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Efficient production of large-size 
optical Schrödinger cat states
Evgeny V. Mikheev1, Alexander S. Pugin1,2, Dmitry A. Kuts1, Sergey A. Podoshvedov1 & 
Nguyen Ba An  3,4

We present novel theory of effective realization of large-size optical Schrödinger cat states, which 
play an important role for quantum communication and quantum computation in the optical domain 
using laser sources. The treatment is based on the α-representation in infinite Hilbert space which is 
the decomposition of an arbitrary quantum state in terms of displaced number states characterized 
by the displacement amplitude α. We find analytical form of the α-representation for both even and 
odd Schrödinger cat states which is essential for their generation schemes. Two schemes are proposed 
for generating even/odd Schrödinger cat states of large size |β| (|β| ≥ 2) with high fidelity F (F ≈ 0.99). 
One scheme relies on an initially offline prepared two-mode entangled state with a fixed total photon 
number, while the other scheme uses separable photon Fock states as the input. In both schemes, 
generation of the desired states is heralded by the corresponding measurement outcomes. Conditions 
for obtaining states useful for quantum information processing are established and success probabilities 
for their generation are evaluated.

It is known that a potentially quantum computer can effectively implement intractable algorithms such as large 
integer factoring1 and unsorted data search2 which cannot be effectively implemented by computers operating 
under classical laws. But realization of the quantum computer requires effective performance of a universal set of 
deterministic gate operations over a large set of qubits3. Also, qubits are exposed to influence of the environment, 
requiring good fault-tolerant computational systems. All these impose highly stringent requirements on the phys-
ical system where qubits and quantum gates are realized. Different physical systems might be used to implement 
different quantum protocols. In particular, as light has the maximally possible speed of propagation and weakly 
interacts with the surrounding noisy environment, optical systems are put in one row with atomic ones in the 
design of possible configurations of the quantum computer.

Although there are many proposed approaches for optical quantum computers, none of them are completely 
satisfactory since they are quite complex and/or restricted in application. For example, realization of deterministic 
gate operations4 would require an unacceptably huge number of additional operations5,6. So, one can hardly say 
that the issue of optical quantum information processing (QIP) has been finally resolved7 and the question of how 
to efficiently exploit the optical resources (interaction mechanisms, approaches, suitable states) for QIP remains 
of great interest. Up to now, three approaches for optical QIP are developed within the discrete-variable (DV)5, 
continuous-variable (CV)8 and combined discrete-continuous-variable (DV-CV) frameworks9. These approaches 
exploit one of aspects of the particle-wave duality7 or both of them10,11. Each approach has its own inherent advan-
tages and drawbacks. Namely, the DV approach uses photons that interact very weakly with each other so 
two-qubit operations can be realized only in a non-deterministic manner12. Instead, quantum protocols with CV 
states can be implemented deterministically, but the fidelity is limited due to the fact that CV entangled states 
such as two-mode squeezed vacuum state does not carry maximum entanglement13. Commonly used optical 
states are the so-called optical Schrödinger cat states (SCSs) α α| − 〉 ± | 〉a a0 1 , with |±α〉 being coherent states 
with macroscopic continuous amplitudes ±α and a0, a1 normalization coefficients. These states can also be 
referred to as quantum superpositions of two out-of-phase light pulses. The size of coherent components |α| is of 
crucial importance in the experiments to test quantum foundations and quantum information technologies14–18. 
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Generally |−α〉 and |α〉 are not strictly orthogonal to each other. But, since their overlap is determined by 
α α α|〈 | − 〉| = − | |exp( 2 )2 , for α ≥ 2 one has α α|〈 | − 〉| ≤ ⋅ ≈−3 10 04 , so such SCSs can be treated as good 

qubits. They are called large-size SCSs where “large-size” practically implies |α| ≥ 2. However, it is very difficult to 
produce such large-size SCSs in realistic conditions with existing third-order nonlinearities χ(3). Although a lot of 
progress has been made over last times19–26, size of the generated SCSs as well as their low generation rate still 
leave much to be improved for desired practical protocols. In other words, the realization of sufficiently large-size 
SCSs remains questionable and is worth further tremendous efforts. In this connection, the DV-CV approach 
with the so-called hybrid states turns out to be a promising direction since the combination of two different phys-
ical systems could provide new capabilities to more efficiently implement optical quantum protocols27–36.

Since the direct implementation of the SCSs37 is currently impossible due to the tininess of the third-order 
optical nonlinearity, it makes sense to consider other methods38 that could approximate large-size SCSs with high 
fidelity. A scheme for generating SCSs by feeding a squeezed vacuum into beam splitter and counting photons 
in auxiliary mode was considered in39. It was also shown40 that any single-mode quantum state can be generated 
from the vacuum by alternate applications of displacement operations combined with single photons. For the 
time being, the techniques of photon subtraction and photon addition are fairly common for generating differ-
ent types of SCSs17,21,25,26,41–43. These techniques are widely demonstrated in modern optical experiments44–50. 
Recently, a seemingly simple method51 has been proposed. The method seems simple because it needs only a 
balanced beam-splitter and a quadrature measurement, provided that the proper initial states are supplied before-
hand. However, preparation of the proper initial states, which are themselves SCSs, though, of small-size, is not 
trivial. In fact, they have first to prepare squeezed vacuum states and then subtract photon to obtain the necessary 
initial small SCSs, whose fidelity due to the technique is not so high (just 84% as reported in the reference).

