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Abstract
Electronic whispering gallery modes (EWGMs) have been recently observed in several
circular graphene junctions, pn and pp′, created in scanning tunneling microscopy
experiments. By computing the local density of states within the Dirac–Weyl formalism for
massless fermions we demonstrate that the EWGMs may really be emerged in any type of the
electrostatic-potential induced circular graphene junctions, including uni-junctions (e.g. np- or
pp′-junctions) as well as bipolar-junctions (e.g. pnp-heterojunctions). Surprisingly,
quantitative analyses show that for all the EWGMs identified (regardless of junction types) the
quality (Q) factors seem to be ≤ 102, very small compared to those in ordinary optical
whispering gallery modes microresonators, while the corresponding mode radii may tunably
be in nanometer-scale. Our theoretical results are in good agreement with existent
experimental data, putting a question to the application potential of the EWGMs identified.
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1. Introduction

The optical microresonators (or microcavities) that confine the
light to small volumes by resonant recirculation are widely
utilised in modern linear and nonlinear optics [1]. The most
desirable resonators would confine light without loss and
would have resonant frequencies defined precisely. In prac-
tice, optical resonators are characterised by the two parame-
ters, the quality factor (Q-factor) and the mode volume (V),
that respectively describe the temporal and spatial confine-
ment of light in devices. Resonators with potential applica-
tions are those of high Q and small V. It appears that an
extremely high value of Q may be achieved in the so-called

4 Author to whom any correspondence should be addressed.

whispering-gallery microresonators of very small volume
[2–5]. In these microresonators, like dielectric microspheres,
microdisks, or microtori, the light is effectively confined by
repeated total internal reflections at the curved boundaries, giv-
ing rise to resonances. The circular optical modes emerged
in such resonators are often referred to as whispering-gallery
modes (WGMs). The Q-factor of optical WGMs may be as
high as ∼ 1010, depending primarily on the resonator material
and a perfection of dielectric surfaces [3]. With a very high Q
in combination of other advantages such as very small mode
volume and very simple geometry-structure, WGM-resonators
emerged as the most potential optical resonators for a variety
of applications [2, 3].

As well-known, there is a close similarity between light-
rays in geometrical optics and ballistic trajectors of elec-
trons. This similarity attracted much more attention by the
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discovery of graphene, in which massless charge-carriers
exhibit the photon-like linear dispersion and gain a very large
mean-free path (of micrometer even at room temperature)
[6]. It was established that the transport of electrons through
an electrostatic potential barrier in a graphene heterostruc-
ture may well resemble the optical refraction at a surface
of metamaterials with negative refractive index [7, 8]. As a
consequence, the graphene np-junctions could be perfectly
used to create an electronic analogue of the Veselago opti-
cal lens [7]. And, moreover, the scanning tunneling micro-
scope (STM)-tip induced circular graphene np-junctions that
are extensively exploited to study different properties of Dirac
fermions confined by an axially symmetric electrostatic poten-
tial barrier [9–11] should act as electronic WGM-resonators in
producing circular electronic modes analogous to the optical
WGMs. Indeed, recently, electronic whispering-gallery modes
(EWGMs) have been reported in several STM-experiments
[12–14]. Owing to the dual-gate structure, the back-gate and
top-gate, STM-based EWGM-resonators are fully tunable in
the meaning that both the resonator size and the np-interface
potential may be independently varied by changing suitably
the back-gate voltage, the top-gate potential and the tip-to-
graphene distance [14]. EWGMs in these resonators can be
detected by measuring the tunneling differential conductance
that features the local density of states (LDOSs) spectrum in
dependence on the tip-sample bias, back-gate voltage, and spa-
tial position (from the centre of the tip). So, the observed
EWGMs can be theoretically understood by calculating the
LDOS for the massless Dirac-like fermions under a suitable
tip/gate-induced electrostatic potential. In the continuum cal-
culation reported in [12] this potential is simply assumed to
have the parabolic form, while in the tight-binding model used
in [14] it is the Thomas–Fermi approximated potential. Both
the studies have unambiguously confirmed an emergence of
EWGM-spectra in STM-tip induced circular graphene res-
onators. Here, we note that all the studies in [12–14] con-
cern the resonators with np/pn-junctions. Very recently, it was
reported that similar EWGMs have been observed even in
the STM-tip induced circular graphene resonator with pp′-
junctions [15].

Actually, EWGMs are known as an almost periodic
sequence of resonances emerged in an energy spectrum of a
resonator. For the circular graphene resonators under study,
these resonances truly describe the quasi-bound states (QBSs)
that are formed as a result of interference processes of the
electronic waves, undergone multiple Klein-scatterings by the
electrostatic confinement potential on the inside of the res-
onator [16]. Generally, QBSs could be created by any electro-
static confinement potentials [16, 17]. The structure of QBS-
spectra however depends on the interference pattern of wave
functions inside the resonator, and the later, in turn, is highly
sensitive to the characteristics of the confinement potential
(such as its magnitudes, signs or sizes). Also, these charac-
teristics are closely correlated with each other in affecting
the QBS-spectra. So, it seems that to create a QBS-spectrum
with EWGMs in an electrostatic-potential induced circular
graphene resonator of any junction-type one has just to set
the appropriate characteristics to the confinement potential.

And, in principle, EWGMs may emerge in any type of these
junctions, though the chance of getting them as well as their
quality, i.e. Q-factor and mode volume V, might be different,
depending on the junction type. Since these quantities, Q and
V, are primary characteristics of EWGMs, one certainly has to
determine them first in examining EWGM-spectra.

