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Abstract. The f(R)-theory (of gravitation) is an extension of Einstein’s general theory of
relativity (GR) but if a spherically symmetric vacuum solution of the Einstein equation in the
GR is always stationary, a spherically symmetric vacuum solution of an f(R)-theory is not
necessary stationary. This may have interesting consequences. In comparison with the GR, a
process such as a planet’s motion (its orbital precession and parameters) and a gravitational
deflection of light now get a correction which is a constant for a static central field and varies with
time for a non-static central field even from a source of a constant mass, unlike the corresponding
GR value not changing in the same situation. In particular, a spherically symmetric source may
radiate gravitational waves. This phenomenon cannot happen in the GR. The present work
is an extended version based on a presentation in the 44th Vietnam conference on theoretical
physics (Dong Hoi, 29 July - 01 August 2019).

1. Introduction

The General theory of Relativity (GR) of A. Einstein is a very successful theory of gravitation
[1, 2]. This theory has been verified very precisely, in particular, it was once again confirmed
triumphantly by recent detections of gravitational waves [3, 4].

The heart of the GR is Einstein’s equation

Rµν −
1

2
gµνR = −kTµν , (1)

k = 8πG
c4

, derived from the Lagrangian LG = R. However, some cosmological problems require
the GR to be extended or modified. One of the modified theories of the GR is called f(R)-theory
of gravitation.

The f(R)-theory of gravitation is based on the Lagrangian LG = f(R) leading to the equation

f ′(R)Rµν − gµν2f ′(R) +∇µ∇νf ′(R)− 1

2
f(R)gµν = −kTµν , (2)

where f(R) is a scalar function of the scalar curvature R, while ∇µ is a covariant derivative and

2 = ∇µ∇µ. The function f(R) could be, for example, f(R) = R+ λR2 or f(R) = R− λ
Rn , etc.
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To solve (2) in general is problematic. Here, assuming f(R) deviating from R just slightly, we
try to solve (2) perturbatively for a central field of a spherically symmetric gravitational source
of radius R0. More details of the procedure can be found in [5, 6].

2. Perturbative spherically symmetric solutions of an f(R)-theory

Starting with
f(R) = R+ λh(R), λh(R)� R,

where h(R) is a scalar function of R and λ is a parameter (with an appropriate dimension which
will be tacit here), we obtain from Eq. (2)

Rµν −
1

2
δµνR+ λh′(R)Rµν −

λ

2
δµνh(R)− λδµν4h′(R) + λ∇µ∇νh′(R) = −kTµν . (3)

Using Einstein’s equation in the form R = kT and Rµν = −k(Tµν − 1
2δ
µ
νT ) and solving (3)

perturbatively, we find the following perturbative solution

g00(r, t) = 1− kc2 (M − λM1(r, t)− λM2(r, t))

4πr
,

g11(r, t) =
−1

g00(r, t)
, g22 = −r2, g33 = −r2sin2θ, (4)

where

M1(r, t) = −2π
kc2

∫ r
0

[
h(kT 0

0) + kT 0
0h
′(kT 0

0)
]
r′2dr′, M2(t) =

−4πh′′(kT 0
0)

kc2

[
∂
∂t

M
[R0(t)]3

]2
α(t),(5)

with

α(t) =
3arcsin[ξ(t)R0(t)]− ξ(t)R0(t)

{
3 + 2[ξ(t)R0(t)]2

}√
1− [ξ(t)R0(t)]2

256π2[ξ(t)]5 (3k2c2)−1 (1− [ξ(t)R0(t)]2)3/2
, ξ2(t) =

kMc2

4π[R0(t)]3
.

(6)
Here R0(t) is the radius of the gravitational source at time t. Let us apply this result to some
special cases.

2.1. Model f(R) = R− 2λ

In this case h(R) = −2 and, therefore,

g00(r, t) = 1− kc2M
4πr −

λr2

3 , g11(r, t) = −1

1− kc2M
4πr
−λr2

3

, g22 = −r2, g33 = −r2sin2θ. (7)

This solution coincides with the exact solution with λ being the cosmological constant.