Here, we present novel ways to directly generate even/odd SCSs of large size without the breeding process 
as in the above-mentioned method51 that could be directly used in work of quantum computer. The method 
is based on introduction of the so-called α-representation of even/odd SCSs which is their decomposition in 
base of the displaced number states17. One method is based on the pre-preparation of a two-mode entangled 
state with a fixed number n of photons50. Photon subtraction from the displaced number state52,53 of the original 
entangled one in auxiliary mode allows one to generate the states that under certain conditions approximate 
either even or odd large-size SCSs with fidelity close to or even more of 0.99 that are suitable for quantum pro-
tocols. This approach allows one to find strategy for generating auxiliary two-mode entangled states taking into 
account experimental conditions and imperfections imposed in reality. The method can be considered efficient 
because the necessary auxiliary two-mode entangled states50 needs just to be prepared offline in advance. We also 
develop another method for conditional generation of even/odd large-size SCSs by mixing photon Fock states on 
beam splitters followed by displacing the auxiliary modes and subsequently measuring their photon numbers by 
photo-detectors. Both the proposed schemes allow us to effectively generate even/odd SCSs with large size and 
with high fidelity.

Results
Schrödinger cat states in iα-representation. The even/odd SCSs β| 〉±  with size |β| are defined by

β β β| 〉 = | − 〉 + | 〉+ +N ( ), (1)

β β β| 〉 = | − 〉 − | 〉− −N ( ), (2)

where β= ± −±
−N exp(2(1 ( 2 )))2 1/2 are the normalization factors, which in general depend on |β| and the 

notations β| ± 〉 mean coherent states with amplitudes ±β. The amplitude β is generally complex, but here and in 
the following, for simplicity, it is assumed to be real and positive (i.e., β > 0). Then the amplitude β of the SCS is 
regarded as its size.

The even/odd SCSs are obviously orthogonal to each other, β β〈 | 〉 =− + 0, as the photon numbers in β| 〉+  ( β| 〉− ) 
are even (odd). In this paper we are working with the so-called iα-representation which for any state is deter-
mined in infinite Hilbert space of the displaced number states (S1) of Supplementary Note 1 characterized by the 
displacement amplitude α (see refs17,18). Precisely, the iα-representation of an arbitrary state is its decomposition 
over the basis states α| 〉 = … ∞k i k{ , ; 0, 1, , } of the displaced number states. In the case of the optical SCSs, we 
have (see Supplementary Note 1 accompanying this Main Material)

∑β α| 〉 =




−






| 〉+ + =
∞ +N exp a k i

2
, ,

(3)k k

2

0
( )

∑β α| 〉 =
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| 〉− − =
∞ −N exp a k

2
, i ,

(4)k k

2

0
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where the decomposition coefficients ±ak
( ) for a given β read

αβ ϕ π= + ++a i
k

cos k2( )
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( ( /2)),
(5)k

k
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αβ ϕ π= + +−a i
k

sin k2( )
!

( ( /2)),
(6)k

k
( )

with α being real while the relative phase ϕ α β= arctang( / ) and α β= +2 2 . The choice of real α (i.e., 
the displacement amplitude iα in (3) and (4) is purely imaginary) looks convenient since then the value of the 
parameteriα will lie symmetrically with respect to the quantities −β and β on the phase plane. It is possible to 
directly check that the normalization condition is satisfied for both even and odd SCSs, i.e., 

− ∑ =± =
∞ ±N exp a( ) 1n n

2 2
0

( ) 2
 hold for any values of the parameters α and β. We can see that the coefficients may 

not be equal to zero for arbitrary values of k. We obtain standard form of the coefficients of the even/odd SCSs in 
the Fock or number state basis (or, the same, in the 0-representation) if we take α = 0 in Eqs (5, 6). The division 
into ‘even’ and ‘odd’ takes place exclusively in the 0-representation of the SCSs. In any α-representations with 
α ≠ 0, the division into ‘even’ and ‘odd’ is not relevant, because, as seen from Eqs (5, 6), they contain both even 
and odd displaced states. Nevertheless, we still formally adopt the terminologies ‘even’ and ‘odd’ SCSs even in 
α-presentations with α ≠ 0 that should not cause a conceptual misleading.

