

results in s = 2c41, d = 0, he = 1 − ξ and hg = 1 + ξ for the
coefficients in the master equation (6). As a result, the master
equation (6) is reduced to

ρ̇(t) = −i [HS, ρ] +
2∑

j=1

(
L( j)

s ρ+ L( j)
h ρ

)
+ L(12)

s ρ+ L(12)
h ρ.

(24)
We find that in the stationary regime the total system

acquires nonzero squeezing coherence in terms of ρ̃14 = ρ̃∗41 =
ρ14(t →∞) as

ρ̃14 = ρ̃ ∗
41 = − sμξ2(μ− iω)

2(μ2 − |s|2μ2 + ω2)
(25)

with μ = p̃g2, which can be thought of as the transfer of coher-
ence from the bath to the system since it is zero when s = 0.
Therefore, in the stationary regime the total system is not ther-
malized to the thermal state when the bath contains nonzero

squeezing coherence. However, we also note that the two indi-
vidual subsystems S1 and S2 are thermalized to the thermal
state with the same effective temperature TR of the bath being
of the form

ρ̃S j = ρS j(t →∞) =
1 + ξ

2
|0〉 〈0|+ 1 − ξ

2
|1〉 〈1| . (26)

This observation implies that in the stationary regime there are
no heat exchanges between the system and the bath in presence
of the bath’s squeezing coherence.

The transient expressions of heat fluxes J j(t) and J12(t) can
be formally expressed by equations (19) and (21) with he and
hg given above. We note that the squeezing coherences do not
have any influence on the heat flux J1(t) of S1. To verify this
result, we obtain the explicit expression of J1(t) as

J1(t) =
[
q1he − (1 − q1)hg

]
μω e−2μt, (27)

with q1 = tanh
(
βSω/2

)
, which is obviously independent of

the squeezing coherence in terms of s and consistent with the
situation of the thermal bath. In contrast, through modifying
the construction of correlations between S1 and S2, the squeez-
ing coherence of the bath slightly influences the dynamics of
heat flux of S2.

4.2. The effect of heat-exchange coherence

We turn to consider that the two bath qubits possess heat-
exchange coherence being of the form

ρR =
(1 + ξ)2

4
|00〉 〈00|+ 1 − ξ2

4
|01〉 〈01|+ 1 − ξ2

4
|10〉 〈10|

+
(1 − ξ)2

4
|11〉 〈11|+ c23 |01〉 〈10|+ c32 |10〉 〈01| ,

(28)

where |c23| � 1
4 (1 − ξ2) to ensure ρR to be positive. With the

bath state (28), the coefficients in the master equation (6)
take the values d = 0, s = 0, he = 1 − ξ + 2 Re[c23] and hg =
1 + ξ + 2 Re[c23]. It is worth noting that both the populations
and the heat-exchange coherence of the bath state make con-
tributions to the coefficients he and hg. In this case, the master
equation (6) becomes

ρ̇(t) = −i [HS, ρ] +
2∑

j=1

L( j)
h ρ+ L(12)

h ρ. (29)

We find that in the stationary regime the total system is ther-

malized to a thermal state ρ̃ ≡ ρ(t →∞) = e−HS/TS

tr[e−HS/TS ]
with TS

the system’s thermalization temperature given as

TS = ω

(
ln

hg

he

)−1

= ω

(
ln

1 + ξ + 2 Re[c23]
1 − ξ + 2 Re[c23]

)−1

, (30)

which is obviously related to both the magnitude and rela-
tive phase of the heat-exchange coherence of the bath. Only
when Re[c23] = 0 we have TS = TR, otherwise the system is
thermalized to the so-called apparent temperature TR [58] of
the bath, namely, TS = TR 
= TR. Therefore, in the stationary

7
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Figure 4. The time evolution of J1(t), J2(t) and J12(t) for different TS in the presence of two-qubit bath initially prepared in the state ρR (28)
for φ = 0 (dotted lines) and φ = π (dashed lines). The corresponding dynamics under the thermal state with c23 = 0 (solid lines) are also
presented for comparison. The other parameters are chosen as TR/ω = 1, p = 0.3 and g̃/ω = 1.

regime, the system and the bath reach thermal equilibrium and
no heat exchanges occur.

