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Abstract. We study magnetic order of the Heisenberg model on a non-Bravais 

lattice based on the Popov-Fedotov trick for exactly treating the local 

constraint on on-site spin number. The spin operators are represented by 

auxiliary fermions and an imaginary chemical potential is introduced. The  

following steps are sketched: i) Parameterizing classical ground state by a 

magnetic ordering vector and angles between the spins within a unit cell. ii) 

Going to a local coordinate system. ii) Using functional integral representation 

with Hubbard-Stratonovich for partition function and calculating   determinants 

of block matrices by Silvester-Powel method. For illustration we obtain some 

explicit expressions for ferromagnetic Heisenberg model on a honeycomb 

lattice and compare them with the slave boson results. 

 

 

1. Introduction 

The principle difficulty in the treatment of spin systems is due to the fact that spin operators 

are neither Fermi nor Bose ones [1]. To overcome this problem, various representations of 

spin operators such as Fermi, Bose...have been introduced [1]. However the representations of 

spin as a combination of auxiliary Fermi or Bose operators induces the unphysical states 

which should be excluded from the consideration by imposing some local constraint condition 

on each spin lattice point. In practice for simplicity one usually replaces the local constraint 

requirement by a so-called global one, that treats the constraint condition only in average over 

all spin sites leading to uncontrollable approximations for quantum spin systems [1]. In 1988 

Popov-Fedotov proposed [2] a new method of expressing spin-1/2 (spin-1) lattice systems in 

term of two (three) component fermions with imaginary chemical potential. Latter, the Popov-

Fedotov technique was generalized for arbitrary spin [3, 4]. Recently, Popov-Fedotov concept 

has successfully been developed in combination with bold diagrammatic Monte Carlo 

simulation to address frustrated quantum spin systems [5]. A more general fermionization 

technique has been proposed for strongly correlated systems [6, 7]. The previous applications 
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of the Popov-Fedotov approach have been done to some particular spin-1/2 systems on 

Bravais lattice structure such as three dimensional  ferromagnet [8], antiferromagnetic 

Heisenberg model on cubic and square lattice [9, 10] and on triangular lattice [11]. The goal 

of this paper is to apply the Popov-Fedotov trick to the Heisenberg model a non-Bravais 

lattice, in particular on a honeycomb one. It is motivated by the fact that many novel 

honeycomb lattice magnetic materials are obtained with poorly understood properties [12]. 

On the other hand due to the possibility of emerging Dirac magnon and electronic insulators, 

the physics of magnons in non-Bravais lattice becomes a subject of active research [13, 14]. 

The outline of this work is following: in the next section we sketch a general formalism. The 

third section is devoted to an application to a honeycomb lattice. The discussions are 

presented in section IV. The extended version of this paper will be published elsewhere. 

 

2. The formalism 

We consider a Heisenberg model on a non-Bravais lattice. The Hamiltonian reads 

,ij i j

ij

H J S S         (1) 

where iS  is the spin vector operator.  

In order to study the fluctuations around the classical state it is convenient to characterize the 

classical ground state by some set of parameters. In a general non-Bravais lattice with planar 

spin configuration we may assign each classical i-spin in a unit cell to an ordering vector Q  

and and the angle i  between i-spin and some fixed direction. 

   cos sin ,i i i i iS S u Qr v Qr     
 

     (2) 

with u  and v  being two orthogonal unit vectors.  

Inserting (2) into Hamiltonian (1) we obtain the classical energy in terms of the ordering 

vector Q  and the angle i : 

    21
cos .

2
cl ij i j i j

ij

E S J Q r r           (3) 

The magnetic ordering vector Q  and the angle i  can be derived by minimizing the classical 

energy Ecl with respect to Q  and i . Depending on exchange interaction Jij and on lattice 

structure there may exist different sets of parameters { Q , i } corresponding to different 

ordered phases. Following Miyake [16] we transform the spin components from the 

laboratory reference frame    x y z

i i iS , S , S  to the local reference frame    
' ' 'x y z

i i iS , S , S  with the 

spin quantization on each site being along its classical direction: 
z z' x'

i i i i i

x z' x'

i i i i i

y y'

i i

S S cos S sin ,

S S sin S cos ,

S S .