Schrödinger cat qudits. It is long known that the size of SCSs generated by direct use of χ(3) nonlineari-
ties14 cannot be large enough due to the tininess of the nonlinearities available in all existing nonlinear crystals. 
Quantum engineering allows the replacement of the original infinite CV state with its finite version which rep-
resents a truncated superposition of just n + 1 terms in the corresponding α-representation, with n being some 
integer. That is, we can approximate the SCSs in Eqs (1, 2) by the following states

∑ α|Ψ 〉 = | 〉± ±
=

±N b k i, , (7)n n k
n

k
( ) ( )

0
( )

with ±bk
( ) some expansion coefficients to be specified later and = ∑±

=
±

−( )N bn k
n

k
( )

0
( ) 2 1/2

 the normalization 
factors. We can also speak about replacing original optical SCSs in Eqs (1, 2), which are CV states residing in an 
infinite Hilbert space, by the states in Eq. (7), which are DV states residing in a finite Hilbert space of dimension 
d = n + 1. The degree of validity for such a replacement can be assessed by the fidelity  =± ±F tr( ),n n

SCS( ) ( ) ( )  with 
tr denoting the trace over the state in parentheses, SCS( )  is the density matrix of the original pure states in Eqs (3, 
4) and ±

n
( )  is the density matrix of the states in Eq. (7). The fidelity value lies in the range from 0 up to 1. If the 

fidelity is equal to 1, then the compared states are identical to each other. Conversely, if the fidelity is equal to 0, 
then such states are orthogonal to each other. The bigger value the fidelity acquires the closer to each other are the 
two compared states. In the case of the optical SCSs in Eqs (3, 4) and their truncated versions in Eq. (7), the fidel-
ity can be written as

∑β= 〈 |Ψ 〉 = −+
+

+
+

+
=

+ +⁎
F N N exp a b( ) , (8)n n n k

n
k k

( ) ( ) 2 2 ( )2 2
0

( ) ( ) 2

∑β= 〈 |Ψ 〉 = − .−
−

−
−

−
=

− −⁎
F N N exp a b( ) (9)n n n k

n
k k

( ) ( ) 2 2 ( )2 2
0

( ) ( ) 2

By numerical calculations we find out that the best way to approximate the original SCSs in Eqs (1, 2) with 
highest fidelity is to set the expansion coefficients in Eq. (7) to be proportional to those in Eqs (5, 6), say, in the 
following way: =+ +b a /2k k

( ) ( )  and =− −b a /2k k
( ) ( ) . Let us denote the states in Eq. (7) with such setting for the coef-

ficients by |Ψ 〉+
n
S( )  and loosely call them Schrödinger cat qudits (SCQs) of dimension d = n + 1 which have the 

following form

∑

∑
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and

∑ ∑α αβ ϕ π αΨ = | 〉 = + + | 〉− +
=

− −

=
N a k i N i k sin k k i( /2) , (( ) / ! ) ( ( /2)) , ,

(11)n
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with the corresponding normalization factors

∑ αβ ϕ π= + ++
=

−( )N k cos k( / !) ( ( /2)) , (12)n
S

k
n k( )

0
2 2 1/2

∑ αβ ϕ π= + +−
=

−( )N k sin k( / !) ( ( /2)) , (13)n
S

k
n k( )

0
2 2 1/2

by virtue of Eqs (10, 11). Then, we can derive from Eqs (8, 9) the expressions for the fidelities ±Fn
(S ) between the 

original SCSs in Eqs (3, 4) and the approximated ones, i.e., the SCQs in Eqs (10, 11):
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∑= − .±
±

±
=

±F N N exp a( ( )/4) (14)n n
S

k
n

k
(S ) 2 ( )2 2

0
( ) 2

The functions ±Fn
(S ) depend not only on n but also on two independent variables α and β. The generic ten-

dency is that ±Fn
S( ) increase and approach 1 for increasing n, while the range of the values of α and β, in which 

high fidelities are achieved, also increases with n. All the material relating to the properties of the SCQs is pre-
sented in the accompanying Supplementary Notes. This material is the basis for the manipulation and generation 
of the even/odd SCQs which will be described in what follows.

 We also note the fact that, in general, we can consider the SCQ in an arbitrary α-representation, where the 
magnitude α can take arbitrary complex value α α α= +Re iIm . The choice of a purely imaginary value iα with 
real α is deliberate (in addition to the above-mentioned fact that the value of iα lies on the imaginary axis on 
phase plane, which is the axis of symmetry for real values β and −β), since the numerical simulation shows that 
the fidelities of the SCQ in Supplementary Figures 1–3 of Supplementary Note 1 are maximum with iα compared 
to arbitrary α. For this reason, the final displacement operator with purely imaginary displacement amplitude iα 
will be used in the optical schemes in the Figs 1 and 2. The choice of a purely imaginary value iα imposes certain 
rules on the SCQ’s amplitudes. For example, as it follows from formulas (5) and (6), the imaginary unit alternates 
depending on the number of the term in the superposition, the odd terms are purely imaginary and the even 
members are real. This circumstance imposes an appropriate choice on auxiliary states in Figs 1 and 2 to provide 
this alternation of the imaginary unit in superposition terms for the construction of the SCQs.