The purpose of the present theoretical work is to quan-
titatively study the EWGMs emerged in various models of
circular graphene junctions, including uni-junctions such
as np-junctions (CGNPJs) or pp′-junctions (CGPP′Js) and
bipolar-junctions such as pnp-heterojunctions (CGPNPHJs).
The junctions are assumed to be created by axially symmet-
ric electrostatic potentials like those in STM-experiments. The
study was carried out within the framework of the Dirac–Weyl
formalism for massless fermions in the presence of the sug-
gested confinement potential. For each of these resonator-
models we searched for EWGMs by analysing the LDOSs
calculated in wide value-ranges of confinement-potential
parameters. For all the identified EWGMs we evaluated the
Q-factors and the effective mode radii5, following the way
that is often used for optical WGM-resonators. Qualitatively,
our studies demonstrate that the EWGMs may emerge in
electrostatic-potential induced circular graphene resonators
with any type of junctions, depending primarily on the con-
finement potential parameters. Quantitative analyses show that
for all the EWGMs identified the Q-factors seem always to
be � 102, very small compared to those in ordinary optical
WGM-microresonators (of � 105–108 [1, 3]), while the cor-
responding mode radii may tunably be in nanometer-scale.
Our theoretical results are in a good agreement with existent
experimental data [12, 14, 15], putting a question to the appli-
cation potential of the EWGM identified.

Thus, we are interested in the circular graphene junctions
created by an axially symmetric electrostatic confinement-
potential U(r) in a continuous single-layer graphene sheet.
Neglecting the valley scattering and using the units such that
� = 1 and the Fermi velocity vF = 1, the low-energy elec-
tronic excitations in these structures can be described by the
two-dimensional (2D) massless Dirac–Weyl Hamiltonian:

H = �σ�p+ U(r), (1)

where �σ = (σx, σy) the Pauli matrices and �p = −i(∂x, ∂y) the
2D momentum operator. In STM-experiments the potential
U(r) is mainly resultant from a combined effect of the tip-
sample potential and the back-gate voltage.

Given U(r), we computed LDOSs for the studied resonator,
using the approach suggested in [18, 19]. For practical pur-
poses, the computing procedure is summed up in the appendix
A. Resulted quantities of interest are as follows: (a) the LDOSs
counted for a given total angular momentum j, the partial
LDOSs, ρ( j)(E, r) (A3) that depend on the energy E, distance r
and momentum j; (b) the LDOS ρ(E, r) (A2) that is the sum

5 There are different definitions of the mode volume for optical WGM-
resonators, depending on the problem of interest [2]. Here, instead, we are
interested in the mode radius that is entirely definite and may be used to
calculate, for instance, the mode area in 2D-resonators [2].
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Figure 1. Models of radial electrostatic potentials U(r) that create
the two types of circular graphene junctions under study: (a)
Uni-junctions: green-solid profile—CGNPJs and red-dashed
profile—CGPP′Js with average radius L and (b) Bipolar-junctions:
red-solid profile—CGPNPJs with average radius L and average
width D. All the modelled potentials are constant at the limiting
distances of r � ri and r � rf.

of partial LDOSs over all possible j; and (c) the total den-
sity of states (TDOS) ρT(E) (A8) that is determined by inte-
grating ρ(E, r) over r. All the features of a resonance spec-
trum are definitely manifested in its LDOS and TDOS. Cer-
tainly, no all junction-samples may reveal EWGMs. So, we
had to search for these modes, varying different confinement-
potential parameters. Qualitatively, EWGMs can be identified
as a spectrum with an almost periodic sequence of resonances,
appearing in a narrow range of energy in one side and close to
the charge neutrality point, while in the other side the spectrum
shows itself to be featureless [14].

Once a EWGM-spectrum is identified we have quantita-
tively examined each of most profound resonances in the spec-
trum by evaluating its partial quality-factor Qi and partial mode
radius Ri

5. To this end, for the resonance at energy Ei, we mea-
sure the resonance width δEi (by fitting resonance peak into
an appropriate Lorentzian profile) and the resonance spacing
ΔEi (see figure 6(d)). Quantities Qi and Ri could be then deter-
mined in the way as that used for optical WGM-resonators:
Qi = ωiτ i ≡ |Ei|/δEi and Ri ≈ �vF/ΔEi, where ωi = |Ei|/�
is the resonant-mode frequency and τ i = �/2δEi is the life-
time of the mode (� = Planck constant/2π and vF ≈ 106m s−1

is the Fermi velocity) [3, 4, 12]. From partial quantities [Qi],
[Ri] and [ΔEi] we respectively deduced the average quan-
tities Q, R and Δ which could be used to characterise the
examined EWGM-spectrum on the whole. Such studies have
been realised for all the EWGM-spectra identified in circu-
lar graphene resonators with different junctions types, uni-
junctions CGNPJs and CGPP′Js as well as bipolar-junctions
CGPNPHJs.

Thus, first we have to define radial confinement potentials
U(r). For the resonators with uni-junctions, the potential U(r)
is chosen in the form (see figure 1(a)):

U(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ul for r ≤ ri

Ul +
r − ri

r f − ri
(Ug − Ul) for ri < r < r f

Ug for r ≥ r f .

