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Abstract A neutrino mass model is suggested within an
SU (4)⊗U (1)-electroweak theory. The smallness of neutrino
masses can be guaranteed by a seesaw mechanism realized
through Yukawa couplings to a scalar SU (4)-decuplet. In this
scheme the light active neutrinos are accompanied by heavy
neutrinos, which may have masses at different scales, includ-
ing those within eV–MeV scales investigated quite inten-
sively in both particle physics and astrophysics/cosmology.
The flavour neutrinos are superpositions of light neutrinos
and a small fraction of heavy neutrinos with the mixing to
be determined by the model’s parameters (Yukawa coupling
coefficients or symmetry breaking scales). The distribution
shape of the Yukawa couplings can be visualized via a model-
independent distribution of the neutrino mass matrix ele-
ments derived by using the current experimental data. The
absolute values of these Yukawa couplings are able to be
determined if the symmetry breaking scales are known, and
vice versa. With reference to several current and near future
experiments, detectable bounds of these heavy neutrinos at
different mass scales are discussed and estimated.

1 Introduction

Particle physics is experiencing a special period when dif-
ferent big experiments have been carried out and announced
remarkable results, especially, after the discovery of a scalar
boson (called the Brout-Englert-Higgs boson or, briefly,
Higgs boson), which is likely the last puzzle piece filling up
the particle content of the standard model [1,2] (for a review,
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see, for example, [3]). Thus, the standard model (SM) [4]
proves once again to be an excellent model of elementary
particles and their interactions as it can explain various phe-
nomena and many its predictions have been confirmed by
the experiment. However, there are a number of problems
remaining unsolved by the SM and showing that the latter
could be just an effective low-energy appearance of a high-
energy theory. Neutrino masses and mixing [5–10] are one
of such problems calling for a modification of the SM. This
problem is important not only in particle physics but also in
other fields of physics such as nuclear physics, astrophysics
and cosmology [11–15]. Many models of neutrino masses
and mixing have been proposed but none of them has been
recognized as the right model yet. It is why we continue
to look for other possibilities leading to building different
models beyond the SM. There are several methods for build-
ing an extended SM, but the first and, maybe, most-often
used one is that of extending the SM gauge group SU (3)c ⊗
SU (2)L ⊗U (1)Y to a larger gauge group. A simpler method
is to enlarge only the electro-weak part SU (2)L ⊗ U (1)Y
of the SM gauge group to, for example, SU (3)L ⊗ U (1)X
(the 3-3-1 model) [16–22] or SU (4)L ⊗ U (1)X (the 3-4-1
model) [23–28]. Below, to simplify notations, the subscript
L in SU (4)L will be tacit. These models have attracted inter-
est of a number of authors for over 20 years because of their
relative simplicity. However, compared with the 3-3-1 model,
the 3-4-1 model has been less investigated (one of the rea-
sons might be the 3-4-1 model has a bigger gauge group,
thus it is more complicated) but the latter has a richer struc-
ture which may provide more chance to explain the beyond
SM phenomenology. The 3-4-1 model was first introduced
by Voloshin [23,24] and re-considered later by other authors
(see, for example [25–28]). Originally, this model is char-
acterized by fermions (leptons or quarks) in each family
grouped in an SU (4)-quartet (or quartet for short), and its
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scalar sector composed often of quartets, an SU (4)-decuplet
(decuplet) and, sometimes, also an SU (4)-sextet (or the cor-
responding anti-multiplets). Above, in particular, the term
“SU (4)-quartet” means a quartet 4 or anti-quartet 4∗. For an
anomaly cancellation [29,30] the model requires an equal
number of 4 and 4∗ in the fermion sector. One of the possible
variants is to choose all the lepton families and one of the
quark families, say, the third one, to transform as 4, while
the remaining two quark families to transform as 4∗, pro-
vided that the number of either families or colors is 3 (see,
for example [30] for an anomaly-free structure of fermion
sector of an 3-4-1 model). Here considering neutrino masses
and mixing only, we temporarily put the quark sector aside.

