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Abstract—We build a simple Standard Model extension based on T7 flavor symmetry which accommo-
dates lepton mass, mixing with non-zero θ13, and CP violation phase. The lepton mixing matrix is obtained
from three triplets and one singlet under T7 symmetry, and the charged-lepton mass is derived through
the spontaneous symmetry breaking by just one T7 triplet (φ), while neutrinos get small masses from one
SU(2)L doublet and two SU(2)L singlets in which one is in 1 and the two others are in 3 and 3∗ under T7,
respectively. There exist viable parameters of the model that predict the effective Majorana neutrino mass
with values mβ � 10−2 eV and 4.95× 10−2 eV as well as a lightest neutrino mass mlight � 4.97× 10−3 eV
and 1.61× 10−3 eV for the normal and inverted neutrino mass hierarchies, respectively. The model also
gives a remarkable prediction of Dirac CP violation δCP � 303.3◦ in the normal hierarchy and δCP �
56.69◦ in the inverted hierarchy which is still missing in the neutrino mixing matrix. The quark mixing
angles of the model are closed to the experimental data, whereas the obtained values for the quark masses
are consistent with with the experimental data at the tree level.

DOI: 10.1134/S1063778819020133

1. INTRODUCTION

The discovery of neutrino mass is a great break-
through for particle physics, and up to now, this is
one of the most important evidences of new physics.
Neutrinos have tiny masses and this is probably re-
lated to the existence of a new mass scale in physics.
Recently, it has been shown that neutrinos can also
play a key role in providing an answer for the Baryon
Asymmetry of Universe (BAU). Theoretically, there
exist various models describing the smallness of neu-
trino mass and large θ13 mixing3). Among the possi-
ble extensions of the Standard Model (SM), probably
the simplest one is the neutrino minimal SM which
has been studied in [2–6]. However, these extensions
do not provide a natural explanation for large mass
splitting between neutrinos and the lepton mixing
was not explicitly explained [7].

There are five well-known patterns of lepton mix-
ing [8], however, the Tri-bimaximal one proposed by
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Harrison–Perkins–Scott (HPS) [9–12] seems to be
the most popular and can be considered as a leading-
order approximation for the recent neutrino experi-
mental data. Up to now, the absolute values of the
entries of the lepton mixing matrix UPMNS have not
yet been determined exactly, however, their scales are
given in [13]:

|UPMNS| (1)

=

⎛
⎜⎜⎜⎝

0.801 → 0.845 0.514 → 0.580 0.137 → 0.158

0.225 → 0.517 0.441 → 0.699 0.614 → 0.793

0.246 → 0.529 0.464 → 0.713 0.590 → 0.776

⎞
⎟⎟⎟⎠ .

The best-fit values of neutrino mass squared differ-
ences and leptonic mixing angles are given in [14] as
below:

sin2 θ12 = 0.304 ± 0.014,

sin2 θ13 = (2.19 ± 0.12) × 10−2,

sin2 θ23 = 0.51 ± 0.05(NH),

sin2 θ23 = 0.50± 0.05(IH), (2)

Δm2
21 = (7.53 ± 0.18) × 10−5 eV2,

Δm2
32 = (2.44 ± 0.06) × 10−3 eV2(NH),

Δm2
32 = (2.51 ± 0.06) × 10−3 eV2(IH). (3)

Here NH and IH stand for normal and inverted hier-
archies, respectively.

168



FERMION MASS AND MIXING 169

To explain the specific neutrino mixings, it is sim-
ple to use discrete symmetry such as A4, S3, S4,
etc. The use of non-Abelian discrete symmetries to
construct the models describing the lepton masses
and mixings is a new method firstly proposed by Ma
and Rajasekaran in 2001 [15]. In this treatment,
there are various models which have been proposed,
see for example A4 [15–35], S3 [36–39], S4 [40–
43], D4 [44–54], T ′ [55–64], T7 [65–69]. However,
in all above-mentioned works, the fermion masses
and mixings are generated from non-renormalizable
interactions4) or at loop levels but not at tree-level.
The models involving only renormalizable interac-
tions were implemented in our previous works [38, 39,
41–43, 70–77] in which the discrete symmetries have
been added to the 3-3-1 models. As we know, the 3-
3-1 model itself is an extension of the SM where the
gauge group SU(2)L is extended to SU(3)L.

In this paper, we construct a simple extension of
the SM based on T7 symmetry that leads to lepton
mass, mixing with non-zero θ13, and CP violation
phase. Note that, T7 symmetry has not been previ-
ously considered in this kind of the model with the
mentioned scenario. Furthermore, this model is dif-
ferent from our previous works [71, 73] because the
3-3-1 model [based on SU(3)C ⊗ SU(3)L ⊗ U(1)X ]
itself is an extension of the SM. For this purpose,
two SU(2)L doublets and two SU(2)L singlets are
introduced. The result follows without perturbation
and the number of scalars required to generate lepton
masses are fewer than those in [1].

The future content of this paper reads as follows.
In Section 2 we present the fundamental elements
of the model and introduce necessary Higgs fields
responsible for the fermion mass and mixing. We
make conclusions in Section 3. Appendix A presents
the scalar potential of the model. Appendices B and C
provide detail solutions for neutrino masses in normal
and inverted hierarchies, respectively.

2. RESULTS AND DISCUSSION

2.1. Lepton Mass and Mixing

The lepton content of the model, under SU(2)L ⊗
U(1)Y ⊗U(1)X ⊗ T7 symmetries, is given in Table 1.