(2)

The distances ri and rf in this equation can be merely expressed
as ri = (1 − α)L and rf = (1 + α)L, where the quantity α
with 0 ≤ α ≤ 1 and the length L respectively measure the
smoothness of the junction–boundary potential and the aver-
age radius of the junction (see figure 1(a)). So, the potential
U(r) suggested in equation (2) is entirely characterised by the
four parameters: Ul, Ug, L, and α. In relation to the STM-
experiments, the potentials Ug and Ul should be thought of
as defined respectively by the back-gate voltage and the tip-
sample and back-gate voltages combined, while the two other
parameters, L and α, are essentially related to the tip size and
the tip-sample distance [14]. The potential U(r) of equation (2)
is quite general, describing all possible circular graphene uni-
junctions. Particularly, this potential U(r) describes CGNPJs
if Ul < 0 and Ug > 0. In the other case, when both Ul and Ug

are positive, it describes CGPP′Js. Here, it is useful to note that
due to the electron-hole symmetry in the model under study a
simultaneous change in sign of the two potentials Ul and Ug as
well as the energy E does not make the spectrum changed. So,
we should consider only two types of uni-junctions, e.g. CGN-
PJs and CGPP′Js. Certainly, this note should also be applied to
the bipolar-junctions introduced below.

In order to model the circular graphene bipolar-junctions,
i.e. npn- or pnp-heterojunctions, we define the radial confine-
ment potential U(r) as (see figure 1(b)).

U(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ug for r ≤ ri

Ug +
r − ri

rm − ri
(Ul − Ug) for ri ≤ r ≤ rm

Ul for rm < r < rn

Ul −
r − rn

r f − rn
(Ul − Ug) for rn ≤ r ≤ r f

Ug for r ≥ r f .

(3)

Actually, the labelled distances (rν , ν = i, m, n, f ) in this
expression can be expressed as ri = L − D + S/2, rm = L −
S/2, rn = L + S/2 and rf = L + D − S/2, where L, D, and S
may be effectively understood as the average radius of junc-
tion, its average width and the tip/top-gate size, respectively
(see figure 1(b)). Thus, in the model suggested a circular
graphene bipolar junction is characterised by the five parame-
ters: Ul, Ug, L, D, and S. The potentials Ul and Ug could be here
thought of as having the same source as those in the potential
of equation (2). In addition, to describe bipolar-junctions these
two potentials must be different in sign, UlUg < 0, implying
the two possible cases of sign-realisations. However, as noted
above on the electron-hole symmetry, we need consider only
one of these cases, e.g. the case of Ul < 0 and Ug > 0 (i.e.
CGPNPHJs in figure 1(b)). Note that an equal smoothness is
explicitly introduced at both heterojunction boundaries in the
potential U(r) of equation (3).

Importantly, both the potentials in equations (2) and (3)
become constant in the two limits of small and large distances,
r ≤ ri and r ≥ rf (see figure 1(a) and (b)), that would signif-
icantly facilitate the LDOS-computations [19]. In particular
case of Ug ≡ 0, these potentials U(r), equation (2) as well as
equation (3), seem to have the ordinary trapezoidal profiles.
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Figure 2. (a) Map of LDOS as a function of distance r and (c) corresponding TDOS (in arbitrary unit) for the CGNPJ with potential
parameters [Ul, Ug, L,α] = [−0.35 eV, 0.02 eV, 15 nm, 0.9]. (b) and (d) are the same as (a) and (c), respectively, but for another CGNPJ with
[Ul, Ug, L,α] = [−0.35 eV, 0.02 eV, 30 nm, 0.5]. While the spectrum in (a) and (c) is featureless, that in (b) and (d) clearly shows EWGMs.

The trapezoidal potentials are often used to describe the gate-
induced graphene structures [20, 21], which are also referred to
as circular graphene quantum dots [16, 18] or quantum rings
[22, 23]. In reality, the trapezoidal shape is quite a good fit
of the Lorentzian shape that is widely believed to be the pro-
file of electrostatic potentials induced by a STM-tip [24]. An
advantage of the potentials of equations (2) and (3) also lies in
their simplicity so that the Hamiltonian of equation (1) could
be exactly solved [18, 21].

So, given parameters of the potential U(r) of equation (2)
or equation (3), as mentioned above, we solved the eigenvalue
equation for the Hamiltonian of equation (1), computed the
LDOSs, searched for EWGM-spectra, and quantitatively anal-
ysed the EWGMs identified. Searching for EWGMs requires
a bit of patience, though some guesses can be made, using
experimental data for uni-junctions (for CGNPJs [14] and for
CGPP′Js [15]). Anyway, we were able undoubtedly to identify
the EWGMs in resonators with any type of junctions under
study. In the case of uni-junctions, identified EWGMs resem-
ble well existent experimental data. Below, in figures 2–5 we

present the computational results for the CGNPJs, CGPP′J,
and CGPNPHJ, respectively. These figures have the same
structure, showing the qualitative behavior and quantitative
characters of the EWGM examined. So, avoiding an unnec-
essary repeat, most detailed discussions relating to the CGNPJ
in figures 2 and 3 may also be applied to the CGPP′J in figure 4
as well as the CGPNPHJ in figure 5.

Figure 2 presents the computed maps of LDOSs as a func-
tion of distance r (boxes (a) and (b)) and corresponding TDOSs
(boxes (c) and (d)) for the two CGNPJs with different parame-
ter values of the potential of equation (2) (given in the caption
to the figure). Indeed, both the spectra in (c) and (d) show
the resonances (or QBSs) which however carry very differ-
ent features. The spectrum in box (c) is featureless, showing
no particular relation between the magnitudes as well as the
positions of emerged resonances (here, one might think of the
so-called atomic collapse resonances [25]). On the contrary,
the spectrum in box (d) shows an almost periodic sequence
of resonances, appeared on one energy-side from the neutral
point. This is the typical feature of EWGMs. To ensure that

4
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Figure 3. (a) LDOSs(E) taken from LDOS(E, r) in figure 2(b) at different distances r given in the figure; (b) spatial distributions of the
LDOS for the two resonances/QBSs indicated respectively by the arrows in figure 2(b) [ j = 1/2(7/2) for the lower (higher) state].

the LDOS in figure 2(b) really manifests a EWGM-spectrum
we should further explore it.