In comparison with the SM (and the 3-3-1 model) the 3-4-
1 model has a bigger particle content, including an extended
scalar sector, providing more possibilities for solving dif-
ferent problems, in particular, that of neutrino masses and
mixing (the price is the introduction of more parameters).
Especially, an extended scalar sector may provide a richer
structure of neutrino masses. However, the problem of neu-
trino masses and mixing, so far, has not been investigated
very much within the 3-4-1 model, moreover, to our knowl-
edge, such an investigation using a scalar decuplet (decuplet,
for short) is still poor, in particular, a seesaw mechanism
based on a decuplet has not yet been considered. The present
paper is also motivated by noticing that in the 3-4-1 model
the VEV configuration of a decuplet can provide a seesaw
structure and the seesaw mechanism can be automatically
applicable at the leading order by Yukawa coupling to only a
single decuplet (with an appropriate VEV), unlike in most of
other models, where the seesaw mechanism usually requires
more scalar multiplets involved. Another motivation to use a
decuplet for generating neutrino masses is that the latter (as
well as charged lepton masses) can not be generated directly
at the leading order by using quartets which are fundamental
representation multiplets of the gauge group SU (4).

As said above, neutrinos are massive but, according to the
current particle physics experimental data and cosmological
observation constraints [31–36], their masses are very tiny,
just of the order of 10−1 eV, even less. Thus, one must find a
way to explain that. One of the most popular ways to gener-
ate neutrino small masses is based on the so-called see-saw
mechanism (there is a vast literature on this matter but one
can see, for example [37–40] for the type-I see-saw mecha-
nism and [11–14] for a review on further developments). This
mechanism has been applied to the SM and many extended
models, in particular, to our knowledge, it was applied for
the first time to the 3-3-1 model with right-handed neutri-
nos by using a scalar SU (3)L -sextet in Refs. [41,42]. The
latter papers inspire the present work and a later work, show-
ing that the seesaw mechanism can be applied to the 3-4-1
model with and without a decuplet. One of the feature of
the seesaw mechanism is the presence of one or more right-

handed neutrinos which are “naturally” introduced in the 3-4-
1 model as fundamental representation (quartet) partners of
right-handed charged leptons (it is an advantage of this model
as in most of other models, except a few ones like those based
on the left-right symmetry [38,43–46], the right-handed neu-
trinos are introduced “artificially” by hand). Now let us first
make a quick introduction to the 341 model.

The plan of this article is the following. In the next section
a concise introduction to the 3-4-1 model with a concentra-
tion on its lepton and scalar sectors is presented. Section III is
devoted to using an SU (4) decuplet scalar for generation of
neurtino masses. Some comments and conclusions are made
in the final section.

2 The 3-4-1 model in brief

This extended standard model is based on the gauge group
SU (3)c ⊗ SU (4) ⊗ U (1)X . The latter is attractive by sev-
eral reasons such as in this model two lepton chiralities of
each family are unified in a fundamental representation of
the SU (4) gauge group and this model, similar to the 331
model, can explain the number of fermion families to be
three [20,21,29,30]. Because the subject of the present paper
is neutrino masses we will consider only the lepton- and the
scalar sectors of the model and leave its gauge- and quark sec-
tors for a future research. As in the case of the 3-3-1 model,
the 3-4-1 model, depending on the particle content and their
alignment, has several versions. Let us consider one of the
possible versions.

2.1 Lepton sector

Many neutrino mass models require the introduction of right-
handed neutrinos (the number of which depends on the model
considered), here we work in a model with a right-handed
neutrino (RHN), say Nα

R , introduced for each family α =
e, μ, τ . As usually, these RHN’s are sterile neutrinos being
singlets under the electroweak gauge group SU (2)L⊗U (1)Y .
One of the main features of the 3-4-1 model is all leptons in
each (extended) family are grouped in an SU (4) quartet. An
alignment of these quartets can be

f aL =

⎡
⎢⎢⎢⎣

να
L

lαL
(Nα

R)c

(lαR)c

⎤
⎥⎥⎥⎦ , α = e, μ, τ, (1)

where να
L and Nα

R are neutrino fields (left- and right handed,
respectively), lαL and lαR are charged lepton fields, and α is
a family (flavour) index, while Fc denotes the charge con-
jugation of a field F . In this model, Nα

R are sterile neutri-
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nos by introduction and can be replaced by arbitrary ster-
ile/exotic leptons to make other models. The transforma-
tion of f α

L , being also an SU (3)c-singlet and U (1)X -neutral,
under SU (3)c ⊗ SU (4) ⊗U (1)X is summarized as follows

f α
L ∼ (1, 4, 0). (2)