The charged lepton masses arise from the cou-
plings of ψ̄Ll1R, ψ̄Ll2R and ψ̄Ll3R to scalars, where
ψ̄LliL(i = 1, 2, 3) transforms as 2 under SU(2)L and
3∗ under T7. In order to generate masses for charged
leptons, we need only one SU(2)L Higgs doublets (φ)
lying in 3 under T7, as given in Table 1. The Yukawa

4)In [19], tribimaximal form obtained at the tree level but the
realistic lepton mixing obtained with radiative corrections.

Table 1. Lepton content of the model

ψL l(1,2,3)R νR φ ϕ χ ζ

SU(2)L 2 1 1 2 2 1 1

U(1)Y −1 −2 0 1 1 0 0

U(1)X 1 1 0 0 −1 0 0

T7 3 1, 1′, 1′′ 3 3 1 3 3∗

interaction of the scalar field with charged leptons
takes the form:

−Ll = h1(ψ̄Lφ)1l1R + h2(ψ̄Lφ)1′′ l2R

+ h3(ψ̄iLφ)1′ l3R + H.c.

= h1(ψ̄1Lφ1 + ψ̄2Lφ2 + ψ̄3Lφ3)l1R

+ h2(ψ̄1Lφ1 + ω2ψ̄2Lφ2 + ωψ̄3Lφ3)l2R

+ h3(ψ̄1Lφ1 + ωψ̄2Lφ2 + ω2ψ̄3Lφ3)l3R + H.c. (4)

In this work we impose only the breaking T7 → Z3 in
charged lepton sector, and this can be achieved with
the alignment of φ under T7, 〈φ〉 = (〈φ1〉, 〈φ1〉, 〈φ1〉),
where

〈φ1〉 = (0v)T . (5)

With the vacuum expectation value (VEV) of φ1 in
Eq. (5), the mass Lagrangian for the charged leptons
can be written in matrix form as
−Lmass

l = (l̄1L, l̄2L, l̄3L)Ml(l1R, l2R, l3R)
T + H.c.,

(6)

where

Ml =

⎛
⎜⎜⎜⎝

h1v h2v h3v

h1v ω2h2v ωh3v

h1v ωh2v ω2h3v

⎞
⎟⎟⎟⎠ . (7)

The mass matrix Ml in Eq. (7) is diagonalized:

U †
LMlUR = diag

(√
3h1v,

√
3h2v,

√
3h3v

)

≡ diag (me,mμ,mτ ) , (8)

where

UL =
1√
3

⎛
⎜⎜⎜⎝

1 1 1

1 ω2 ω

1 ω ω2

⎞
⎟⎟⎟⎠ , UR = 1, (9)

and ω is the cube root of unity, ω = ei2π/3 = −1
2 +

i
√
3
2 . The Yukawa couplings h1,2,3 in charged-lepton

sector are defined:

h1 =
me√
3v

, h2 =
mμ√
3v

, h3 =
mτ√
3v

. (10)
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The experimental values for masses of the charged
leptons are given in [14]:

me � 0.510998928 MeV,

mμ = 105.6583715 MeV,

mτ = 1776.86 MeV. (11)

It follows that h1 
 h2 
 h3. Furthermore, if we
choose5) the VEV v ∼ 100 GeV, then

h1 ∼ 10−6, h2 ∼ 10−4, h3 ∼ 10−2, (12)

i.e., in the model under consideration, the hierar-
chy between the masses for charged-leptons can be
achieved if there exists a hierarchy between Yukawa
couplings hi(i = 1, 2, 3) in charged-lepton sector as
given in Eq. (12). We note that the masses of charged
leptons are self-separated by only one T7 triplet φ, and
this is a good feature of the T7 group. We remind
that in the other models with discrete symmetries (for
example, see [35, 78, 79]), the charged masses are
generated from non-renormalizable interactions or at
loop levels.

The neutrino masses arise from the couplings of
ψ̄LνR and ν̄cRνR to scalars, where ψ̄LνR transforms as
2 under SU(2)L and 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3∗ under T7;
ν̄cRνR transform as 1 under SU(2)L and 3⊕ 3∗ ⊕ 3∗

under T7. Note that 3⊗ 3⊗ 3 has two invariants and
3⊗ 3⊗ 3∗ has one invariant under T7. In order to gen-
erate mass for neutrinos, we additionally introduce
one SU(2)L doublet (ϕ) and two SU(2)L singlets
(χ, ζ), respectively, put in 1, 3, and 3∗ under T7 as
given in Table 1. We note that the U(1)X symmetry
forbids the Yukawa terms of the form (ψ̄Lφ̃)3sνR and
yields the expected results in the neutrino sector, and
this is an interesting feature of X-symmetry. It is also
interesting to note that ϕ contributes to the Dirac
mass matrix, χ and ζ contribute to the Majorana
mass matrix of the right-handed neutrinos. In fact,
there exist no one-dimensional representation in 3⊗
3 under T7. Hence, ζ put in 3∗ will be responsible for a
realistic neutrino spectrum without any perturbation
and soft breaking in both lepton and neutrino sectors.
This feature is different from that in [35]. It needs to
note that ϕ contributes to the Dirac mass matrix in
the neutrino sector, χ and ζ contribute to the Majo-
rana mass matrix of the right-handed neutrinos. The
interesting feature of X symmetry is that it prevents

5)In the SM, the Higgs VEV v is 246 GeV, fixed by the W -

boson mass and the gauge coupling m2
W = g2

4
v2weak. In the

model under considerationM2
W � 3

2
g2v2. Therefore, we can

identify v2weak = 6v2 = (246 GeV)2. It follows v � 100 GeV.

the unwanted interaction of the form (ψ̄Lφ̃)3sνR and
provides the expected results in the neutrino sector6).

In this work we impose that the breaking T7 →
{identity} must take place, i.e., T7 is completely bro-
ken in the neutrino sector. This can be achieved
within each case below.