In figure 3(a) we specifically display the LDOS(E), taken
from LDOS(E, r) in figure 2(b) at different distances r, given
in the figure. Note that for the CGNPJ-sample studied in this
figure the junction–boundary region ranges from ri = 15 nm
to rf = 45 nm. Correspondingly, as clearly seen from
figure 3(a), the resonances mainly appear in the indicated
region of the junction. In other words, electronic waves are
mainly confined at the junction–boundary region, manifesting
a characteristic feature of the EWGM-confinement. A similar
conclusion can also be deduced from figure 3(b), where the
spatial distributions of the LDOS are plotted for the two
resonances/QBSs marked by the corresponding arrows in
figure 2(b)6. The observed ring structure of these distributions
is one more manifestation of the EWGM-confinement. Addi-
tionally, noting on a difference in the momentum j between
these two QBSs, j = 1/2(7/2) for the lower (higher) level in
figure 2(b), we notice that with increasing j the confinement
becomes stronger and the electronic wave functions become
more localised near the junction boundary. This is in full
agreement with the ordinary WGM-idea.

Thus, the TDOS in figure 2(d) indeed shows itself to be
a EWGM-spectrum. To quantitatively evaluate this spec-
trum we measured the resonance energies Ei, resonance
widths δEi and resonance spacings ΔEi for the five most

6 Figures 3(b), 4(d) and 5(d) have been drawn in the way as used for similar
figures in [12]: the real part of the second spinor component of the Hamiltonian
(1) is plotted for indicated resonances.

profound resonances labelled by the numbers (i = 1–5) in
the spectrum. Then we calculated the partial quality-factors
[Qi] and mode radii [Ri]. Obtained results are as follows:
Qi(eV) ≈ 14.23, 34.16, 61.40, 92.34, 78.40 and Ri(nm) ≈
37.56, 36.83, 32.81, 29.73, 29.12 as i = 1–5. From these data
we deduced the average values that characterise the whole
EWGM-spectrum in figure 2(d): the quality factor Q ≈ 47.37
and the mode radius, R ≈ 31.83. Also, the resonance spacing
ΔEi seems to slightly increase from 27 meV to 34 meV as i
increases from 1–5 with the average value of Δ ≈ 31 meV.
These obtained values of the mode-radius R ≈ 32 nm and the
resonance spacing Δ ≈ 31 meV seem to be rather reasonable
in relation to the junction size (average radius L = 30 nm).
Here, as a reference, we would like to mention that the
values R ≈ 50 nm and Δ ≈ 40 meV have been reported for
the experimental data from figure 2A in [12]. Concerning
the Q-factor, however, the obtained value Q ≈ 45 shows a
complete surprise, it is too small compared to Q-factors in
ordinary optical WGM-microresonators (≈ 105–108 [1, 3]).
Regretfully, the Q-factor is not claimed in [12] as well as in
the other experiment, relating to the EWGMs in CGNPJs [14].
So, we tried ourselves to get some rough estimations from
the experimental data published. Analysing the three most
profound resonances labelled 1′, 2′, and 3′ from figure 2D in
[12] as well as the most profound resonances from figure 3g
in [14], using the same way as described above, we learn that
for all these experimental resonances the partial Q-factors
are in the same order of value as the computing Q-factors
presented above.

Next, we present in figures 4 and 5 the computing spectra
obtained for a CGPP′J and CGPNPHJ, respectively. It should

5
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Figure 4. (a), (b), (c), and (d) are respectively the same as figures 2(b), 3(a), 2(d) and 3(b), but for the CGPP′J with potential parameters:
[Ul, Ug, L,α] = [0.28 eV, 0.06 eV, 25 nm, 0.0]—step junction–boundary potential.

be again noted that each of figures 4 and 5 is very similar in
both content and structure to figures 2(b)–(d) plus figure 3.
So, we would like immediately to remark that, like figures 2
and 3 for the CGNPJ, figure 4 (or figure 5) qualitatively
demonstrates an emergence of EWGMs in the CGPP′J
(or CGPNPHJ) under study. Note that in accord with
the experimental pp′-junction measured in [15] we have
chosen the particular sample with a step junction–boundary
potential for the first attempt to study EWGMs in CGPP′Js (in
figure 1(a), step junction–boundary potentials are described
by the dashed/solid lines with xi ≡ xf). And, this is the case
reported in figure 4 (with potential parameters given in the
figure).

Quantitatively, analyzing the six most profound resonances
labelled by the numbers from 1–6 in the TDOS in figure 4(c),
we obtained for the studied CGPP′J the partial Q-factors and
mode radii as follows: (a) Qi ≈ 16.09, 45.39, 18.18, 17.49,
16.56 and 15.74 and (b) Ri(nm) ≈ 32.49, 33.30, 33.86, 33.58,
33.72 and 33.86 as i = 1–6. So, on the whole, the stud-
ied CGPP′J is characterised by the average quality-factor of
Q ≈ 21.57 and mode radius of R ≈ 33.47 nm. Correspond-
ingly, for the resonance spacing that slightly decreases from
31 to 29.7 meV we have the average value Δ ≈ 30 meV.