Another alignment of the lepton multiplet,

f ′α
L =

⎡
⎢⎢⎢⎣

να
L

lαL
(lαR)c

(Nα
R)c

⎤
⎥⎥⎥⎦ ∼ (1, 4, 0), α = e, μ, τ, (3)

is obtained from the one in (1) by exchanging the posi-
tions of the third and the fourth components. Working with
which alignment among (1) and (3) is the question of conve-
nience depending on the choice of a gauge symmetry break-
ing scheme. For example, if we want the 3-4-1 model to be
broken to the 3-3-1 model with two neutrinos in a lepton
SU (3)L triplet [17–19] or the minimal 3-3-1 model [20–22],
we choose the alignment (1) or the alignment (3), respec-
tively. In this paper the alignment (1) is chosen. Other ver-
sions of the 3-4-1 model, in which the third and the fourth
components of an SU (4) quartet (1) or (3) are occupied by
other leptons such as exotic charged leptons and arbitrary
sterile neutrinos, could be also considered.

To generate neutrino masses we must introduce an appro-
priate scalar sector. It can have different structures but below
we will work with that containing an SU (4) decuplet.

2.2 Scalar sector

Let us consider a scalar sector of the 3-4-1 model with three
quartets,

η =

⎡
⎢⎢⎢⎣

η0
1

η−
2

η0
3

η+
4

⎤
⎥⎥⎥⎦ ∼ (1, 4, 0), ρ =

⎡
⎢⎢⎢⎣

ρ+
1

ρ0
2

ρ+
3

ρ++
4

⎤
⎥⎥⎥⎦ ∼ (1, 4, 1),

χ =

⎡
⎢⎢⎢⎣

χ−
1

χ−−
2

χ−
3

χ0
4

⎤
⎥⎥⎥⎦ ∼ (1, 4,−1), (4)

and one decuplet,

Δ ∼

⎡
⎢⎢⎢⎣

Δ0
11 Δ−

12 Δ0
13 Δ+

14

Δ−
12 Δ−−

22 Δ−
23 Δ0

24

Δ0
13 Δ−

23 Δ0
33 Δ++

34

Δ+
14 Δ0

24 Δ++
34 Δ+

44

⎤
⎥⎥⎥⎦ ∼ (1, 10, 0). (5)

In (5) the normalisation coefficients which can be found by
using the kinetic term of Δ are skipted. Sometimes, the scalar
sector is extended with one more quartet similar to η, say,

ξ =

⎡
⎢⎢⎢⎣

ξ0
1

ξ−
2

ξ0
3

ξ+
4

⎤
⎥⎥⎥⎦ ∼ (1, 4, 0), (6)

in order to resolve a quark mass problem [47] or/and with
a (self-conjugate) sextet if a neutrino magnetic moment is
included in consideration [23,24]. Adding the scalar ξ could
be also motivated by the fact that η has two neutral com-
ponents which may need two independent vacuum (VEV)
structures [41,42]. The scalar sector containing only quar-
tets has been used in different investigations without giving
fermion masses at the Yukawa coupling tree levels. The decu-
plet [23,24] is introduced to generate charged lepton masses
(with the presence of only the sextet some of the charged
leptons remain massless) but it seems, it has not been used
much for the neutrino mass generation. We will explore the
latter in this paper following an idea close to that of [41,42].

For further use the VEV’s of the scalars are denoted as
follows.

〈η〉 = [u1, 0, u3, 0]T , 〈ξ 〉 = [v1, 0, v3, 0]T ,

〈ρ〉 = [0, σ2, 0, 0]T , 〈χ〉 = [0, 0, 0, w4]T , (7)

〈Δ〉 =

⎡
⎢⎢⎣

δ1 0 δ2 0
0 0 0 δ4

δ2 0 δ3 0
0 δ4 0 0

⎤
⎥⎥⎦ . (8)

For the sake of completeness, a sextet can be also introduced,

S ∼

⎡
⎢⎢⎢⎣

0 −S−
12 −S0

13 −S+
14

S−
12 0 −S−

23 −S0
24

S0
13 S−

23 0 −S+
34

S+
14 S0

24 S+
34 0

⎤
⎥⎥⎥⎦ ∼ (1, 6, 0), (9)

with the VEV

〈S〉 =

⎡
⎢⎢⎢⎣

0 0 −s1 0

0 0 0 −s2

s1 0 0 0

0 s2 0 0

⎤
⎥⎥⎥⎦ . (10)