2.2. Model f(R) = R + λRb, (b > 0)

Here h(R) = Rb, we have

g00(r, t) = 1− kc2Mf (t)
4πr , g11(r, t) = −1

1−
kc2Mf (t)

4πr

, g22 = −r2, g33 = −r2sin2θ, (8)

with
Mf (t) = M − λM1(t)− λM2(t), (9)

M1(t) =
(b+ 1)(Mkc2)b

2[4
3πR

3
0(t)]b−1kc2

, M2(t) =
4πb(b− 1)(Mkc2)b−2

[4
3πR

3
0(t)]b−2kc2

[
∂

∂t

M

[R0(t)]3

]2

α(t).
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2.3. Model f(R) = R1+ε with ε very small

In this case λh(R) = R1+ε −R, we obtain

g00(r, t) = 1−
kc2Mf (t)

4πr
, g11(r, t) =

−1

1− kc2Mf (t)
4πr

, g22 = −r2, g33 = −r2sin2θ (10)

where

Mf (t) = M − λM1(t)− λM2(t), (11)

λM1(t) = −M + (ε+2)(Mkc2)ε+1

2[ 4
3
πR3

0(t)]εkc2
, λM2(t) = 4πε(ε+1)(Mkc2)ε−1

[ 4
3
πR3

0(t)]ε−1kc2

[
∂
∂t

M
[R0(t)]3

]2
α(t).

3. Motion in a central field of the f(R)-theory

Applying metrics gµν obtained to the Hamilton-Jacobi equation

gµν
∂S

∂xµ
∂S

∂xν
= m2c2,

we get a general equation of motion in a central field for an f(R)-theory, and, then a planet’s
orbital precession [6]

∆ϕ(n) =
6πm2G2[M − λM1(tn)− λM2(tn)]2

c2L2
,

where L is the planet’s angular momentum. Using [2]

L2

m2
= a(1− e2)GMf (t) (12)

we get

∆ϕf(R) =
6πGMf (t)

c2a(1− e2)
. (13)

(for the deflection angle of light, see [5]).

4. Examination of the f(R)-theory

We will examine the f(R)-theory for f(R) = R + λR2 and f(R) = R + λ′

R in two cases: in a
static central (gravitational) field and in a non-static central field. For this goal, let us apply
the theory to some real gravitational systems, for example, Sun-Mercury (small system) and Sgr
A*-S2 (big system).
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Figure 1. Illustraions of the orbital precession in the GR and in the f(R)-theory [5, 6]
.

4.1. Static central field

Let us take Starobinsky’s model [8] f(R) = R+λR2 as an example (for other models, see [5, 6]).
Using the data [7]

c = 299792458 m/s;

G = 6.67259× 10−11 kg−1m3s−2;

k =
8πG

c4
= 2.0761154× 10−43 kg−1m−1s2;

M ≡M� = 1.988919× 1030kg; (14)

2GM

c2
= 2.95325008× 103m;

a = 5.7909175× 1010m;

e = 0.20563069;

∆ϕobs = 2π(7.98734± 0, 00037)× 10−8 radian/revolution,

6πG

c2a(1− e2)
= 2.523307× 10−37. (15)

we obtain the orbital precession of Mercury orbiting around the Sun (the Sun-Mercury system)
as follows

• Einstein’s value:
∆ϕE = 1.59748694π × 10−7 radian/rev.

• Observed value:
∆ϕobs = 1.597468π × 10−7 radian/rev.
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• Deviation:
δϕMer = ∆ϕobs −∆ϕE = −0.1906π × 10−11 radian/rev.