Schemes for generation of SCQ. Scheme using a two-mode entangled state as the input. The SCQs in Eqs 
(10, 11) that approximate the desired SCSs in Eqs (1, 2) with high fidelity can be generated by our scheme shown 
in Fig. 1, exploiting the following two-mode entangled state

∑φ = | 〉 | − 〉±
=

±d m n m , (15)n m
n

m
( )

12 0
( )

1 2

with the coefficients ±dm
( ) satisfying the normalization conditions ∑ ==

±d 1,m
n

m0
( ) 2

 as the initial state. Note 
that in Eq. (15) the photon number of either mode may be any between 0 and n but the total photon number of 
two modes is fixed to n. Given the coefficients ±d ,m

( )  the state in Eq. (15) can be pre-produced offline in a condi-
tional optical setup with two spontaneous parametric down converters (SPDCs) connected with each other by a 
set of properly-arranged beam splitters50 (see more later). Note that the optical scheme in Fig. 1 includes both the 
scheme for generating SCQ and the preliminary part for producing the necessary two-mode entangled state of n 
photons. The part of the multi-stage scheme that is responsible for generating the state is placed inside a dashed 
rectangle. In Fig. 1 mode 1 is the main, where the SCQ is to be born, while mode 2 is the auxiliary one, whose 
photon number is to be detected (|kk| implies that k photons are registered by a detector).

Starting from the state φ ±
n
( )

12
 two displacement operators D1(iα) and D2(α′) (α ≠ α′ in general) act respec-

tively on mode 1 and mode 2, resulting in

Figure 1.  Schematic representation for generation of the SCQs in Eqs (10, 11) together with the auxiliary part 
(inside a rectangle surrounded by a dashed line) responsible for generating the two-mode entangled state in Eq. 
(15). Two HTBS are used to displace initially prepared entangled two-mode states φ ±

n
( )

12
 of Eq. (15) by 

quantities iα and α′, respectively. Conditioned on registration of k photons in mode 2, the initial state φ ±
n
( )

12
 is 

projected onto Ψ ±
nk
( )

1
 which may approximate even/odd optical SCSs. The auxiliary part consists of two coupled 

two-mode squeezers idler modes of which are converted in a rather complicated way by a system of the beam 
splitter with parameters ± ±t r( , )i i

( ) ( )  and mirrors50. Desired quantum superposition in Eq. (15) occupying signal 
modes is generated in a heralded fashion provided that the parameters ± ±t r( , )i i

( ) ( )  are selected as indicated in the 
text.
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∑α α φ α α′ = − ′〉±
=

±D i D d m i n m( ) ( ) , , , (16)n m
n

m1 2
( )

12 0
( )

1 2

where α α= | 〉m i D i m, ( )1 1 and α α α− ′ = ′ | − ′〉n m D n m, ( ) ,2 2 are the displaced number states. It is worth 
noting that the displacement operation can be realized by mixing the target state with a strong coherent state on 
a highly transmissive beam splitter (HTBS)54,55. Then, measurement on the auxiliary mode 2 in Fig. 1 is carried 
out in the number states basis {|k〉; k = 0, 1, 2, …}. Using the decomposition of the displaced number state over 
number states as in Eq. (S5) of Supplementary Note 1, the state (16) can be reformulated as

∑α α φ α′ = ′ Ψ | 〉±
=

∞ ± − ±D i D F N k( ) ( ) ( ) , (17)n k nk nk1 2
( )

12 0
( ) 1 ( )

1 2

where the state of mode 1

∑ α αΨ = ′ | 〉± ±
=

±
−N d c m i( ) , (18)nk nk m

n
m n m k

( )
1

( )
0

( )
, 1

is normalized with the normalization factor

∑ α= ′ .±
=

±
−

−( )N d c ( )
(19)nk m

n
m n m k

( )
0

( ) 2
,

2
1/2

As seen from Eq. (17), conditioned on the outcome k of the measurement on mode 2 (i.e., mode 2 is found in 
state | 〉k2  or, the same, k photons of mode 2 are detected), mode 1 is immediately projected onto the state Ψ ±

nk
( )

1
 of 

Eq. (18). Note that in Eq. (18) the subscripts ‘nk’ imply generation of a qudit of dimension n + 1 in mode 1 which 
is heralded by detection of k photons in mode 2, while superscripts ‘±’ refer to even/odd SCQs. The exponential 
multiplier F(α)′ in in Eq. (17) is introduced in Supplementary Note 1. The success probability to generate the state 
in Eq. (18) is determined by

∑α α α= ′ = − ′





′




.± ± −

=

±
−P F N exp d c( ) ( ) ( )

(20)
nk nk

m

n

m n m k
( ) 2 ( ) 2 2

0

( ) 2
,

2

Using the completeness of the displaced number states, it is straightforward to check that all the success prob-
abilities sum to one, i.e.,

∑ ==
∞ ±P 1, (21)k nk0

( )

for any value of α′ and n, as it should be.
Furthermore, if we impose conditions on the coefficients ±dm

( ) of the initial state in Eq. (15) as

α
αβ ϕ π

α
=

′
=

+ +
′

+
+

−

+ ′

−

+ ′d a
c

N i cos m
c m

N/2
( )

( a) ( ( /2))
( ) !