(1) A new SU(2)L singlet χ lies in 3 under T7

and the VEV is given by 〈χ〉 = (0, 〈χ2〉, 0)T under T7,
where

〈χ2〉 = vχ. (13)

(2) Another singlet ζ lies in 3∗ under T7 and the
VEV is given by 〈ζ〉 = (〈ζ1, 〈ζ2〉, 〈ζ3〉)T under T7, i.e.
〈ζ1〉 = 〈ζ2〉 = 〈ζ3〉 = 0, where

〈ζi〉 = ui(i = 1, 2, 3). (14)

The neutrino Yukawa interactions are given by

−Lν = x(ψ̄Lϕ̃)3∗νR +
y

2
(ν̄cRχ)3∗νR

+
z

2
(ν̄cRζ)3∗νR + H.c. = x(ψ̄1Lϕ̃ν1R

+ ψ̄2Lϕ̃ν2R + ψ̄3Lϕ̃ν3R) +
y

2

[
(ν̄c2Rχ3

+ ν̄c3Rχ2)ν1R + (ν̄c3Rχ1 + ν̄c1Rχ3)ν2R

+ (ν̄c1Rχ2 + ν̄c2Rχ1)ν3R

]
+

z

2
(ν̄c1Rζ2ν1R

+ ν̄c2Rζ3ν2R + ν̄c3Rζ1ν3R) + H.c. (15)

From (15), we find the following neutrino mass terms

−Lmass
ν = xv(ν̄1Lν1R + ν̄2Lν2R + ν̄3Lν3R)

+
y

2

(
vχν̄

c
3Rν1R + vχν̄

c
1Rν3R + vχν̄

c
2Rν1R

+ vχν̄
c
1Rν2R

)
+

z

2
(u2ν̄

c
1Rν1R + u3ν̄

c
2Rν2R

+ u1ν̄
c
3Rν3R) + H.c., (16)

which can be rewritten in the matrix form as

−Lmass
ν =

1

2
χ̄c
LMνχL + H.c.,

χL ≡

⎛
⎝νcL

νR

⎞
⎠ , Mν ≡

⎛
⎝ 0 MD

MT
D MR

⎞
⎠ ,

νcL = (νc1Lν
c
2Lν

c
3L)

T , νR = (ν1Rν2Rν3R)
T , (17)

6)There is an unwanted Goldstone boson generated from the
spontaneous breaking of the continuous group U(1)X , how-
ever, it is harmless because this boson can be removed
by interactions violating the T7 symmetry or by additional
introduction of a new standard model singlet scalar charged
only under another discrete subgroup Zn that was in detail
discussed in [19] and [20], respectively.
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where the Dirac neutrino mass matrix (MD) and the
right-handed Majorana neutrino mass matrix (MR)
are given by

MD =

⎛
⎜⎜⎜⎝

a 0 0

0 a 0

0 0 a

⎞
⎟⎟⎟⎠ , MR =

⎛
⎜⎜⎜⎝

N2 0 b

0 N3 0

b 0 N1

⎞
⎟⎟⎟⎠ , (18)

with
a = vϕx, b = vχy,

Ni = uiz (i = 1, 2, 3). (19)

The seesaw mechanism generates small masses for
neutrinos is given by

Meff = −MDM
−1
R MT

D =

⎛
⎜⎜⎜⎝

A1 0 B

0 A3 0

B 0 A2

⎞
⎟⎟⎟⎠ , (20)

where

A1 =
a2N1

b2 −N1N2
, A2 =

a2N2

b2 −N1N2
,

A3 = − a2

N3
, B =

a2b

N1N2 − b2
. (21)

The matrix Meff in Eq. (20) has three exact eigenval-
ues given by

m1,3 =
1

2

(
A1 +A2 ∓

√
(A1 −A2)2 + 4B2

)
,

m2 = A3, (22)

and the corresponding eigenstates are

Rν =

⎛
⎜⎜⎜⎝

K√
K2+1

0 1√
K2+1

0 1 0

1√
K2+1

0 − K√
K2+1

⎞
⎟⎟⎟⎠ , (23)

with K being real and

K =
[
A1 −A2 −

√
(A1 −A2)2 + 4B2

]
/(2B),

(24)

and A1,2, B are given in Eq. (21).

The lepton mixing matrix is then expressed as

U †
νMeffUν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝
m1 0 0

0 m2 0

0 0 m3

⎞
⎟⎠ , Uν ≡ UN

ν =

⎛
⎜⎜⎝

K√
K2+1

0 1√
K2+1

0 1 0
1√

K2+1
0 − K√

K2+1

⎞
⎟⎟⎠ , for NH,

⎛
⎜⎝
m3 0 0

0 m2 0

0 0 m1

⎞
⎟⎠ , Uν ≡ U I

ν =

⎛
⎜⎜⎝

1√
K2+1

0 K√
K2+1

0 1 0

− K√
K2+1

0 1√
K2+1

⎞
⎟⎟⎠ , for IH,

(25)

where mi(i = 1, 2, 3) and K are given in Eqs. (22) and (24), respectively.

Using the rotation matrices in the charged lepton and in the neutrino sectors given by Eqs. (9) and (26) for
the normal and inverted neutrino mass hierarchies, respectively, we find that the leptonic mixing matrix takes
the form

ULep =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R†
lLU

N
ν = 1√

3

⎛
⎜⎜⎝

1+K√
K2+1

1 1−K√
K2+1

K+ω2
√
K2+1

ω 1−Kω2
√
K2+1

K+ω√
K2+1

ω2 1−Kω√
K2+1

⎞
⎟⎟⎠, for NH,

R†
lLU

I
ν = 1√

3

⎛
⎜⎜⎝

1−K√
K2+1

1 1+K√
K2+1

1−Kω2
√
K2+1

ω K+ω2
√
K2+1

1−Kω√
K2+1

ω2 K+ω√
K2+1

⎞
⎟⎟⎠, for IH.