Analogously, for the six resonances numbered in the TDOS
presented in figure 5(c) we obtained for the studied CGP-
NPHJ (as i = 1–6): (a) Qi ≈ 21.38, 48.53, 40.23, 82.10, 54.64
and 67.18 with the average value Q ≈ 46.47; (b) Ri(nm) ≈
39.92, 39.64, 38.31, 37.56, 36.36 and 35.90 with the average
mode radius R ≈ 37.51 nm; and (c) the average resonance
spacing Δ ≈ 27 meV. Overall, obtained values of R and Δ
are rather reasonable in relation to the potential parameters
of the studied junctions. We would here mention that for
the CGPP′J measured in the experiment [15] the average
level spacing was reported to be 48 meV. Concerning the Q-
factors, however, the values obtained for both the CGPP′J
in figure 4 and CGPNPHJ in figure 5 are very small, in the
same order of value as those for CGNPJs analysed in figures 2
and 3.

Thus, it seems that all the three EWGM-spectra presented
in figures 2–5 for circular graphene resonators of different
junction-types show very small values of their Q-factors. A
question may then be arisen about if such the small Q-factors
are a particular property of the junctions studied. So, we largely
searched for EWGMs, varying parameter values of the poten-
tial U(r) for each junction type. As a brief summary, we present
in figure 6 the TDOSs with EWGMs for three resonators of

6
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Figure 5. (a), (b), (c), and (d) are respectively the same as figures 2(b), 3(a), 2(d) and 3(b), but for the CGPNPHJ with potential parameters:
[Ul, Ug, L, D, S] = [−0.60 eV, 0.15 eV, 40 nm, 25 nm, 2 nm].

each junction type: (a) CGNPJs; (b) CGPP′Js, and (c) CGP-
NPHJs (with potential-parameter values given in the figure).
Obviously, all these TDOSs show the EWGMs, similar to the
TDOSs in figures 2(a), 4(c) and 5(c). Note that some of these
TDOSs are specially collected from the junctions with step
junction–boundary potential (in the case of CGPNPHJs, it
means xi ≡ xm and xn ≡ xf, see figure 1(b)).

Quantitative analyses of all the EWGM-spectra shown in
figure 6 are in detail given in tables B1 and B2 (appendix B).
As can be seen in table B2, the values of mode radii
R and resonance spacings Δ obtained for all the exam-
ined resonators, (s1)–(s9) (each with five numbered reso-
nances—see figure 6(a)–(c)), vary from ≈ 14 to ≈ 67 nm
and from ≈ 15 to ≈ 69 meV, respectively. These values of
R and Δ are in the same order of value as the correspond-
ing data reported in figures 2–5 and seem rather reasonable,
depending on the resonator size. As for the quality factors,
though the three CGPNPHJs, (s7)–(s9), show somewhat
improved values of Q, about a 100, totally, for all examined
resonators, the Q-factors are still small, � 102. We would
like here to emphasise that such the Q-factors are found in
the EWGMs emerged in all the electrostatic-potential induced

circular graphene junctions under study, regardless of the junc-
tion type as well as the smoothness of junction–boundary
potentials.

Lastly, we would clarify in figure 6(d) the way we have
used to evaluate the EWGM-characteristics. For the resonance
(or QBS) of interest (for instance, the resonance marked by
the arrow in the last curve in figure 6(b)) the quantities to be
determined are as follows: (a) the resonance energy Ei that
appears as the eigenvalue of the Dirac equation, (b) the res-
onance width δEi that is determined by fitting the resonant
peak (dashed line) to an appropriate Lorentzian profile (solid
line), following the standard way of evaluating this quantity
(see, for example, [26]), and the resonance spacing ΔEi that
is determined as shown in figure 6(d). The quantities Ei and
δEi are then used to evaluate partial Qi and Ri as described
above.

Thus, we have theoretically studied the EWGMs emerged
in energy spectra of electrostatic-potential induced circular
graphene junctions, including all types of uni-junctions as well
as bipolar-junctions. To this end, we modelled the studied
junctions by appropriate electrostatic confinement potentials
and calculated the LDOSs of structures within the framework

7
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Figure 6. The TDOSs are shown for: (a) three CGNPJs with potential parameters [Ul(eV), Ug(eV), L(nm),α] = (s1) [0.15,−0.02, 15, 0.0],
(s2) [−0.4, 0.02, 27, 0.5] and (s3) [−0.5, 0.05, 20, 0.5]; (b) three CGPP′Js with potential parameters [Ul(eV), Ug(eV), L(nm),α] = (s4)
[0.28, 0.04, 13, 0.2], (s5) [0.35, 0.02, 10, 0.0] and (s6) [0.2, 0.02, 15, 0.1]; and (c) three CGPNPHJs with potential parameters [Ul(eV),
Ug(eV), L(nm), D(nm), S(nm)] = (s7) [−0.6, 0.15, 40, 8, 8], (s8) [−0.7, 0.3, 50, 15, 2] and (s9) [−0.7, 0.3, 70, 15, 2]. (d) Demonstration of the
method used to evaluate the partial ΔEi and δEi for the resonance at energy Ei (indicated by the arrow from the lowest curve in figure 6(c):
the resonance peak (red-dashed) is fitted to the appropriate Lorentzian profile (solid-blue)

of the Dirac–Weyl formalism for massless fermions. Calcu-
lations have been carried out for many junction-samples of
each junction-type, varying potential-parameter values. From
obtained LDOSs we identified those with EWGMs, follow-
ing the way of identifying the optical WGMs. Remarkably,
our study shows that EWGMs could be emerged in energy
spectra of circular graphene resonators with any junction-
type, uni-junctions or bipolar junctions, including those with
a step junction–boundary potential. Further, for all the iden-
tified EWGMs we evaluated their characteristics such as the
Q-factors, mode radii R, and resonance spacings Δ. Obtained
values of R and Δ are rather reasonable, depending on
the potential parameters. However, obtained Q-factors seem
always to be very small (generally, � 102), compared to those
in ordinary optical WGM-microresonators. Though all these
theoretical results describe rather well the existent experimen-
tal data, such the small values of Q cause a surprise.