Roughly, if the measurement’s error is smaller than the latter, λ should take the value

λ = 0.296631× 1018 (16)

in order to explain the deviation

∆ϕf(R) = ∆ϕobs = 1.597468π × 10−7 radian/rev. (17)

and
δϕMer = ∆ϕf(R) −∆ϕE = ∆ϕobs −∆ϕE = −0.1906π × 10−11 radian/rev. (18)

It is worth noting that the value of λ in (16) satisfies the perturbation condition λh(R) � R
(see [6]), that is

λh(kT 0
0)� 6GM

c2[R0]3
, (19)

or, equivalently,

λ� c2[R0]3

6GM
= 0.380053× 1023. (20)

Applying λ given above to a stronger gravitational system, e.g., the system Sgr A*-S2 (with
mass M = 4.31× 106M�) we obtain

• ∆ϕS2
f(R) = 1.149305π × 10−3 radian/rev.

• ∆ϕS2
E = 1.15114π × 10−3 radian/rev.

• δϕS2 = ∆ϕS2
f(R) −∆ϕS2

E = −1.835π × 10−6 radian/rev.

We do not consider f(R) = R + λ′/R for this case as it, compared with the GR, does not
give a new correction (to the orbital precession). To check the theory it is necessary to work in
a non-static field.

4.2. Non-static central field

The theory f(R) = R + λR2 is examined above in a static central field and its examination
can be repeated straightforwardly for a non-static case. In this case we will examine one more
theory, namely, the theory f(R) = R + λ′/R. As the value of λ, assumed to be universal and,
therefore, applicable to the present case, is already estimated in (16), now we estimate the value
of λ′. The perturbation condition λh(R)� R applied to the theory f(R) = R+ λ′/R gives

λ′ � 9

[R0]6

(
2GM

c2

)2

= 6.923265× 10−46. (21)

Next, we estimate the correction to the orbital parameters (eccentricity and axes), compared
with their classical values, of a planet moving around a collapsing star with the beginning radius
R0 (before the collapse) and the final radius R0(t) in a moment t (during the collapsing process
or at the end of the collapse). Here, we consider a collapsing star as example but it is possible
to consider an expanding (exploding) star. In order to have data for reference we will take a
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Sun-similar star and its Mercury. Below, we will see how an orbit of a planet (Mercury) would
change under the star (Sun) contraction keeping its spherical form. In this situation the GR gives
no effect unlike the f(R) theory predicting new interesting phenomena (such as corrections to
a planet’s orbital eccentricity and axes, gravitational waves, etc.) which can be used for testing
an f(R) theory.

A star of the Sun’s size having a radius of the order

R0 ≈ 6.957× 108 m, (22)

would collapse to a white dwarf 1 of the Earth’s size (or smaller) with a radius of the order

R0(t) ≈ 6.371× 106 m. (23)

The radius change
∆R0(t) = R0(t)−R0 = −689329000 m (24)

would happen for the free falling (assumed) time interval [9]

∆t = −
(

8πGρ0

3

)−1/2 ∫ R0(t)
R0

1

(
ζ

1− ζ

)1/2

dζ

=

(
3π

32Gρ0

)1/2 (
1 + 3.45× 10−4

)
=

(
4π2(R0)3

32GM

)1/2 (
1 + 3.45× 10−4

)
= 1769.83 s, (25)

with R0(t)
R0

= 9.158× 10−3. From here we can estimate the average free falling speed as

|∆R0(t)|
∆t

= 389488.82 m/s. (26)

Now, let us calculate some parameters of a planet’s (Mercury’s) orbit in an f(R) theory, where,
the star’s (Sun’s) mass M is replaced by an effective mass Mf [5]. This mass would change with
a value ∆Mf during the star contraction until its total collapse. The semi-major axis a and the
eccentricity e of the planet’s elliptical orbit in an f(R) theory are calculated by the formulas

a =
GmMf (t)

2|E|
, (27)

e ≈
√

1− 2|E|L2

G2m3M2
f

, (28)

where L is the angular momentum which is a conserved quantity but the energy E is not
conserved for a non-static field. To calculate the energy change during the star contraction

(until the total collapse) we use the approximation E ≈ −m(GmMf )2

2L2 (for a circular orbit), thus,

∆|E| = 2|E|
Mf

∆Mf . (29)