,
(22)

m
m

n m k
nk

S
m

n m k
nk

S( )
( )

,

( )

,

( )

or

Figure 2. Schematic setup for generation of state Ωn
m( )  in Eq. (34) starting from Fock states. | 〉kj j denotes an 

input Fock state containing kj photons in mode j, BS j0  beam splitter with transmission (reflection) coefficient 
t r( )j j  acting on mode 0 and mode j, αD ( )j  displacement operator with displace amplitude α acting on mode j, 
| 〉 〈 |0 0j  implies detection of no photons in mode j, and Ωn

m( ) the output post-selected state.
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α
αβ ϕ π

α
=

′
=

+ +
′

−
−

−

− ′

−

− ′d a
c

N i sin m
c m

N/2
( )

( a) ( ( /2))
( ) ! (23)

m
m

n m k
nk

S
m

n m k
nk

S( )
( )

,

( )

,

( )

with the normalization factors

∑ α=





′





± ′
=

±
−

−

N a c/4 ( ) ,
(24)nk

S
m
n

m n m k
( )

0
( ) 2

,
2

1

we shall obtain the desired SCQs in Eqs (10) and (11) whose fidelities are plotted in Supplementary Figures 1 
and 2, respectively. The expressions (24) for the factors ± ′Nnk

S( ) , which are present in the coefficients ±dm
( ) in Eqs (22, 

23), ensure the normalization of the generated SCQs. Here, we wish to note a fact that the interaction of the 
modes of the initial state in Eq. (15) with the coherent state on the HTBS leaves its imprint in the form of the 
coefficients α′−c ( )n m k,  in the generated SCQs (i.e., the state |Ψ 〉±

nk
( )  in Eq. (18)). It can serve inherent irreducible 

feature of the DV-CV interaction. The success probabilities to generate the SCQs in Eqs (10, 11) are given by

=± ± ′ ±P F N N/ (25)nk
S

nk
S

n
S( ) 2 ( ) 2 ( )2

whose dependences on the involved parameters are plotted and displayed in Supplementary Figures 5–8 of 
Supplementary Note 2).

At this point, we briefly address on a possibility to generate the two-mode entangled state φ ±
n
( )

12
 in Eq. (15), 

following the work of ref.50. For concreteness, let us reformulate the state in Eq. (15) in terms of the bosonic modal 
creation operators +a1  and +a2  as

∑φ =
−

| 〉 | 〉+
=

±
+ + −d

m n m
a a

!( )!
0 0 ,

(26)
n m

n m m n m( )
12 0

( )

1 2
( )

1 2

with | 〉| 〉0 01 2  the two-mode vacuum state. If we pull +a n
2  out of the sum and introduce a formal variable 

= + +z a a/1 2 , then Eq. (26) reads

φ = | 〉 | 〉+ +a f z( ) 0 0 , (27)n
n( )

12 2 1 2

where

∑=
−=

±

f z d
m n m

z( )
!( )! (28)m

n m m
0

( )

is a nonconstant single-variable nth order polynomial in z with complex coefficients. According to the fundamen-
tal theorem of algebra, the above polynomial f(z) can always be factorized out as

∏= −
+

=
+f z d

n
z z( )

! ( ),
(29)

n
m
n

m

( )

0
( )

with +zm
( ) solutions of the equation f(z) = 0. Putting Eq. (29) back into Eq. (27) yields

∏φ = 


− 

| 〉 | 〉 .+

+

=
+ + +d

n
a z a

! ( ) 0 0
(30)n

n
m
n

m
( )

12

( )

0 1
( )

2 1 2

By changing the variables → −+ + +z r t/m m m
( ) ( ) ( ), with +rm

( ) and +tm
( ) such that | |+rm

( ) 2 + | | =+t 1,m
( ) 2  we get

∏φ =
∏




+ 

| 〉 | 〉 .+

+

=
+ =

+ + + +d
n t

t a r a
! ( ) 0 0

(31)
n

n

m
n

m
m
n

m m
( )

12

( )

0
( ) 0

( )
1

( )
2 1 2

The parameters +tm
( ) and +rm

( ) can be treated as transmission and reflection coefficients of a beam splitter which 
are determined by +zm

( ) in the following manner

=
+

+

+
t

z

1

1
,

(32)
m

m

( )

( ) 2

= −
+

.+
+

+
r z

z1 (33)
m

m

m

( )
( )