(26)
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We see that all the elements of the matrix UPMNS
defined in Eq. (26) depend only on one parameter K
and |Ui2| = 1√

3
(i = 1, 2, 3) for both normal and in-

verted hierarchies. From the experimental constraints
on the other elements of the lepton mixing matrix
given in [13] as given in Eq. (1), we can find out the
regions of K that satisfy the experimental data on the
lepton mixing matrix.

The neutrino mass spectrum can be the normal
or inverted hierarchy or nearly degenerate. The mass
ordering of neutrino depends on the sign of Δm2

23
which is currently unknown. However, some tight
upper limits on the total neutrino mass

∑
mν have

been given by the recent studies. For example, the
total mass of three degenerate neutrinos was given
by the Planck satellite mission [80],

∑
mν < 0.72 eV

(95% CL) by using Planck TT + lowP data, and∑
mν < 0.49 eV (95% CL) by using Planck TT, TE,

EE + lowP data. While the improved constraints
are given by adding the baryon acoustic oscillation
(BAO) measurements [81], i.e.,

∑
mν < 0.21 eV

(95% CL) and
∑

mν < 0.17 eV (95% CL), respec-
tively. Another upper limit was given in [82],

∑
mν <

0.113 eV (95% CL).
As will see, in the model under consideration, the

two possible signs of Δm2
23 corresponding to two

types of the neutrino mass spectrum can be pro-
vided. Combining (31) and the two experimental
constraints on squared mass differences of neutrinos
as shown in (3), we obtain the solutions as shown
bellow.

2.1.1. Normal spectrum (Δmmm2
23 >>> 0). In the

normal Hierarchy, the range of the elements |Ui1| and
|Ui3| (i = 1, 2, 3) in Eq. (26) are depicted in Fig. 1
with K ∈ (0.675, 0.710). In the case K = 0.7, the
lepton mixing matrix in (26) takes the form

UN =

⎛
⎜⎜⎜⎝

0.804072 0.57735 0.141895

0.0945968 − 0.409616i −0.288675 + 0.5i 0.638528 + 0.286731i

0.0945968 + 0.409616i −0.288675 − 0.5i 0.638528 − 0.286731i

⎞
⎟⎟⎟⎠ , (27)

which is unitary and consistent with the constraint
given in Eq. (1). This result implies that in the
model under consideration, the value of the Jarlskog
invariant JCP which determines the magnitude of
CP violation in neutrino oscillations is determined
as [14, 83]:

JN
CP = Im

[
UN
23(U

N
13)

∗UN
12(U

N
22)

∗]

= −0.0329361. (28)

On the other hand, in the standard parametrization
of the three neutrino mixing matrix, JCP is deter-
mined [14]:

JCP =
1

8
cos θ13 sin 2θ12 sin 2θ23

× sin 2θ13 sin δCP . (29)

Substituting the best-fit values of leptonic mixing
angles given in (2) for the nomal hierarchy to JCP in
Eq. (29) and comparing to JCP in Eq. (28), we get
sin δNCP = −0.98956 or δNCP = 303.302◦.

From standard parametrization of the leptonic
mixing matrix, it follows that the lepton mixing
parameters of our model take the form:

sin2 θN12 =
∣∣UN

12

∣∣2 /
(
1−

∣∣UN
13

∣∣2) = 0.340183,

sin2 θN13 =
∣∣UN

13

∣∣2 = 0.0201342,

sin2 θN23 =
∣∣UN

23

∣∣2 /
(
1−

∣∣UN
13

∣∣2) = 0.5, (30)

which is consistent with the experimental data given
in Eq. (2).

Now, by combining Eq. (22) and the two exper-
imental constraints on the squared mass differences
of neutrinos in the normal mass hierarchy as shown
in Eq. (3), we get the other parameters of the model.
Firstly, substituting K = 0.7 into Eq. (24) we get the
following relations7):

A1 = A2 − 0.728571B, mN
1 = A2 − 1.42857B,

mN
2 = A3, mN

3 = A2 + 0.7B, (31)(
Δm2

21

)
N

=
∣∣∣A2

3 − 1.1327(0.939597A2 − 1.34228B)2
∣∣∣,

(
Δm2

32

)
N

=
∣∣∣0.5A2

2 − 0.5A2
3

+ 2.82857A2B − 0.530408B2
∣∣∣. (32)

7)Here, we we assumed that B is real and positive.
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0.8035
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0.4210
0.4215
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Fig. 1. UN
i1 and UN

i3 (i = 1, 2, 3) as functions of K with K ∈ (0.675, 0.710).

Next, comparing Eq. (32) and the two experi-
mental constraints on the squared mass differences
of neutrinos in the normal mass hierarchy as shown
in Eq. (3), we get four solutions (in [eV]) given in

0.07

0.06

0.05

0.02 0.03 0.04
A3, eV

0.05

0.04

0.03

0.02

0.01

 
1,2,3, eV
Nm

 
3

Nm
 
2

Nm
 
1

Nm

Fig. 2. m1,2,3 as functions of A3 in the normal spectrum
with A3 ∈ (0.0087, 0.05) eV.