 

 

  


 
 

      (4) 
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The transformation (4) simplified auxiliary particle formalisms so that one needs introduce 

only one type of auxiliary bosons or fermions for each spin in the unit cell for all possible 

ordered phases such as Neel, spiral, canted state... 

Substituting (4) in (1), one obtains the following Hamiltonian: 

ij

,
, , ,

1
,

2
i j

i j
x y z

H J S S  

  

                                 (5) 

where 

 

 

ij ij ij

ij ij ij

ij ij ij ij

ij ij ij ij

cos ,

,

sin ,

0.

xx zz

ij ij

yy

zx zx

ij

xy yx yz zy

J J X J

J Y J

J J W J

J J J J

     

   


    


   

                     (6) 

with 

    .ij j i j iQ r r      
       

(7) 

Then following Popov-Fedotov [2] we write the spin operators in term of auxiliary 

Fermi operators operators ,   i ia a 

  

' '

1
, 

2
i i i

S a a 

  
          (8) 

where  , ,x y z     are the Pauli matrices, and 
',  ,       is the spin index. Because 

the Fock state of the fermion ia  is spanned by four states: two unphysical states: 

0 ;  2 0
i i

a a 

 
  and two physical one: 0 ;  0

i i
a a 

 
     where 0  is the vacuum 

state, the unphysical states have to be excluded by the constraint: 

ˆ =1. i i iN a a 


         (9) 

The constraint (9) has to be enforced for each site i and can be done by introducing the 

projection operator 
ˆ

2
1ˆ

i N

N
e

i



   to the partition function: 

Ĥ ˆZ Tr e P , 
 

         (10) 

where ˆ ˆ
i

i

N N  and H is the Hamiltonian in the fermion representation (8) [2].   

      

As a result, the fermionic Matsubara frequences are modified: 

 
2 1

.
4

F n





 
  

 
        (11) 
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The further calculations have been carried out closely following Ref. [11].  

We sketch here the main procedure. 

First we represent the partition function (10) in a fuctional integral form, where the fermions 

operators are replaced by Grassmann variables. Then we eliminate the 4-fermion terms in the 

partition function by a Hubbard-Stratonovich transformation, introducing the Bose auxiliary 

field i  which plays the role of the magnetization. Then we perform integration over the 

Grassmann variable to get: 

  
 

0

1 1
,eff iS

iN
Z D e

i Z




        
       (12) 

where the effective action  effS   reads:  

    ˆln det .eff oS S K                                                           (13) 

Here we use the following notations: 

 
   

 
0

 

0 ,
od S

o

Z D e



 

  







                (14) 

with: 

   11
.

2
o i jij

ij

S J
  



                                                   (15)  

 1

ij
J


  is the inverse of the interaction matrix ijJ  . 

    
1 21 2 1 , 1 2

1ˆ ˆ ˆ,  .
2 2

i i

i
K K i I 


       



 
      

 
             (16) 

The form (13) of the effective action  effS   allows us to apply a perturbation 

technique, decomposing the matrix K̂  into nonperturbation and perturbation parts: 

ˆ ˆ ˆ .oK K M                                                                                  (17) 

The explicit forms of ˆ oK  and M̂  depend on the way of decomposing the auxiliary field i . 

One can set: 

     0 ,i io i                                                           (18) 

where  0io    is the mean field part and  i   is the fluctuation part of the auxiliary 

field. The mean field  io   is defined by minimizing the effective action (13): 

 

0

0.

i

eff

i

S







 




                                                        (19) 
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The chosen value io  is related to the classical ground state magnetization per site 
iom  as 

follows: 

.io jo j

j

m J  




            (20) 

In the local reference frame only the z-components of 
iom  and io  are non-zero, 

, ,;io oo z io oo zm m 

      . 

Then (19) and (20) lead to the following mean-field equation for the magnetization: 

1
tanh .

2 2

zz

io ij jo

j

m J m


 
       

(21) 

The mean-field free energy reads: 

1 1
ln 2cosh .