( ) 2

Because the state in Eq. (31) is a product of terms that are linear in the modal creation operators acting on the 
two-mode vacuum state, such states can be generated by a heralded scheme proposed in ref.50. We present the 
scheme in Fig. 1 in conjunction with the main one used for generation of the SCQs. The scheme starts from two 
two-mode squeezed states produced by two independent SPDCs. Each squeezed state has a signal mode and an 
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idler mode. First, each idler mode is splitted into n modes with an equal weight by a set of n − 1 unbalanced beam 
splitters with proper transmission and reflection coefficients. Then, the splitted modes from one idler mode are 
correspondingly superposed with those from the other idler mode on n beam splitters with transmission and 
reflection coefficients + +t r( , ),1

( )
1
( )  + +t r( , ),2

( )
2
( )  … and + +t r( , ),n n

( ) ( )  respectively. Behind each such beam splitter there 
is a photo-detector. If each detector registers a photon, then the two signal modes are projected onto the state 
φ +

n
( )

12
. The same procedures apply to generation of the state φ −

n
( )

12
. The state generation process described 

above is probabilistic but this does not matter since φ ±
n
( )

12
 are to be generated offline and only after they are 

successfully generated we shall turn to the problem of generation of our SCQs as in Fig. 1. Because analytically 
finding the solutions = …±z m n{ ; 0, 1, , }m

( )  for specific coefficients = …±d m n{ ; 0, 1, 2, , }m
( )  is generally not 

easy, we, for illustration, carry out numerical calculation for the cases of n = 3, 6, 9 and 12 and some given values 
of the displacement amplitudes α and α′ (see Fig. 1) for which the fidelities > . .±F 0 99n

(S )  The calculated values of 
±tm

( ) and ±rm
( ) are collected in Tables 1 and 2. As can be seen from the Tables, high-fidelity SCQs of large size 

(β ≥ 2) can be produced in the case of relatively large n (say, n ≥ 9). Since the concerned optical devices (SPDCs, 
beam splitters, phase shifters, …) are available within the current technologies and the necessary numerical cal-
culation is not formidable with the help of modern computing facilities, the presented production of large-size 
optical Schrödinger cat states seems quite efficient. As can be seen from the tables, the parameters of the beam 
splitters ± ±( )t r,j j

( ) ( )  include, in general, complex values, in particular, to ensure the alternation of imaginary units 
in superposition terms (Eqs (5) and (6)) of the generated states.

In general, it is also possible to calculate the overall probability of generating the desired states, taking into 
account the reported results50. So we have the probability = . ⋅ −P 1 08 103

5 to generate even SCQ with n = 3. If we 
want to increase the number of the terms in the generated superposition up to n = 5, then the probability becomes 

= . ⋅ −P 7 42 105
8.

Ψ +S
3
( ) Ψ +S

6
( ) Ψ +S

9
( ) Ψ +S

12
( )

β 1.03 1.64 2.12 2.25

α 0.328 0 0.23 0

α′ 1.426 1.805 2.048 2.248
+Pn

S
0

( ) 0.20 0.12 0.08 0.06
+t1

( ) 0.755 0.582 0.574 0.563
+r1

( ) − .i0 656 π. .exp i0 814 ( 0 399 ) π. − .exp i0 818 ( 0 299 ) π. − .exp i0 826 ( 0 286 )
+t2

( ) 0.634 0.582 0.577 0.563
+r2

( ) .i0 773 π. − .exp i0 814 ( 0 399 ) π. .exp i0 817 ( 0 363 ) π. .exp i0 826 ( 0 286 )
+t3

( ) 0.547 0.883 0.698 0.663
+r3

( ) − .i0 837 i0.469 π. − .exp i0 716 ( 0 469 ) π. − .exp i0 749 ( 0 428 )
+t4

( ) 0.883 0.97 0.663
+r4

( ) − .i0 469 − .i0 242 π. .exp i0 749 ( 0 428 )
+t5

( ) 0.582 0.904 0.964
+r5

( ) π. − .exp i0 814 ( 0 601 ) i0.428 i0.264
+t6

( ) 0.582 0.674 0.964
+r6

( ) π. .exp i0 814 ( 0 601 ) i0.739 − .i0 264
+t7

( ) 0.698 0.774
+r7

( ) π. − .exp i0 716 ( 0 531 ) − .i0 633
+t8

( ) 0.577 0.774
+r8

( ) π. .exp i0 817 ( 0 637 ) i0.633
+t9

( ) 0.574 0.663
+r9

( ) π. − .exp i0 818 ( 0 701 ) π. .exp i0 749 ( 0 572 )
+t10

( ) 0.663
+r10

( ) π. − .exp i0 749 ( 0 572 )
+t11

( ) 0.563
+r11

( ) π. .exp i0 826 ( 0 714 )
+t12

( ) 0.563
+r12

( ) π. − .exp i0 826 ( 0 714 )

Table 1. Values of the beam splitter parameters +ti
( ), +ri

( ) use of which in optical scheme of ref.50 ensures the 
generation of the needed two-mode entangled state in Eq. (15). Application of the displacement operators with 
amplitudes α and α′ in Fig. 1 enables us to generate SCQ that most closely match the properties of the even SCS 
of the corresponding size β with fidelity > .+F 0 99n