Below we will see that to generate neutrino masses (and also
masses of other leptons) at the tree level no quartet and sextet
but only decuplet is relevant.
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3 Decuplet and neutrino mass generation

A neutrino mass generation can be realized by coupling
f̄L( fL)c to scalars transforming under appropriate represen-
tations of SU (4). Since both f̄L and ( fL)c transform as an
anti-quartet 4∗, their product f̄L( fL)c transforms as 4∗ ⊗4∗,
which in turns can be decomposed as a direct sum of a
anti-sextet (which could be self-conjugate) an anti-decuplet:
4∗ ⊗ 4∗ = 6∗ ⊕ 10∗. Therefore, a scalar coupled to f̄L( fL)c

must transform as 6 or 10, thus, it can be a sextet (9) or a decu-
plet (5). Thus, the Yukawa coupling of f̄L( fL)c to scalars has
the general form (cf. [23,24])

−L f SD = Y S
αβ f̄ α

L ( f β
L )cS + YΔ

αβ f̄ α
L ( f β

L )cΔ, (11)

where Yαβ are coupling coefficients with α and β being fam-
ily indices which in general may not coincide with those of
the real charged-lepton mass states but it is easy to see that
we can work in the basis labeled by the latter, α, β = e, μ, τ ,
starting from (1). The leptons may get masses when the
scalars in (11) develop VEV’s. Since the coupling to the
sextet in (11) cannot provide a right lepton mass term it is
discarded from consideration here, while the coupling to the
decuplet can give lepton-mass-like terms, namely, a charged-
lepton mass term if δ4 	= 0, and, in some circumstance (see
below), a neutrino mass term via a see-saw mechanism. The
latter is very important because it can generate small neu-
trino masses, accompanied, though, by a large mass scale
(of heavy hypothesized neutrinos). Thus, for a generation of
lepton masses instead of (11) we have

−L f Δ = YΔ
αβ f̄ α

L ( f β
L )cΔ, α, β = e, μ, τ. (12)

However, using only the decuplet as in (12) to generate
masses of both charged leptons and neutrinos may lead to
a wrong correlation between these masses (as the charged
lepton- and neutrino mass matrices, which in this case are
proportional to the same Yukawa matrix, can be diagonal-
ized by the same unitary matrix, the PMNS matrix is trivial).
It why we must use different ways to separately generate
charged-lepton- and neutrino masses. Besides the way done
via (12), another way of generating lepton masses could be
done via an effective coupling of two quartets as follows

−L′
f Δ = YΔ′

αβ

Λ
f̄ α
L ( f β

L )cΔ′, (13)

where Δ′ is a decuplet component in the decomposition of
a tensor product of two quartets ρ ⊗ χ or η ⊗ ξ according
to the rule 4 ⊗ 4 = 6 ⊕ 10. Depending on which masses (of
charged leptons or neutrinos) to be generated ρ ⊗χ or η ⊗ ξ

will be chosen for 4⊗ 4. To express these cases we formally
write Δ′

(1) ∼ ρ ⊗ χ or Δ′
(2) ∼ η ⊗ ξ . Here again the sextet

component 6 in 4⊗4 is neglected as it cannot contribute to a
lepton mass term. Let us denote a VEV of Δ′, which is either
Δ′

(1) or Δ′
(2), as follows

〈Δ′〉 =

⎡
⎢⎢⎣

δ′
1 0 δ′

2 0
0 0 0 δ′

4
δ′

2 0 δ′
3 0

0 δ′
4 0 0

⎤
⎥⎥⎦ , (14)

where

δ′
1 = δ′

2 = δ′
3 = 0, δ′

4 = σ2w4, (15)

for Δ′ ∼ ρ ⊗ χ , or

δ′
1 = u1v1, δ′

2 = u1v2 + u2v1

2
, δ′

3 = u3v3, δ′
4 = 0, (16)

for Δ′ ∼ η ⊗ ξ .
Following the latest discussions the lepton masses can be

generated by several ways. Let us count two of them. One of
the ways is the neutrino masses are generated by either Δ or
Δ′