Next, we explore the dynamics of the heat fluxes J j(t) and
J12(t) with the expressions formally given in equations (19)
and (21). In figure 4, we demonstrate the heat fluxes dynam-
ics by setting c23 =

1
4 (1 − ξ2)eiφ with the different relative

phases (e.g., φ = 0 and φ = π) and compare their behaviors
with the case of c23=0, i.e., the thermal bath state. For the
chosen TR/ω = 1 used in figure 4, we have the bath appar-
ent temperatures TR/ω ≈ 1.45 for φ = 0 and TR/ω = 0.5 for
φ = π, which are the real temperatures seen from the sys-
tem and thermalized temperatures the system will reach in
the stationary regime. As a result, we observe in figure 4(a)
for the dynamics of J1(t), that for TS/ω = TR/ω = 1 (black
lines) under which J1(t) = 0 when c23 = 0, the heat is flowed
into S1 from the bath with J1(t) > 0 when φ = 0 (TR > TS),
whereas the heat is taken away from S1 to the bath with J1(t) <
0 when φ = π (TR < TS). For TS/ω = 0.5TR/ω = 0.5 (red
lines), φ = 0 makes an amplification of J1(t) in the initial stage
of the time evolution, while reduces it to zero if φ = π is cho-
sen as TS = TR in this case. For TS/ω = 1.5TR/ω = 1.5 (blue
lines), |J1(t)| is amplified for φ = π, while reduced almost to
zero for φ = 0. Therefore, the heat-exchange coherence, in

particular the phase in it, can be identified as an efficient
resource to modify the heat fluxes. The influences of heat-
exchange coherence on the dynamics of J2(t) and J12(t) are
displayed in figures 4(b) and (c), respectively. In addition to
some similar features as shown in figure 4(a), we also observe
that the heat fluxes J2(t) and J12(t) of S2 take more time to reach
the stationary regime which means that S2 is thermalized to the
thermal state later than S1.

5. Conclusion

We have studied the effects of different types of coherences
in a non-thermal bath on the heat exchanges between the bath
and the system which may take place in various manners, such
as through local/global dissipation and dissipative/coherent
dynamics. Specifically, we consider a model that consists of
two cascaded subsystems S1 and S2 sequentially interacting
with a bath modeled as a cluster of N qubits: the interaction
of S2–R occurs after that of S1–R. Therefore, in addition to
the local heat flux regarding each subsystem, the nonlocal heat
flux appears due to the collective interaction of the two sub-
systems with the bath. As a typical character of the cascaded
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interaction model, the nonlocal heat flux is completely caused
by the subsystem S2. Within the framework of repeated interac-
tion model, we have constructed a master equation to describe
the dynamics of the total system. The master equation (6) is
valid for a bath of any N qubits, but we explicitly study only the
cases with N = 1 and N = 2 because they are sufficient to have
all the three types of bath coherences. We first consider the
single-qubit bath with the so-called displacement coherence,
i.e., the coherence between the energy levels connected by
single-excitation transition. In this case, the heat fluxes of both
subsystems include dissipative and coherent ingredients. In the
stationary regime, though all the ingredients retain nonzero,
the heat exchanges in the dissipative manners completely flow
back in the coherent ways. We also show that the two subsys-
tems possess the same locally dissipative heat fluxes but differ-
ent coherent ones owning to the cascaded feature of the model.
The displacement coherence brings about additional effective
Hamiltonians for the subsystems, which make the dynamics of
the system deviate from the situation when the bath is prepared
in a thermal state. In the transient regime, we thus observe
nonzero heat fluxes even when the system has the same tem-
perature with the bath and heat flow reversal when they have
different temperatures. We then turn to the two-qubit bath that
is prepared in the non-thermal states with squeezing coherence
and heat-exchange coherence, respectively. For the bath with
squeezing coherence, i.e., the coherence between levels con-
nected by two-excitation transition, nonzero correlation exists
between the two subsystems in the stationary regime, though
each individual subsystem is thermalized to its thermal state
with the temperature of the bath. The squeezing coherence
does not influence on the dynamics of the subsystem S1, but
slightly affects the dynamics of S2. For the bath with heat-
exchange coherence, i.e., the coherence between degenerate
levels, the total system is thermalized to a thermal state with
the temperature related to both the magnitude and relative
phase of the bath coherence. During the transient dynamical
process the heat-exchange coherence, particularly the relative
phases therein, can greatly amplify or suppress the heat fluxes.
Our obtained results would provide an instance of exploiting
types of bath coherence and ways of system-bath interaction to
manage heat fluxes. In the future work, we shall explore the QT
of the cascaded model with additional driving field by means
of the framework provided in reference [71].
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Appendix