(S ) .

https://doi.org/10.1038/s41598-019-50703-1


8Scientific RepoRtS |         (2019) 9:14301  | https://doi.org/10.1038/s41598-019-50703-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Scheme using separable Fock states as the input. The SCQs in Eqs (10, 11) that approximate the desired SCSs in 
Eqs (1, 2) with high fidelity can also be generated by our second scheme shown in Fig. 2, exploiting + ≥m 1 2 
photon Fock states k ,0 0  …k k, , m m1 1  with … ≥k k k, , , 0m0 1 , as the inputs. Such scheme is sketched in Fig. 2 
which consists of m beam splitters, +m 1 displacement operations and m photo-detectors. For any given m ≥ 1 if 
neither of the m detectors clicks, the output state of the form

∏α β βΩ = | 〉=
+⁎ † ⁎N D i D a D( ) ( ) ( ) 0 (34)n

m
n

m
k
n

k
m

k
m( )

0
( )

0 1 0
( )

0
( )

0

is generated, where

= + + … +n k k k (35)m0 1

and β = …k n{ ; 1, 2, , }k
m( )  being functions of the parameters t r,1 1, t r,2 2, …,, t r,m m of the beam splitters and 

α1, α2, …, αm of the displacement operators. The state Ωn
m( )  can be made coincident with the desired SCQs 

Ψ ±
n
S( )  by properly choosing the involved parameters. Namely, since the SCQs of Eqs (10, 11) can be rewritten as

∑αΨ = | 〉±
=

±i c kD( ) , (36)n
S

k
n

k
S( )

0
( )

with =± ± ±c N a /2,k
S

n
S

k
( ) ( ) ( )  it can also be expressed in the form (34), i.e.,

∏α γ γΨ = | 〉±
±

=
± + + ±⁎ ⁎D i c

n
D a D( )

!
( ) ( ) 0 ,

(37)n
S n

S

k
n

k k
( )

( )

1
( ) ( )

where {γ = …± k n; 1, 2, , }k
( )  are the n roots of the polynomial

Ψ −S
3
( ) Ψ −S

6
( ) Ψ −S

9
( ) Ψ −S

12
( )

β 1.04 1.62 2.13 2.54

α 0 0.266 0 0.205

α′ 1.265 1.77 2.042 2.248
−Pn

S
0

( ) 0.25 0.13 0.08 0.06
−t1

( ) 1 0.575 0.574 0.562
−r1

( ) 0 π. − .exp i0 818 ( 0 356 ) π. .exp i0 819 ( 0 331 ) π. − .exp i0 827 ( 0 262 )
−t2

( ) 0.473 00596 0.574 0.563
−r2

( ) i0.881 π. .exp i0 802 ( 0 449 ) π. − .exp i0 819 ( 0 331 ) π. .exp i0 826 ( 0 311 )
−t3

( ) 0.473 0.989 1 0.663
−r3

( ) − .i0 881 i0.149 0 π. − .exp i0 748 ( 0 403 )
−t4

( ) 0.737 0.81 0.665
−r4

( ) − .i0 676 i0.586 π. .exp i0 747 ( 0 448 )
−t5

( ) 0.596 0.81 0.996
−r5

( ) π. .exp i0 802 ( 0 551 ) − .i0 586 i0.091
−t6

( ) 0.575 0.659 0.909
−r6

( ) π. − .exp i0 818 ( 0 644 ) i0.752 − .i0 417
−t7

( ) 0.659 0.842
−r7

( ) − .i0 752 i0.540
−t8

( ) 0.574 0.724
−r8

( ) π. .exp i0 819 ( 0 669 ) − .i0 690
−t9

( ) 0.574 0.665
−r9

( ) π. − .exp i0 819 ( 0 669 ) π. .exp i0 747 ( 0 552 )
−t10

( ) 0.663
−r10

( ) π. − .exp i0 748 ( 0 597 )
−t11

( ) 0.563
−r11

( ) π. .exp i0 826 ( 0 689 )
−t12

( ) 0.562
−r12

( ) π. − .exp i0 827 ( 0 738 )

Table 2. Values of the beam splitter parameters −ti
( ), −ri

( ) use of which in optical scheme of ref.50 ensures the 
generation of the needed two-mode entangled state (15). Application of the displacement with amplitudes α 
and α′ in Fig. 1 enables us to generate SCQ that most closely match the properties of the odd SCS of the 
corresponding size β with fidelity > .−F 0 99n

(S ) .
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∑ γ = .=

±

±
±c n

c k
!
!