2 2

zz

MF ij io jo io

ij

F J m m 
 

   
 

      (22) 

We can obtain the partition function at the one-loop approximation by integrating over the 

fluctuation field  i  : 

   
1/2

ˆ ˆ ˆ ˆ ˆdet ( ) ; .fl ij ij ij ijZ D D I J K      
 

    (23) 

In order to separate the transverse and longitudinal fluctuations we will work in  ,  ,  z   

basics instead of the Descartes basics  ,  ,  x y z . The elements of the interaction matrix ˆ
ijJ

 
in 

 ,  ,  z   basics are given in terms of  ,  ,  ij ij ijX Y W  defined in (6) as follows: 

- ,

+ ,

,

.

ij ij ij ij

ij ij ij ij

zz

ij ij

z z z z

ij ij ij ij ij

J J X Y

J J X Y

J X

J J J J W

 

 

   

  


 





      

       (24) 

The non-zero components of the matrix  ˆ
ijK   are given by:  

   

   

*

2

,

,
2

1
1 4 .

4

io
ij ij ij

io

zz

ij io ij o

m
K K

i

K m






 

 




    


    


       (25) 

From (23) one can get the fluctuation contribution to the free energy: 

 
1 ˆln det .

2
fl ijF D


 

 
       (26) 
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It is convenient to perform the Fourier transformation over ˆ
ijD  and then to calculate 

 ˆdet D p  instead of calculating ˆdet ijD . In the case of a Bravais lattice all sites are equivalent 

so  D̂ p  is a 3 x 3 matrix. Therefore it is straightforward to calculate  ˆln det D p  and obtain 

explicit analytical expressions for the fluctuation contributions to the free energy [11]. A non-

Bravais lattice is quite different. If there are n spin in an unit cell then the matrix  D̂ p  is 3n 

x3n block matrix. Following Silvester [17] and Powell [18] one can reduce the determinant of 

a matrix with N
2
 blocks to the product of the determinants of N distinct combinations of 

single block. For example [17]: 

 1
ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆdet det .
ˆ ˆ

A B
AD BD CD

C D


 

  
 
   

      (27) 

In the following, the formula (27) will be used for the case of the Heisenberg model in a 

honeycomb lattice. 

 

3. Application to ferromagnetic honeycomb lattice 

We consider the ferromagnetic Heisenberg model defined by the Hamiltonian: 

.i j

ij

H J S S 
 
       (28) 

Here, ij
 
are paid of nearest neighbors with ferromagnetic coupling constant 0J 

 
on the 

honeycomb lattice (Fig. 1) 

 
Fig.1 The honeycomb lattice is defined by the basic vectors a1, a2 and two sublattices A and B.

 
 

The nearest neighbor vectors are given by 

 1 2 3

1 3 1 3
,  ;  ,  - ;  1,0 ,

2 2 2 2
  

   
         
     

   (29) 

where the lattice constant is taken to be one. 
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For finding the classical ground state parameters Q  and ϕi we can set 0 and .A B   
 Substituting (29) in to (3) and minimizing the classical energy with respect to the parameter 
 Q  and   we obtain for the ferromagnetic phase: 

 0,  0 ,   = 0,Q 
 
       (30) 

with the energy: 

3
,

8
cl

NJ
E 

 
        (31) 

where N is total site number. 

The mean – field equation for the magnetization per site reads: 

0

0

31
Tanh .

2 2

J m
m         (32) 

The mean – field equation for free energy per site is given by: 

02

0

3 3
ln 2cosh .

2 2
MF

J J m
F m       (33) 

From (32) the Curie temperature is defined by: 

3
,

4
B C

J
k T          (34) 

which is twice larger than the Curie temperature derived in the case of replacing the local 

constraint (9) by the global one as expected [19]. 

In the nearest neighbor approximation the exchange coupling between the sites of the same 

sublatice is zero 0AA BBJ J 
 
so 0.AA BBX X 

 
From (6), (24), (29) and (30) we derive the interaction matrix in Fourier transformation as 

following: 

 
 

 

0
,

0

AB

BA

J p
J p

J p

 
   
   

       (35) 

where 

    
 

 

 

*

0 2 0

2 0 0 ,

0 0

AB BA

X p

J p J p X p

X p

 
 

   
 
 

 
   (36) 

and 

   

 

3 ,

1
.