Appendix B. These solutions have the same absolute
values of m1,2,3, the unique difference is the sign of
them. Therefore we only consider in detail the case
in Eq. (B.2)8). Indeed, using the upper bound on the
absolute value of the neutrino mass [84] we can re-
strict the values of A3 : A3 ≤ 0.6 eV. However, in the
normal hierarchy in Eq. (B.2), A3 ∈ (0.0087, 0.05) eV
or A3 ∈ (−0.05,−0.0087) eV are good regions of
A3 that can reach the realistic neutrino mass hi-
erarchies. m1,2,3 as functions of A3 are plotted
in Fig. 2 with A3 ∈ (0.0087, 0.05) eV. This figure
shows that there exist allowed regions of A3 where
either normal or quasi-degenerate neutrino masses
spectrum is achieved. The quasi-degenerate mass
hierarchy9) is obtained when A3 ∈ (0.05 eV,+∞)
or A3 ∈ (−∞,−0.05 eV) (|A3| increases but must
be small enough because of the scale of m1,2,3).
The normal mass hierarchy can be achieved if A3 ∈
(0.0087, 0.05) eV or A3 ∈ (−0.05,−0.0087) eV. The

8)The expressions from Eq. (B.1) to Eq. (B.4) show that
mi (i = 1, 2, 3) depend only on one parameter (A3) so we
consider m1,2,3 as functions of A3.

9)There is no clear limits between neutrino mass hierarchies by
the recent experimental results on neutrino oscillations.
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Fig. 4. 〈mee〉, mβ , and mlight as functions of A3 with
A3 ∈ (0.0087, 0.05) eV in the normal spectrum.

total neutrino masses in the model under considera-
tion

∑3
i=1mi with A3 ∈ (0.0087, 0.05) eV is depicted

in Fig. 3.

It is easy to obtain the effective neutrino
mass 〈mee〉 governing neutrinoless double beta

decay [85–90] 〈mee〉 =
∣∣∣∑3

i=1 U
2
eimi

∣∣∣ and mβ =
{∑3

i=1 |Uei|2m2
i

}1/2
from Eqs. (9) and (31). 〈mee〉

and mβ together with mlight = m1 as functions of A3

are plotted in Fig. 4 with A3 ∈ (0.0087, 0.05) eV.

To get explicit values of the model parameters, we
assume A3 ≡ m2 = 10−2 eV, which is safely small.
Then the other neutrino masses and the other param-
eters are explicitly given in Table 2.

Now, comparing Eq. (21) and derived values in
Table 2 we get the relations:

N2 = 1.77938N1, N3 = 1.25649N1 ,

a = −0.112093i
√

N1, b = −1.06974N1 , (33)

i.e., N1, N2, N3, and b have the same order of mag-
nitude, and approximately two orders of magnitude of
a2. N2, N3, |a|, and |b| as functions of N1 with N1 ∈
(108, 109) eV in the normal spectrum is depicted in
Fig. 5. In the case, N1 = 109 eV we get:

N2 = 1.77938 × 109, N3 = 1.25649 × 109,

a = −3.54469i × 103, b = −1.06974 × 109. (34)

Combining Eq. (34) and (19) we get the following
relation:

x = −3.54469i × 103

vϕ
, y = −1.06974 × 109

vχ
,

z =
109

u1
=

1.77938 × 109

u2
=

1.25649 × 109

u3
,

u1 = 0.561994u2 = 0.795868u3 . (35)

2.1.2. Inverted spectrum (Δm2
32 < 0). In

inverted Hierarchy, the elements |U I
i1| and |U I

i3| (i =
1, 2, 3) in Eq. (26) are depicted in Fig. 6 with K ∈
(−0.725,−0.675). In the case K = −0.7, the lepton
mixing matrix in (26) takes the form

U I =

⎛
⎜⎜⎜⎝

0.804072 0.57735 0.141895

0.307439 − 0.286731i −0.288675 + 0.5i −0.567581 − 0.409616i

0.307439 + 0.286731i −0.288675 − 0.5i −0.567581 + 0.409616i

⎞
⎟⎟⎟⎠ . (36)

The matrix U I in Eq. (36) satisfies the unitary con-

dition and has the same order in magnitude with

UPMNS in Eq. (1). The value of the Jarlskog invariant

JCP in this case is determined as [14, 83], JI
CP =
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Fig. 5. N2, N3, |a|, and |b| as functions of N1 with N1 ∈
(108, 109) eV in the normal spectrum.

0.0329361. This value implies sin δICP = 0.989362 or
δICP = 56.6863◦.

Substituting K = −0.7 into Eq. (24) we get:

A1 = A2 + 0.728571B, mI
1 = A2 + 1.42857B,

mI
2 = A3, mI

3 = A2 − 0.7B, (37)(
Δm2

21

)
I

Table 2. The model parameters in the case A3 ≡ mN
2 =

10−2 eV in the normal hierarchy

Parameter, eV The derived value
A1 1.97862× 10−2

A2 3.52072× 10−2

B 2.11661× 10−2

mN
light ≡ mN

1 4.96991× 10−3

m3 5.00235× 10−2

∑
mN

i 6.49934× 10−2

〈mN
ee〉 7.55373× 10−3

mN
β 9.98427× 10−3

Table 3. The model parameters in the case A3 ≡ mI
2 =

0.0505 eV in the inverted hierarchy

Parameter, eV The derived value
A1 3.39188× 10−2

A2 1.74426× 10−2

B 2.26144× 10−2

mI
light ≡ mI

3 1.61245× 10−3

m1 4.97489× 10−2

∑
mI

i 0.101861

〈mI
ee〉 4.90301× 10−2

mI
β 4.95002× 10−2

=
∣∣∣A2

3 − 1.1327(0.939597A2 + 1.34228B)2
∣∣∣,

(
Δm2

32

)
I
=

∣∣∣0.5A2
2 − 0.5A2

3

− 2.82857A2B − 0.530408B2
∣∣∣. (38)