For optical WGM-resonators the Q factor is limited by the
losses due to radiation/tunnel, material attenuation or scatter-
ing by geometrical imperfections. The radiative loss is related
to the fact that unlike a flat surface the total internal reflec-
tion from a curved surface does not exist, so it is unavoidable
for any resonators of finite radius. Actually, an increase of res-
onator radius may very strongly enhance the Q factor. Unfortu-
nately, this simultaneously results in unwanted consequences
such as a large mode volume or an un-equidistant spectrum that
seriously affect application potentials of the device. In prac-
tice, for each kind of resonator there exists optimum sizes to
be chosen, depending on the light wavelength λ. Generally,
the resonator radius should be much larger than λ. Quality
factor Q ≈ 8 × 109 at λ = 800 nm was reported for the silica
sphere with radius of 400μm [2]. Optimum radii of droplets
in liquid WGM-resonators are often much smaller, ∼ 20μm,
while for some crystalline resonators they may be as large as
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few milimeters [3]. Similarly, for large mode indices while the
radiative loss may be diminished strongly, other losses become
important, resulting in unwanted spectra. So, the typical index
of modes should be optimally determined, depending on mate-
rial, light-wavelength and resonator size. Ideally, in spherical
resonators with large radius the WGMs of high indices are
strongly confined to the cavity ‘equatorial’ region so effec-
tive WGM-volume occupies only a small fraction of the total
sphere volume. In practice, the confinement picture of WGMs
essentially depends on the chosen resonator size and mode
index.

In crucial difference from ordinary WGM-resonators in
optics that are fabricated with sharp boundaries, the EWGM-
resonators under study are based on graphene and bounded
by electrostatic potentials. As is well-known, due to Klein
tunneling these potentials cannot strictly confine Dirac-like
electrons in circular resonators except for the particular state
of zero energy [24, 27]. This situation sustains as the res-
onator radius increases. In the limit of large resonators,
when confinement potentials become one-dimensional, there
is still no total reflection (as shown in [28] for rectangular
potentials and in [21] for trapezoidal ones). Moreover, our
computations demonstrate that within the framework of mod-
elled confinement potentials there are fewer chances of realiz-
ing EWGMs in larger resonators (see the appendix C). Actu-
ally, a magnetic field might enhance an electron localisation
in the circular resonators, but it also induces weak resonances,
destroying the EWGM-feature of spectra [15]. Alternatively, it
was also shown that in the limit of one-dimensional potentials
a total reflection might be realized by tuning a strong Rashba
spin–orbit coupling [29] that, however, like magnetic fields,
does not support the EWGMs of interest. Electrostatic poten-
tials have a great advantage of that they could be externally
controlled. However, with respect to the EWGMs these poten-
tials have a key weakness of that they cannot completely sup-
press the Klein tunneling, causing a diminution of Q-factors.
So, we assume that a smallness of Q-factors is an inherent
character of all circular graphene resonators created by elec-
trostatic potentials. Perhaps, this unwanted effect of Klein tun-
neling might be partly reduced, for example, by using a system
of several concentric radial potential barriers in the way simi-
lar to the system of dielectric rings suggested in [5] for optical
resonators.
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Appendix A. Computations of LDOSs and TDOSs

Both the potential models U(r) (2) and (3) have the two typical
properties: (a) they are axially symmetric and (b) become con-
stant in the limits of small r (U(r) ≡ Ui at r � ri) and large

Figure A1. The TDOSs calculated from the LDOSs (A2) with jmax,
increasing from 11/2 (top curve) to 41/2 (bottom curve), are shown
to demonstrate that the summation over j in LDOS of equation (A2)
may rightly be truncated at jmax = 31/2 for this sample: the two
lower curves with jmax = 31/2 and 41/2 in the figure are practically
the same. Data shown here are for the CGNPJ with the LDOS and
TDOS presented in figures 2(b) and (d), respectively.

r (U(r) ≡ Uf at r � rf). The computing procedure realised
below can be applied to all the potentials U(r) with these
properties [16, 19].

Due to an axial symmetry of U(r), in the polar coor-
dinates (r,φ), the eigenfunctions associated with the eigen-
values E of the Hamiltonian (1) can always be found in
the form Ψ j(E, r,φ) = ei jφ(e−iφ/2χ(A)

j (E, r), e+iφ/2χ(B)
j (E, r))T ,

where the total angular momentum j takes half-integer val-
ues and χ

(A/B)
j (E, r) are the partial radial wavefunctions on the

graphene A/B-sublattices. The radial wavefunction χ j(E, r)
= (χ(A)

j (E, r),χ(B)
j (E, r))T obeys the equation

i
∂χ j(E, r)

∂r
= H(r)χ j(E, r), (A1)

where the formal radial Hamiltonian H(r) is defined by

H(r) =

⎛
⎜⎝i

j − 1/2
r

U(r) − E

U(r) − E −i
j + 1/2

r

⎞
⎟⎠ .
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The LDOS can be defined as

ρ(E, r) =
+∞∑

j=−∞
ρ( j)(E, r) (A2)

with the partial LDOS for the j-momentum

ρ( j)(E, r) ∝ 1
ΔE

‖ χ j(E, r)‖2, (A3)

where ΔE is the level spacing at the energy E and the wave-
functionχj(E, r) should be subjected to a proper normalisation
condition.