(2), then the charged-lepton masses should be generated by
an alternative decuplet. Another way is if Δ is involved in the
generation of both the neutrino masses and charged-lepton
masses, one or all of the decuplets Δ′

(1) and Δ′
(2) could be

required to additionally contribute to the generation of either
of these masses to make their total generations different from
each other as required above. Here, for one of several pos-
sibilities, we will explore the neutrino masses generated by
the decuplet Δ (with δ4 = 0) via (12) and the charged lepton
masses generated by Δ′

(1) via (13). The general procedure
with exchanged roles between a Δ and an appropriate Δ′ is
similar and can be investigated separately with a feature that
the VEV of Δ′ is adjusted by the VEV’s of quarterts. Since the
charged-lepton mass term (13) is independent from the neu-
trino one (12) we can set at the beginning the charged-lepton
mass matrix diagonal, i.e., YΔ′

αβ ∼ YΔ′
α δαβ (here Δ′ ≡ Δ′

(1)).
In the neutrino subspace, the coupling (12) after Δ acquir-

ing a VEV reads

− LMν = YΔ
αβ

[
ν̄L

α, (N̄α
R)c

] [
δ1 δ2

δ2 δ3

][
(ν

β
L )c

Nβ
R

]
, (17)

[
ν̄L , (N̄R)c

]α Mαβ

[
(νL)c

NR

]β

, (18)

where the mass matrix M has the form

M =
[
mT mD

mD mS

]
, (19)

in which mT, mD and mS are 3 × 3 matrices with elements

(mT)αβ = YΔ
αβδ1, (mD)αβ = YΔ

αβδ2, (mS)αβ = YΔ
αβδ3,

(20)
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The magnitudes of the masses and their ratio depend on not
only the Yukawa couplings but also the symmetry breaking’s
hierarchy to be discussed below.

The symmetry breaking scheme could be as follows: δ3

can break SU (3)L -symmetry, thus, SU (4)-symmetry but not
SU (2)L -symmetry, while δ2 can break SU (2)L -symmetry
and δ1 (not necessary to be big) can be very small or zero (to
break weakly or not to break a U (1)-symmetry). Thus, we
should have

δ3 � δ2 � δ1. (21)

That means the see-saw mechanism works for (18) leading
to the following two eigen matrices

m = mT − (mD)T (mS)
−1mD, M = mS, (22)

after converting the mass matrix (19) to a quasi-diagonalized
form

Mdiag =
[
m 0
0 M

]
. (23)

Following (20) we get the matrix elements, denoted by mαβ ,
of the mass matrix m of the light neutrinos

mαβ =
[
δ1 − (δ2)

2

δ3

]
YΔ

αβ. (24)

The eigenvalues mk , k = 1, 2, 3, of the matrix m are the
masses of three light active neutrinos (see more below). So
far none of the masses mk but only the upper bound of their
sum is known,

∑
k mk ≡ ∑

mν ≤ 0.12 eV [32–35]. From
this bound and the current data on squared mass differences
[48] one can derive the bounds 0 ≤ m1/eV ≤ 0.03 for a nor-
mal neutrino mass ordering (NO) and 0 ≤ m3/eV ≤ 0.016
for an inverse neutrino mass ordering (IO). That means mi

could be of the order of 10−1 eV–10−2 eV or lower and
according to (24) they are related to the strength of the
Yukawa couplings. In general the Yukawa couplings are free
parameters of the model (to be determined experimentally
directly or indirectly) but it is seen from Eq. (20) that they
are proportional to mαβ which can be calculated numeri-
cally using the current experimental data given [48]. Figure
1 shows two-dimensional plots of distributions of mαβ ver-
sus sin2θ13 for both an NO and an IO of the neutrino masses
with m1 = 0.01 eV (for an NO) and m3 = 0.01 eV (for an
IO), respectively, chosen as testing masses (other values can
be chosen, but, at any case, m1 and m3 must be in the ranges
0 ≤ m1/eV ≤ 0.030 for an NO and 0 ≤ m3/eV ≤ 0.016
for an IO, as derived above), while other masses in each
mass ordering are constrained by the squared mass differ-
ences [48]. Here ten thousand events are created and each
mαβ is calculated event by event as a function of mixing
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Fig. 1 Distributions of mαβ ≡ (mν)αβ versus sin2θ13 for an NO (on
the left) and for an IO (on the right)

angles which are random values generated on the base of a
Gaussian distribution having the mean (best fit) value and
sigmas given in Ref. [48]. From Fig. 1 one can imagine how
the Yukawa couplings distribute around their mean values
(upto a scale depending on δ1, δ2 and δ3 as shown in (24)).
Since the mean values of mαβ are of the order of 10−2 eV
or smaller (mαβ ≤ 10−2 eV) and δ2 ≈ 102 GeV (the elec-
troweak symmetry breaking scale) the range of the Yukawa
couplings could be YΔ