3
i

i

i p

X p J p

p e






 

 

   
        (37) 
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The Eqs (25) and (35) lead to the following expression for the block matrix   ˆ ,D p  : 

 
 

 

ˆ ,
ˆ , .

ˆ ,

AB

BA

I D p
D p

D p I

 
   

    
     (38) 

We use the following notation: 

     

     

ˆ ˆ, . ,

ˆ ˆ, . .

AB AB

BA BA

D p J p K

D p J p K

  

    
      (39) 

where 

 

 

 

  ,0

0 0

ˆ 0 0 ,

0 0 zz

k

K k

k 







 
 

   
  

 
    (40) 

    

   

*
0

0

2

0

,
2 3

1
1 4 .

4

zz

m
k k

J m i

k m

    
 

   
 
     (41) 

Because the diagonal block elements of the matrix  ˆ ,D p   (38) is the 3 x 3 unit matrix, 

from the Eq. (27) and (38) one obtains: 

     0
ˆdet , , ,

p RBZ

D p A p Q p
 

   
 
     (42) 

where 

     
2

2 2

0 1 9 ,zzA p J p k 
 
      (43) 

 
         

    

2 2

1 2

2
2 2

0

, .

3

i E p i E p
Q p

i Jm

   
 

   
    (44) 

The magnon energy is given by: 

    1,2 03 1 .E p J m p 
 
      (45) 

The product over the bosonic Matsubara frequencies may be carried out via the Gamma 

function [20]: 

 
 

1,2 0

sinh
1 2

, .
2 3

sinh
2

E p

Q p
J m







 

 
 
  
 
 
 

 
 
     (46) 
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Then the free energy in the one loop approximation reads: 

 

 

2

0 0

1,2 0

0

sinh
3 3 1 2

ln 2cosh ln
2 2 2 3

sinh
2

1
     ln .

2

p RBZ

p RBZ

E p
N J m J mN

F
J m

A p







  








 
 
   
 
 
 







 
  (47) 

This is the main result of the present paper. Derivation of explicit expressions for the 

fluctuation contributions to the magnetization, internal energy and specific cv from the free 

energy (47) is straightforward. 

 

4. Discussions 

The above obtained free energy (47) is different from that derived in the standard  spin 

wave up to 1/S
2
 corrections. However, similar to the Bravais lattice, the results obtained in the 

previous section by Popov–Fedotov method in the one loop approximation lead in the zero 

temperature limit exactly to the same one derived in linear wave theory using slave boson 

representation of spin operator [8-11, 21]. This confirms the fact that at zero temperature the 

Popov–Fedotov trick does not improve the results of global constraint approximation. At the 

finite temperature the exact constraint reduces the number of states where an auxiliary 

fermion may thermally fluctuate into. In result the critical temperature TC is twice higher than 

in the global constraint case.  

The mean-field magnetization m0 in the Eq. (47) depends on temperature following (32), 

while in the other slave particle method m0 = ½ so the Popov–Fedotov gives a significant 

effect at finite temperature for all quantities containing m0. For the honeycomb lattice the 

interesting properties appear near the Dirac points 
2 2

,  
3 3 3

K
 



 
  
 

. Expanding  p  

near K  we get the linear dispersion of so called Dirac magnon that is similar to the spinless 

Dirac fermion of Bloch graphene model [13, 14] 

   1,2 0

3
.

2
x x y yE q J m q q  

 
      (48) 

where the 1    correspond to the states near ,  K q p K   . It is almost the same result of 

linear spin wave theory applying Holstein-Primakoff transformation of spin operators [13, 

14], except the fact that in (48) m0 depends on temperature via (32) instead of m0 = ½.  

The obtained results on the example of the ferromagnetic Heisenberg model on the 

honeycomb lattice are encouraging further applications of Popov–Fedotov trick to Heisenberg 

model on other non Bravais such as Kagome, Chevron-square, Union-Jack, frustrated 

honeycomb...lattices. 
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