Thus, in order to compute the LDOS (A2) we have
to find the properly normalised wavefunctions χj(E, r) of
equation (A1) and the level spacing ΔE. This task may be eas-
ily performed using another property of confinement potential:
U(r) is constant in the limiting regions of small and large r.

Indeed, if U(r) ≡ Uf = constant in the region of r � rf, then
in this region equation (A1) can be solved exactly. Correspond-
ing eigenfunctions χj(E, r) can be then expressed in terms of
two integral constants C f = (C(1)

f , C(2)
f )T as

χ j(E, r) = W f (U f , r)C f (A4)

with W f (U f , r) being the basic solution of equation (A1) in
this region

W f (U f , r) =

⎛
⎝ J j− 1

2
(q f r) Y j− 1

2
(q f r)

iτ f J j+ 1
2
(q f r) iτ f Y j+ 1

2
(q f r)

⎞
⎠ .

Here, J j± 1
2

and Y j± 1
2

denote the Bessel functions of the first

and second kind, respectively, qf = |E − Uf| and τ f = sign
(E − Uf).

Imagine that the studied structure is entirely embedded in a
very large graphene disk of radius L � rf. From the fact that,
on the one hand, the solution (A4) should hold for much of area
of this disk and, on the other hand, the wave function should
vanish at r = L and larger distances, one can immediately
deduce the level spacing

ΔE = π/L (A5)

and the wanted normalisation condition for χj(E, r):

4L ‖C f ‖
|E − U f |

= 1. (A6)

Further, since the confinement potential is also constant in
the region of small distances, U(r) ≡ Ui = constant at r � ri,
equation (A1) could be solved exactly in this region close to
the origin and the found eigenfunctions have a simple form

χ j(E, r) = N
(

J j− 1
2
(qir)

iτiJ j+ 1
2
(qir)

)
. (A7)

where qi = |E − Ui|, τ i = sign(E − Ui), and N is the normal-
isation coefficient [19]. The solutions (A7) at r = ri can be
in turn used as the initial values in solving the differential
equation (A1).

Thus, with the initial values (A7) and the normalisa-
tion condition (A6) we can iteratively solve the differential
equation (A1) to find proper wavefunctions χj(E, r). Obtained
χj(E, r) and the level spacing (A5) are then inserted into (A2)
to calculate the LDOS.

Once the LDOS-spectrum ρ(E, r) (A2) is known, to access
the resonances in it, one should calculate the TDOS which is
defined by [19]:

ρT(E) =
∫ Rmax

0
2πdrρ(E, r), (A8)

where the integral should be cut off at some r = Rmax which
encircles the major maxima of the calculated LDOS.

In practice, given potential U(r), the process of computing
LDOSs and TDOSs may be schemed as

(a) Solving exactly equation (A1) in the regions r � rf and
r � ri, where U(r) ≡ Uf and U(r) ≡ Ui, to find the solu-
tions (A4) and (A7), respectively.

(b) Solving numerically equation (A1) to find the radial wave-
function χj(E, r), using the initial values χj(E, r) (A7) at
r = ri and the normalisation condition (A6). Note that in
the absence of an external magnetic field the energy spec-
tra of systems under study are identical for j > 0 and j < 0
[16], so we need to consider only the case j > 0.

(c) Calculating the partial LDOSs ρ(j)(E, r) (A3) and then
LDOS ρ(E, r) (A2), using obtained wavefunctionsχj(E, r)
and the level spacing ΔE (A5). Reasonably, the sum-
mation over j in (A3) should be truncated at some jmax,
implying that the higher momenta do not contribute sig-
nificantly to the LDOS at the energy scale of interest.
The value of jmax should be determined for the studied
sample in the way as shown in figure A1 for the sample
analysed in figure 2(d) where jmax is taken to be 31/2.
In the same way the momentum jmax was determined
for all the data presented in figures 4–6. For example,
for LDOSs presented in figures 4 and 5, jmax = 29/2
and 51/2, respectively. It should be here mentioned that
this way of determining jmax was just used by Zhao
et al [12] in calculating LDOSs for circular graphene
resonators created by the parabolic potential of U(r) ∝
r2. In the closely related problem of resonant scatter-
ing Masir et al [30] have also used the same way of
determining jmax in calculating the total cross section
for circular graphene quantum dots (CGQDs) with an
impenetrable edge (it is 15 in figures 2 and 3 in this
reference).

(d) Calculating the TDOS (A8), where the cut-off distance
Rmax is merely taken about 2 times of the effective radius
of the studied resonator (see figures 3–5 and accompanied
discussions).

The calculating method described above is in equal applied
to calculate the LDOSs/TDOSs for all circular graphene
junctions under study, including all types of uni-junctions
(e.g. np or pp′) as well as bipolar-junctions (e.g. pnp). For
each junction type the study should be carried out for many
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Table B1. Partial Qi-factors of five most profound resonances and their average Q-factor for each
EWGM-spectrum presented in figures 6(a)–(c). The spectra are labelled by (si), i = 1–9, and the
resonances in each spectrum are labelled by numbers 1–5.

Partial quality-factors

EWGM spectra 1 2 3 4 5 Average Q

(s1) 31.19 23.73 19.84 18.30 16.98 22.01 ± 5.72
(s2) 40.40 61.82 104.47 85.60 43.66 67.19 ± 27.51
(s3) 33.20 66.97 102.03 80.36 40.39 64.59 ± 28.40
(s4) 24.11 25.25 21.40 18.21 15.57 20.91 ± 4.03
(s5) 57.24 68.50 60.14 51.09 44.98 56.39 ± 8.94
(s6) 19.18 18.11 16.64 15.65 14.67 16.85 ± 1.82
(s7) 97.18 87.36 93.95 79.90 79.20 87.52 ± 8.09
(s8) 112.76 108.47 117.66 103.68 109.55 110.43 ± 5.19
(s9) 112.61 116.77 105.16 108.02 100.58 108.63 ± 6.31

Table B2. The same as table B1, but for the partial mode Ri-radii, their average value R and average
resonance spacing Δ.