1 More precisely, according to the standard theory of the star evolution, a Sun-type star would first become a
red giant before collapsing to a white dwarf.
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Therefore, the planet’s orbital semi-major axis and eccentricity would change by the quantities

∆a =
Gm

2|E|

(
∆Mf −

Mf∆|E|
|E|

)
= −Gm

2|E|
∆Mf = −

L2∆Mf

Gm2M2
f

, (30)

∆e = − L2

G2m3M2
f

(
∆|E| − 2|E|∆Mf

Mf

)
e

= 0, (31)

or with (12) taken into account these changes become

∆a(t) = a(t)− a0 = −a0(1− e2)
∆Mf (t)

Mf
, (32)

∆e = 0, (33)

where a0 and a(t) are the semi-major axis before the contraction and after the collapse of the
star, respectively.

4.2.1. Model f(R) = R+ λR2:

Assuming that the star’s mass M remains unchanged during the collapse process (in reality,
some gravitational radiation and other matter loss may be possible), we calculate the change of
the components M1 and M2 of Mf during the collapsing (in this f(R)-theory M1 and M2 have
dimension of [mass/length2] which will be tacit below).

Let us start with calculating the change ∆M1 of M1. It is easy to see that

∆M1(t) = M1(t)−M1(0) = 1.02213108× 1014 (34)

where

M1(0) =
9M2kc2

8π[R0]3
= 78498929.12, (35)

is the value of M1 before the collapse starting (t = 0), and

M1(t) =
9M2kc2

8π[R0(t)]3
= 1.02213186× 1014, (36)

is the value of M1 immediately before the end of the collapse. In order to calculate the change
∆M2 of M2 we must first calculate ξ(t) and α(t). Using (6), (14) and (23) we get

ξ(t) =

√
kMc2

4π[R0(t)]3
= 3.37939× 10−9 (37)

and
α(t) = 4.5029183× 10−36. (38)

With the approximation ∂
∂tR0(t) ≈ ∆R0(t)

∆t ,[
∂

∂t

M

[R0(t)]3

]2

α(t) =

(
−3M

[R0(t)]4
∆R0(t)

∆t

)2

α(t) = 8.959833× 10−18, (39)

M2 takes the value

M2 =
8π

kc2

[
∂

∂t

M

[R0(t)]3

]2

α(t) = 1.206832× 1010. (40)
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Combining (36) and (40) we have

Mf (t) = M(t)− λM1(t)− λM2(t) = −2.833426× 1031 kg, (41)

∆Mf = Mf (t)−Mf = −3.03231558× 1031 kg. (42)

Inserting this result in (30) we get

∆a(t) = a(t)− a = 0.4166264× 1010 m. (43)

In comparison with the GR, i.e., comparing (43) with (14), we see that the semi-major axis a(t)
of the Mercury-like planet in the f(R)-theory would increase with 7.19% after the collapse of
the Sun-like star. The sign minus in (41) and (42) shows something like an “anti-gravitational”
effect which could be a strong argument for verifying the present model.

4.2.2. Model f(R) = R+ λ′

R :

In this model, following similar calculations as above it is not difficult to get for a Sun-Mercury-
like system

∆Mf (t) ' 0, (44)

that is, there is no sensitive correction to the GR.

5. Conclusion

The f(R)-theory is a modified theory of gravitation which makes correction to the general theory
of relativity and may replace the latter in explaining new cosmological observations.

We have shown that the f(R)-theory allows a non-static spherically symmetric solution
and predicts (non-static in general) corrections to cosmological observations (such as orbital
precessions and deformations, deflections of light, etc.). Another prediction which is about
gravitational radiations of a (non-static) spherically symmetric source, a phenomenon not
possible in the general theory of relativity, can be also considered, but it is a subject of a
later work being in progress. A testing measurement (observation) may not be easy at the
present technical level but we hope it can be done in a not very far future.
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