In the following, we present the analytical expressions of
W2 ≡ P/Q and J12 ≡ X/Y with P, Q, X and Y are given as

P = 4|d|2g̃2h−p2μω
(
h6
+

(
9h2

e − 38hehg + 9h2
g

) (
9h2

e + 2hehg

)
+ 9h2

g

)
μ8 − 64h4

+

(
3h2

e − 2hehg + 3h2
g

) (
3h2

e + 13hehg

+ 3h2
g

)
μ6ω2 − 32h2

+

(
139h4

e + 172h3
ehg + 2h2

eh2
g

+ 172heh
3
g + 139h4

g

)
μ4ω4 − 512

(
7h4

e + 18h3
ehg + 6h2

eh2
g

+ 18heh
3
g + 7h4

g

)
μ2ω6 − 256

(
3h2

e − 2hehg + 3h2
g

)
ω8

+ 1024|d|6g6h2
+p6

((
h2

e − 6hehg + h2
g

)
μ2 − 4ω2

)
+ 64|d|4g̃4 p4

(
h2
+

(
29h4

e − 132h3
ehg − 66h2

eh2
g − 132heh

3
g

)
+ 29h4

g

)
μ4 − 16

(
h2

e + h2
g

) (
7h2

e + 30hehg + 7h2
g

)
μ2ω2

)
− 16

(
9h2

e + 2hehg + 9h2
g

)
ω4 + 32|d|2g̃2 p2

×
(
h4
+(27h4

e − 112h3
ehg + 10h2

eh2
g − 112heh

3
g + 27h4

g)μ6

− 2h2
+(57h4

e + 248h3
ehg + 62h2

eh2
g+248heh

3
g+57h4

g)μ4ω2

− 32h2
+(13h2

e − 2hehg + 13h2
g)μ2ω4 − 32(5h2

e − 2hehg

+ 5h2
g)ω6

))
, (A.1)

Q = h2
+

(
h+μ− 2iω

) (
h+μ+2iω

)
(8|d|2g̃2 p2 + h2

+μ
2+4ω2)2

×
(
128|d|4g̃4 p4 + (9h2

e + 2hehg + 9h2
g)2μ4

+ 8(9h2
e + 34hehg + 9h2

g)μ2ω2 + 16ω4

+ 24|d|2g2 p2((9h2
e + 2hehg + 9h2

g)μ2 + 4ω2)
)

, (A.2)

X = −h−μω
(
8|d|2g̃2(he − hg)2 p2

(
1024|d|6g̃6(he + hg)2 p6μ2

+ 9h6
+(9h2

e+2hehg+9h2
g)μ8 + 8h4

+(9h2
e−70hehg + 9h2

g)

× μ6ω2 − 256h2
+(5h2

e + 13hehg + 5h2
g)μ4ω4 − 128(9h2

e

+ 26hehg + 9h2
g)μ2ω6− 256ω8 + 64|d|4g̃4 p4

(
h2
+(29h2

e

+ 26hehg+29h2
g)μ4 + 4(he−3hg)(3he−hg)μ2ω2−32ω4

)
+ 32|d|2g̃2 p2

(
h4
+

(
27h2

e+10hehg+ 27h2
g

)
μ6+7(he−3hg)

× (3he − hg)h2
+μ

4ω2 − 104h2
+μ

2ω4 − 48ω6
)))

(A.3)

and

Y = h2
+(h+μ− 2iω)(h+μ+ 2iω)(8|d|2g̃2 p2 + h2

+μ
2 + 4ω2)2

×
(
128|d|4g̃4 p4 + (9h2

e + 2hehg + 9hg2)2μ4

+ 8(9h2
e + 34hehg + 9hg2)μ2ω2 + 16ω4

+ 24|d|2g̃2 p2((9h2
e + 2hehg + 9hg2)μ2 + 4ω2)

)
, (A.4)

in which h± = he ± hg and μ = p̃g2.
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