Similar to the normal case, by combining Eq. (22)
and the two experimental constraints on squared
mass differences of neutrinos in the inverted mass hi-
erarchy as shown in Eq. (3), we get four solutions (in
[eV]) given in Appendix C. Here, we consider in detail
the case in Eq. (C.4) with A3 ∈ (0.0505, 0.1) eV that
can reach the inverted neutrino mass hierarchy which
is plotted in Fig. 7. The total neutrino mass

∑3
i=1 m

I
i

and the effective neutrino masses 〈mI
ee〉, mI

β together

with mI
light = mI

3 in the inverted hierarchy model
under consideration with A3 ∈ (0.0505, 0.1) eV are
depicted in Figs. 8 and 9, respectively. To get explicit
values of the model parameters, we assume A3 ≡
mI

2 = 0.0505 eV, the other neutrino masses and the
other parameters are explicitly given in Table 3.

Now, comparing Eq. (21) and derived values in
Table 3 we get the relations:

N2 = 0.514245N1 , N3 = 0.0468315N1 ,

a = −0.0486312i
√

N1, b = −0.666723N1 . (39)

Combining Eq. (39) and (19) we get the relation:

x = −1.53785i × 103/vϕ,

y = −6.66723 × 108/vχ,

z = 109/u1 = 5.14245 × 108/u2

= 4.68315 × 109/u3,

u1 = 1.9446u2 = 21.3531u3. (40)

2.2. Quark Mass

The quarks content of the model under [SU(2)L,
U(1)Y , U(1)X , T 7] symmetries, respectively, given in
Table 4. The Yukawa interactions are10):

−Lq = hu1Q̄1L(φ̃uR)1 + hu2Q̄2L(φ̃uR)1′ (41)

+ hu3Q̄3L(φ̃uR)1′′ + hd1Q̄1L(φdR)1

+ hd2Q̄2L(φdR)1′ + hd3Q̄3L(φdR)1′′ + H.c.

= hu1Q̄1L(φ̃1u1R + φ̃2u2R + φ̃3u3R)

+ hu2Q̄2L(φ̃1u1R + ωφ̃2u2R + ω2φ̃3u3R)

10)Here, φ̃ = iσ2φ
∗ =

⎛

⎝ φ0
2

−φ−
1

⎞

⎠ ∼ [2,−1, 0, 3], and

φ̃′ ∼ [2,−1, 0, 3′].
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Table 4. The quark content of the model

Field Q1,2,3L u1,2,3R d1,2,3R

SU(2)L 2 1 1

U(1)Y 1/3 4/3 −2/3

U(1)X 0 0 0

T 7 1, 1′, 1′′ 3 3∗

+ hu3Q̄3L(φ̃1u1R + ω2φ̃2u2R + ωφ̃3u3R)

+ hd1Q̄1L(φ1d1R + φ2d2R + φ3d3R)

+ hd2Q̄2L(φ1d1R + ωφ2d2R + ω2φ3d3R)

+ hd3Q̄3L(φ1d1R + ω2φ2d2R + ωφ3d3R)

+ H.c.

With the VEV alignment of φ as given in Eq. (5),
the mass Lagrangian of quarks reads

−Lmass
q = hu1v(ū1Lu1R + ū1Lu2R + ū1Lu3R)

+ hu2v(ū2Lu1R + ωū2Lu2R + ω2ū2Lu3R)

+ hu3v(ū3Lu1R + ω2ū3Lu2R + ωū3Lu3R)

+ hd1v(d̄1Ld1R + d̄1Ld2R + d̄1Ld3R)

+ hd2v(d̄2Ld1R + ωd̄2Ld2R + ω2d̄2Ld3R)

+ hd3v(d̄3Ld1R + ω2d̄3Ld2R + ωd̄3Ld3R)

+ H.c. ≡ (ū1L, ū2L, ū3L)Mu(u1R, u2R, u3R)
T

+ (d̄1L, d̄2L, d̄3L)Md(d1R, d2R, d3R)
T + H.c., (42)

where the mass matrices for up- and down-quarks
are, respectively, obtained as follows

Mu =

⎛
⎜⎜⎜⎝

hu1v hu1v hu1v

hu2v ωhu2v ω2hu2v

hu3v ω2hu3v ωhu3v

⎞
⎟⎟⎟⎠ ,

Md =

⎛
⎜⎜⎜⎝

hd1v hd1v hd1v

hd2v ωhd2v ω2hd2v

hd3v ω2hd3v ωhd3v

⎞
⎟⎟⎟⎠ . (43)

The matrices Mu and Md in Eq. (43) are, respectively,
diagonalized as

Uu+
L MuU

u
R

= diag
(√

3hu1v,
√
3hu2v,

√
3hu3v

)

≡ diag (mu,mc,mt) ,

Ud+
L MdU

d
R

= diag
(√

3hd1v,
√
3hd2v,

√
3hd3v

)

≡ diag (md,ms,mb) , (44)

where Uu
L = Ud

L = 1, i.e, the matrix that couples the
left-handed up-and down-quarks to those in the
mass bases are unit matrices, and Uu

R = Ud
R = UL

with UL given in (9). Therefore, the quark mixing
matrix is an unit matrix, UCKM = Ud†

L Uu
L = 1. This

is the common property for some models based on
discrete symmetry groups [38, 39, 41–43, 71, 73,
75] and can be seen as an important result of the
paper because the experimental quark mixing matrix
is close to the unit matrix [14]. The current mass
values for the quarks are given by [14]:

mu = 2.2+0.6
−0.4 MeV, mc = 1.27 ± 0.03 GeV,

mt = 173.21 ± 0.51 ± 0.71 GeV,

md = 4.7+0.5
−0.4 MeV, ms = 96+8

−4 MeV,

mb = 4.18+0.04
−0.03 GeV, (45)