αβ ≤ 10−24δ3/eV at the seesaw limit
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Fig. 2 Distribution of
∑

mν versus sin2θ13 for an NO (on the left)
and for an IO (on the right)

δ1 ≈ 0. They are stronger (weaker) for a higher (lower) δ3,
therefore, an SU (4) ×U (1)-electroweak phenomenology is
sensitive only if δ3 is high enough. The distribution shape of
Tr(YΔ

αβ) can be visualized via Fig. 2 showing the distribu-

tions of
∑

mν around the mean values
∑

mν ≈ 0.07 eV (for
an NO) and

∑
mν ≈ 0.11 eV (for an IO). It is seen that these

values are still lying within the currently established upper
bound

∑
mν ≤ 0.12 eV.

If m1 > 0.03 eV (for an NO) or m3 > 0.016 eV (for an
IO) the sum

∑
mν would exceed 0.12 eV.

Diagonalizing Yαβ we get the matrices mT, mD and mS

diagonalized with eigenvalues

(mT )k = YΔ
k δ1, (mD)k = YΔ

k δ2, (mS)k = YΔ
k δ3, (25)

where, k = 1, 2, 3, numbering the mass eigenvalues and the
mass eigenstates. Taking (22) into account this leads to the
neutrino mass-states

(nL)k = (νL)k − (mD)k

(mS)k
(N c

R )k,

(NL)k = (mD)k

(mS)k
(νL)k + (N c

R )k, (26)

corresponding respectively to the masses

mk = (mT )k − (mD)2
k

(mS)k
≡

[
δ1 − (δ2)

2

δ3

]
YΔ
k ,

Mk = (mS)k ≡ YΔ
k δ3, (27)

where the notation N c
R ≡ (NR)c is used. Note that at δ1 ≈ 0

the ratio mk/Mk becomes universal as it depends on neither
k nor the coupling coefficients YΔ

k but the ratio δ2/δ3:

mk

Mk
≈

(
mD

mS

)2

=
(

δ2

δ3

)2

. (28)

That means a ratio can be predicted by knowing the other
one. Using (28) we can rewrite (26) in the form

(nL)k = (νL)k −
√

mk

Mk
(N c

R )k,

(NL)k =
√

mk

Mk
(νL)k + (N c

R )k, (29)

or

(nL)k = (νL)k − δ2

δ3
(N c

R )k,

(NL)k = δ2

δ3
(νL)k + (N c

R )k . (30)

Solving the system of Eq. (30) for (νL)k we get

(νL)k = 1

1 + (δ2/δ3)2 (nL)k + δ2/δ3

1 + (δ2/δ3)2 (NL)k, (31)

or, as δ2 � δ3,

(νL)k ≈ (nL)k + δ2

δ3
(NL)k . (32)

In the flavour basis, the neutrinos (νL)α , α = e, μ, τ , have
the following general mixing

(νL)α ≈
3∑

k=1

Uαk(nL)k +
3∑

k=1

Θαk (NL)k, (33)

where, Uαk is the PMNS matrix, and Θαk ≈ δ2
δ3
Uαk . That

means, the flavour neutrinos in general are mixtures between
light active neutrinos and heavy neutrinos which now are
objects of increasing intensive search. Since mixing angles
with heavy neutrinos are very small they are often neglected
but when experiments, especially those searching for heavy
neutrinos, become more and more sensitive and precise they
should be taken into account.

At the present we do not know the exact bounds of mS ,
which can spread from a relatively low scale at keV (or lower)
to a very high energy scale near the Planck mass, but we know
from the experiment and cosmological constraints [32–36]
the upper bound of the active neutrions massesm < 10−1eV .
Thus, m/M can be calculated for a given M , for example,
m/M < 10−4 (that means δ2/δ3 < 10−2) for M at a keV
scale and m/M < 10−10 (that means δ2/δ3 < 10−5) for M
at a GeV scale. The latter estimations do not contradict with
the upper bounds of |Θ|2 established for several (current and
future) experiments for M of a few GeV’s [49,50]. As is well
known that an existence of Majorana neutrinos violates the
lepton number conservation rule.