Partial mode radii

EWGM spectra 1 2 3 4 5 Average R (nm) Average Δ (meV)

(s1) 22.42 21.66 21.66 21.66 21.55 21.79 ± 0.36 45.90 ± 0.736
(s2) 32.18 29.21 26.59 26.12 25.66 27.95 ± 2.73 36.04 ± 3.314
(s3) 24.39 21.98 19.82 19.47 19.14 20.96 ± 2.21 48.11 ± 4.756
(s4) 18.20 18.27 18.42 18.58 18.73 18.44 ± 0.22 54.23 ± 0.644
(s5) 14.42 14.37 14.37 14.46 14.51 14.42 ± 0.06 69.33 ± 0.293
(s6) 21.55 21.44 21.45 21.55 21.55 21.51 ± 0.06 46.49 ± 0.125
(s7) 37.63 37.63 37.95 37.63 38.28 37.82 ± 0.29 26.44 ± 0.201
(s8) 47.23 47.23 47.23 47.23 48.26 47.44 ± 0.46 21.08 ± 0.202
(s9) 67.27 66.27 67.27 67.27 67.27 67.07 ± 0.45 14.91 ± 0.101

samples with different potential parameter values, search-
ing for the LDOSs with EWGMs. Fortunately, computations
may be easily performed using standard MatLab or C++
programs.

Appendix B. Quantitative analyses of EWGMs

For each EWGM-spectrum identified we evaluated its over-
all characteristics, including the Q-factor, mode radius R and
resonance spacing Δ. To this end, for the most profound (i)-
resonances in the spectrum we evaluated the resonance energy
Ei (i.e. the energy-position of resonance peak), the resonance
width δEi and the resonance spacing ΔEi (see figure 6(d)).
Obtained data are then used to determine the partial Qi-factors
and mode radii Ri for examined resonances, following the
same way as that for optical WGMs (see main text). Then,
from these partial Qi-factors, Ri-radii, and ΔEi-spacings we
deduced the average values, Q, R, andΔwhich characterise the
studied EWGM on the whole. As an example, tables B1 and B2
respectively show in detail the Q-factors (partial and average)
and the mode radii (partial and average) as well as the average
resonance spacings found for the EWGM-spectra presented in
figure 6(a)–(c).

Appendix C. Resonant spectra in large resonators

It should be emphasised that all the potential parameters are
closely correlated with each other in affecting the resonant
spectra of studied resonators. So, in response to changes of
a particular potential parameter, say the effective radius L, the
varying feature of resonant spectrum is essentially depending
on the values of other parameters, say Ul, Ug, and α for CGN-
PJs. As a demonstration, figure C1 shows how the resonant
spectrum of a resonator changes when only its radius varies.
The data shown in figures C1(a)–(c) are for three sets of res-
onators, which are respectively originated from the resonators
studied in figures 3–5.

In figure C1(a) the top curve is just the TDOS with EWGMs
shown in figure 2(d) for the CGNPJ of radius L = 30 nm. With
increasing the radius L to 50, then 75 and then 100 nm, keeping
other parameters unchanged, the spectra in the energy region
of interest show more and more resonances, which however
become badly defined and less equidistant. Such the changes
of spectra as L increases are more noticeable in figure C1(b)
for CGPP′Js with different radii, including the CGPP′J with
L = 25 nm studied in figure 4. In figure C1(c) for CGPNPHJs
the radius L is specially increased to the value of 500 nm. There
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Figure C1. Changes of TDOSs (describing resonant spectra) as the resonator radius increases. The TDOSs in each box are for the resonators
differentiated from each other only by the radius value (given to curves). (a) ((b) or (c)) is for CGNPJs (CGPP′Js or CGPNPHJs), where the
top curve is just the TDOS presented in figure 2(d) (figures 4(c) or 5(c), respectively)

is no limiting radius of observing EWGMs that applies for
all resonators. However, generally, the larger the radius L, the
weaker the confinement effect and, therefore, the smaller the
probability of finding EWGM-spectra. In the present study,
we have examined many resonators of each junction type
and recognised no resonator with L > 100 nm that exhibits
an EWGM-spectrum. So, in combination with the studies on
the size dependence of confinement effect in CGQDs, e.g. in
[31], we hereby suggested that within the framework of the
studied models the EWGM-spectra could be observed only in
the resonators of L � 100 nm. Really, this is just an empirical
estimation.

Here, we would like to note on a certain relation between
the resonator radius and the value of jmax which should be used
in determining LDOSs (see appendix A). For CGQDs with
zigzag boundary conditions (one of wave-components is zero
at the dot edge), Wunsch et al [32] were able to estimate the
maximum value of angular momentum for the surface states,
jmax ∼ R / l, where R is the dot radius and l is a length compa-
rable to the lattice spacing. For the studied circular graphene
junctions which are created by rather complicated electrostatic
potentials of equation (2) or (3), jmax must be determined for
each computed sample in the way as described in figure A1.
We also noticed that jmax becomes larger as the resonator radius
increases. However, this statement is valid only if comparisons
are taken among the resonators with the same values of all
potential parameters other than the radius (that varies) due to a
strong correlation between these parameters and the radius in
affecting resonant spectra.
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