With the help of Eqs. (44) and (45) we obtain the
followings relations:

hu1 = 1.27017 × 106/v, hu2 = 7.33235 × 108/v,

hu3 = 1.00003 × 1011/v,

hd1 = 2.71355 × 106/v, hd2 = 5.54256 × 107/v,

hd3 = 2.41332 × 109/v, (46)

or
hu1/h

u
2 = 1.73228 × 103, hu1/h

u
3 = 1.27013 × 105,

hd1/h
d
2 = 4.89583 × 102,

hd1/h
d
3 = 1.1244 × 103, (47)

hu1/h
d
1 = 0.468085, hu2/h

d
2 = 13.2292,

hu3/h
d
3 = 41.4378, (48)

i.e, hu1 is one order of magnitude less than hd1, but
hu2 and hu3 are one order of magnitude larger than hd2
and hd3, respectively. Furthermore, hu1 is three order
of magnitude less than hu2 and five order of magnitude
less than hu3 , while hd1 is two order of magnitude less
than hd2 and three order of magnitude less than hd3.
To get explicit values of the Yukawa couplings in the
quark sector, we assume v ∼ 100 GeV, then

hu1 = 1.27017 × 10−5, hu2 = 7.33235 × 10−3,

hu3 = 1.00003,

hd1 = 2.71355 × 10−5, hd2 = 5.54256 × 10−4,

hd3 = 2.41332 × 10−2. (49)

We note that, in the model under consideration, the
quark mixing matrix UCKM = 1 has no predictive
power for quarks mixing but their masses are con-
sistent with the experimental data given in [14].
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A3 ∈ (0.0505, 0.1) eV in the inverted spectrum.

3. CONCLUSION

We have constructed a simple Standard Model
Extension based on T7 flavor symmetry accommo-
dating lepton mass and mixing with non-zero θ13
and CP violation phase. In difference from the other
discrete groups, with T7, the spontaneous symmetry
breaking in the model is imposed to obtain the re-
alistic lepton mass and mixing pattern at the tree-
level with renormalizable interactions. The charged-
lepton masses generated from one triplet (φ) under
T7, and the neutrinos get small masses from one
SU(2)L doublet and two SU(2)L singlets in which
one being in 1 and the two others in 3 and 3∗ under
T7, respectively. Furthermore, there exist the param-
eters of the model that predict an effective Majorana
neutrino mass parameter with values mβ � 10−2 eV
and 4.95× 10−2 eV as well as a lightest neutrino
mass mlight � 4.97× 10−3 eV and 1.61× 10−3 eV for
the normal and inverted neutrino mass hierarchies,
respectively. The model also gives a remarkable pre-
diction of the Dirac CP violation δCP � 303.3◦ in the
normal hierarchy and δCP � 56.69◦ in the inverted
hierarchy. The quark mixing angles of the model are
close to the experimental data, whereas the obtained
values for the quark mases are consistent with with
the experimental data at the tree level.
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Appendix A

HIGGS POTENTIAL

The renormalizable Higgs potential invariant un-
der all symmetries, SU(2)L ⊗ U(1)Y ⊗ U(1)X ⊗ T 7,
is given by:

V = V (φ) + V (ϕ) + V (χ) + V (ζ) + V (φ,ϕ)

+ V (φ, χ) + V (φ, ζ) + V (ϕ,χ)

+ V (ϕ, ζ) + V (χ, ζ) + V (φ,ϕ, χ, ζ), (A.1)

where

V (φ) = μ2
φφ

†φ+ λφ
1 (φ

†φ)1(φ
†φ)1

+ λφ
2 (φ

†φ)1′(φ
†φ)1′′ + λφ

3 (φ
†φ)3(φ

†φ)3∗ , (A.2)

V (ϕ) = μ2
ϕϕ

†ϕ+ λϕ(ϕ†ϕ)2, (A.3)

V (χ) = μ2
χχ

†χ+ λχ
1 (χ

†χ)1(χ
†χ)1

+ λχ
2 (χ

†χ)1′(χ
†χ)1′′ + λχ

3 (χ
†χ)3(χ

†χ)3∗ , (A.4)

V (ζ) = μ2
ζζ

†ζ + λζ
1(ζ

†ζ)1(ζ
†ζ)1

+ λζ
2(ζ

†ζ)1′(ζ
†ζ)1′′ + λζ

3(ζ
†ζ)3(ζ

†ζ)3∗ , (A.5)

V (φ,ϕ) = λφϕ
1 (φ†φ)1(ϕ

†ϕ)

+ λφϕ
2 (φ†ϕ)3∗(ϕ

†φ)3, (A.6)

V (φ, χ) = δφχ(φ†φ)3∗χ

+ λφχ
1 (φ†φ)1(χ

†χ)1 + λφχ
2 (φ†φ)1′(χ

†χ)1′′

+ λφχ∗
2 (φ†φ)1′′(χ

†χ)1′ + λφχ
3 (φ†φ)3(χ

†χ)3∗

+ λφχ∗
3 (φ†φ)3∗(χ

†χ)3 + λφχ
4 (φ†χ)3(χ

†φ)3∗

+ λφχ∗
4 (φ†χ)3∗(χ

†φ)3, (A.7)

V (φ, ζ) = δφζ(φ†φ)3ζ

+ λφζ
1 (φ†φ)1(ζ

†ζ)1 + λφζ
2 (φ†φ)1′(ζ

†ζ)1′′

+ λφζ∗
2 (φ†φ)1′′(ζ

†ζ)1′ + λφζ
3 (φ†φ)3(ζ

†ζ)3∗

+ λφζ∗
3 (φ†φ)3∗(ζ

†ζ)3 + λφζ
4 (φ†ζ†)3(ζφ)3∗

+ λφζ∗
4 (φ†ζ†)3∗(ζφ)3, (A.8)