At the SU (2)L -breaking scale δ2 ∼ 102 GeV there should
be keV heavy neutrinos (M ∼ 103 eV) if the SU (3)L (or
SU (4)) is broken at δ3 ∼ 10 TeV scale. The existence of eV
or MeV heavy neutrinos requires the breaking scale δ3 ∼ 100

TeV or δ3 ∼ 103 TeV, respectively. The possible existence
of the light heavy neutrinos (with masses, for example, at
eV-, keV-, MeV scale) is very interesting not only in par-
ticle physical aspect but also in the astro-particle physical
and the cosmological aspects (see, for example [42,51] and
references therein).
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Fig. 3 Scalar-exchanging lepton scattering

4 Conclusion

It is well known from the experiment [5–10] that neutrinos
have masses but they are very small, for example, some
combined particle physics data and cosmological probes
give an upper bound of the sum of neutrino masses as∑

mν < 0.12 eV (95% CL) [32–36]. Many theoretical mod-
els and mechanisms have been suggested to predict or explain
this experimental fact but none of them is completely sat-
isfactory. In this paper we have suggested one more way
of neutrino mass generation through spontaneous breaking
of an extended SU (4) ⊗ U (1)X electroweak symmetry by
an SU (4)-decuplet scalar acquiring a VEV without using
fundamental quartet scalars which cannot generate neutrino
masses (and charged-lepton masses) directly. There are limits
in which the seesaw mechanism can be realized. Depending
on these limits the new (heavy) neutrinos added to the active
(light) neutrinos may have masses at different ranges none
of which has been so far excluded from the experiment. It
should be noted that if the physics of the 3-4-1 model is at
around TeV scale, such as that of the LHC and near future
accelerators, there may exist light heavy neutrinos (at an eV–
keV scale) attracting great interest in particle physics and
cosmology (see, for example [51–55]). For MN at the order
of 102 GeV considered in Ref. [50] the scale of physics of
3-4-1 model, if existing, would be too high in order to be
discovered at the LHC and other present accelerators. The
neutrino masses depend on not only the symmetry breaking
scales but also Yukawa couplings (to the decuplet) the dis-
tribution shapes of which are shown in Figs. 1 and 2 via the
model-independent distributions of the neutrino mass matrix
elements. Thus, these Yukawa couplings can be determined
if the symmetry breaking scales are known and vice versa.
More precisely, the Yukawa couplings YΔ

αβ and their trace

Tr(YΔ
αβ) can be determined from the distributions in Figs. 1

and 2 upto the factor

[
δ1 − (δ2)

2

δ3

]
. These distributions are

derived by using an experimental data for squared mass dif-
ferences and mixing angles (it means that the PMNS matrix
is known) as well as a mass input respecting the mass upper
bound

∑
mν ≤ 0.12 eV and, vice versa, the PMNS matrix

can be determined via the model’s parameters fixed by other
independent ways, for example, via non-neutrino processes
like thoses for S-exchanging L–L scatterings schematically
depicted in Fig. 3 (here the symbol “L” stands for a charged
lepton and the symbol “S” stands for a scalar from a decu-
plet). It is a quite long but very interesting work being cur-
rently investigated.

As discussed in Ref. [41], besides the seesaw limit δ1 ≈ 0,
other limits in the mass term (18) can be considered: the pure
Majorana limit (mD = 0), the Dirac limit (mT = mS =
0), the pseudo-Dirac limit (mT � mD and mS � mD),
etc. It can be seen that the pure Majorana limit breaks the
present structure of the neutrino mass term to a left-right
SU (2)L ⊗ SU (2)R structure which can be a subject of a
later investigation. We would like to stress that in the present
paper the seesaw mechanism is applied, to our knowledge,
for the first time to the 3-4-1 model with a scalar decuplet.

Finally, it is worth noting that here we have used a funda-
mental scalar decuplet for neutrino mass generation but using
a decuplet composed of quartets, or using an effective cou-
pling of the latter, is another possibility for generating lepton
masses including masses of neutrinos and charged leptons.
This research is in progress.
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