V (ϕ,χ) = λϕχ
1 (ϕ†ϕ)(χ†χ)1

+ λϕχ
2 (ϕ†χ)3(χ

†ϕ)3∗ , (A.9)

V (ϕ, ζ) = λϕζ
1 (ϕ†ϕ)(ζ†ζ)1

+ λϕζ
2 (ϕ†ζ)3∗(ζ

†ϕ)3, (A.10)

V (χ, ζ) = δχζ(χ†χ)3ζ

+ λχζ
1 (χ†χ)1(ζ

†ζ)1 + λχζ
2 (χ†χ)1′(ζ

†ζ)1′′

+ λχζ∗
2 (χ†χ)1′′(ζ

†ζ)1′ + λχζ
3 (χ†χ)3(ζ

†ζ)3∗

+ λχζ∗
3 (χ†χ)3∗(ζ

†ζ)3 + λχζ
4 (χ†ζ†)3(ζχ)3∗

+ λχζ∗
4 (χ†ζ†)3∗(ζχ)3, (A.11)
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V (χ,ϕ, χ, ζ) = 0. (A.12)

In the model under consideration, there are total
44 coupling constants in the renormalizable Higgs
potential invariant under all symmetries, SU(2)L ⊗
U(1)Y ⊗ U(1)X ⊗ T 7, including four of V (φ), two of
V (ϕ), four of V (χ), four of V (ζ), two of V (φ,ϕ),
eight of V (φ, χ), eight of V (φ, ζ), two of V (ϕ,χ),
two of V (ϕ, ζ), and eight of V (χ, ζ), whereas there
are only 37 equations for the potential minimization,
including:

∂V

∂vi
= 0,

∂V

∂v∗i
= 0,

∂V

∂vχi

= 0,

∂V

∂v∗χi

= 0,
∂V

∂ui
= 0,

∂V

∂u∗i
= 0,

∂V

∂vϕ
= 0 (i = 1, 2, 3). (A.13)

Because the number of equations are less than the
number of Higgs potential parameters (the cou-
pling constants and the VEVs), so the system of
Eqs. (A.13) always have a nontrivial solution as
expected. It is also noted that the above alignment
is only one of the solutions to be imposed to have the
desired results.

In general, the coupling constants and mass pa-
rameters are independent, however, the experimental
data on lepton masses and mixings, and the discrete
symmetry T7 force them being related. This is the
common property of the discrete flavor symmetries.

Appendix B

FOUR SOLUTIONS IN THE NORMAL SPECTRUM

The first case:

A2 = −1.44358 × 10−3
√

α− 34.5969
√

β,

B = −
(
53.4131 + 3.3645 × 104A2

3 + 5.49523
√
β
)√

α− 34.5969
√
β

5.40863 × 104 + 1.69805 × 107A2
3

, (B.1)

The second case:

A2 = 1.44358 × 10−3
√

α− 34.5969
√

β,

B =

(
53.4131 + 3.3645 × 104A2

3 + 5.49523
√
β
)√

α− 34.5969
√
β

5.40863 × 104 + 1.69805 × 107A2
3

, (B.2)

The third case:

A2 = −1.44358 × 10−3
√

α+ 34.5969
√

β,

B = −
(
53.4131 + 3.3645 × 104A2

3 − 5.49523
√
β
)√

α+ 34.5969
√
β

5.40863 × 104 + 1.69805 × 107A2
3

, (B.3)

The fourth case:

A2 = 1.44358 × 10−3
√

α+ 34.5969
√

β,

B =

(
53.4131 + 3.3645 × 104A2

3 − 5.49523
√
β
)√

α+ 34.5969
√
β

5.40863 × 104 + 1.69805 × 107A2
3

, (B.4)

where

α = 5.15348 × 102 + 2.68042 × 105A2
3,

β = −6.78108 + 8.72315 × 104A2
3 + 3.74859 × 107A4

3. (B.5)
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Appendix C

FOUR SOLUTIONS IN THE INVERTED SPECTRUM

The first case:

A2 = −1.44358 × 10−3
√
α′ − 34.5969

√
β′,

B =

(
11.6721 − 6.72899 × 103A2

3 − 1.09904
√
β′
)√

α′ − 34.5969
√
β′

1.1305 × 104 − 3.3961 × 106A2
3

, (C.1)

The second case:

A2 = 1.44358 × 10−3
√

α′ − 34.5969
√

β′,

B = −
(
11.6721 − 6.72899 × 103A2

3 − 1.09904
√
β′
)√

α′ − 34.5969
√
β′

1.1305 × 104 − 3.3961 × 106A2
3

, (C.2)

The third case:

A2 = −1.44358 × 10−3
√
α′ + 34.5969

√
β′,

B =

(
11.6721 − 6.72899 × 103A2

3 + 1.09904
√
β′)√α′ + 34.5969

√
β′

1.1305 × 104 − 3.3961 × 106A2
3

, (C.3)

The fourth case:

A2 = 1.44358 × 10−3
√

α′ + 34.5969
√

β′,

B = −
(
11.6721 − 6.72899 × 103A2

3 + 1.09904
√
β′)√α′ + 34.5969

√
β′

1.1305 × 104 − 3.3961 × 106A2
3

, (C.4)

where

α′ = −5.5457 × 102 + 2.68042 × 105A2
3,

β′ = 7.19122 − 9.83236 × 104A2
3 + 3.74859 × 107A4

3. (C.5)
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