0
(38)k

n k
S

n
S

k
0

( )

( )
( )

Note that each root γ ±
k
( ) depends on the coefficients = …±c j n{ ; 0, 1, ,j

S( ) } of the desired SCQ (36). It follows 
from comparing states in Eqs (34) and (37) that, for a given set of ±c{ }j

S( ) , the scheme’s parameters t r,1 1, α t r,1 2 2, 
α2…,, αt r, ,m m m can be chosen such that to satisfy the equations

=
±

N c
n! (39)n

m n
S

( )
( )

and

β γ= ∀ .± k (40)k
m

k
( ) ( )

If so, Ωn
m( )  becomes Ψ ±

n
S( ) , implying generation of the desired SCQ from Fock states | 〉k ,0 0  | 〉 … | 〉k k, , m m1 1  by 

our second scheme sketched in Fig. 2.
For illustration, for the =m 1 case our calculations yield (see Supplementary Note 3)

α
=

− 



−






⁎
N

P

t r
k k

exp1 ( ) ( )
! ! 2

,
(41)

n
n

k k
(1)

(1)
1 1

0 1

1
20 1

where = +n k k0 1, Pn
(1) the success probability and

β

α

α
=











∈

− ∈ + +
.

⁎

⁎

⁎
⁎

r
t

k k

t
r

k k k k

; [1, ]

; [ 1, ]
(42)

k
(1)

1

1
1 0

1

1
1 0 0 1

As for the m = 2 case we arrive at (see Supplementary Note 3)

α α
=

− − 



−

+ 




⁎ ⁎
N

P

t t r t r
k k k

exp1 ( ) ( ) ( )
! ! ! 2

,
(43)

n
n

k k k
(2)

(2)
1 2 1 2 2

0 1 2

1
2

2
20 1 2

where = + +n k k k0 1 2, Pn
(2) the success probability and

β

α α

α α

α

=











+
∈

−
∈ + +

−
∈ + + + +

.

⁎ ⁎

⁎ ⁎ ⁎ ⁎

⁎

⁎ ⁎

⁎

t r r
t t

k k

r r t
r t

k k k k

t
r

k k k k k k

; [1, ]

; [ 1, ]

; [ 1, ]
(44)

k
(2)

1 2 2 1 1

1 2
0

1 2 2 1 1

1 2
0 0 1

2 2

2
0 1 0 1 2

From the above description, we see that this scheme works for any m ≥ 1. It seems that the smaller value of m 
(i.e., the lesser the number of used beam splitters/displacement operators/detectors) the better the scheme with 
respect to the devices consumption. However, for a given n, a smaller value of m should be accompanied by larger 
values of …k k k, , , m0 1  to meet the requirement in Eq. (35). Also, the described scheme is probabilistic because of 
its post-selection procedure. In fact, there may be a wide range of choice of possible parameters that satisfy the 
Eqs (39) and (40) with high accuracy; yet each choice leads to a different success probability.

In what follows, for concreteness, let us deal with generation of the SCQs Ψ ±S
10
( )  of size β = 2 for three sets of 

(m, k0, k1, …, km):

 (i) m = 3, k0 = 4, k1 = k2 = k3 = 2,
 (ii) m = 4, k0 = 2, k1 = k2 = k3 = k4 = 2,
 (iii) m = 5, k0 = 0, k1 = k2 = k3 = k4 = k5 = 2.

The results of numerical calculations are listed in Tables 3–5, respectively.
As can be seen from Tables 3–5, generation of SCQs with size as large as β = 2 is possible in all the three cases 

with high enough fidelity whose values range from 0.961 up to 0.985. The obtained success probabilities to gener-
ate the SCQs are quite small but these are typical for this kind of state generation. Generally speaking, none of the 
proposed interpretations provides significant advantages over each other. Nevertheless, the data from the Tables 
reveal the correctness of the proposed scheme which allows us to realize SCQs of large size starting from an orig-
inal tensor product of Fock states. Since the SCQ generation in the case (i) requires a smaller number of beam 
splitters, displacement operators and photo-detectors than in the cases (ii) and (iii), this case can be regarded as 
more effective from an experimental point of view. Finally, to confirm the correctness of the proposed scheme 
which is rather complicated from a numerical point of view, we use the numerical values of the amplitudes of the 
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superposition in Eq. (34) to construct Wigner functions of the generated (left subfigures) and those of the genuine 
SCS β+  with β = 2 (right subfigures). SCQs and compare them with the Wigner functions of the corresponding 
genuine SCSs. In Fig. 3, we use the numerical data in Table 3 to plot Wigner functions of the SCQ Ψ +S

10
( )  (left 

Ψ +S
10
( ) Ψ −S

10
( )

F10
(3) 0.98 0.961

α −0.35 0.44

P10
(3) 0.0015 0.0071

α1 π. ⋅ .exp i1 657 ( 0 485 ) π. ⋅ .exp i1 999 ( 0 161 )

α2 π. ⋅ .exp i0 274 ( 0 475 ) −0.270

α3 π. ⋅ .exp i1 176 ( 0 876 ) π. ⋅ .exp i1 164 ( 0 784 )

t1 π. ⋅ .exp i0 614 ( 0 01 ) π. ⋅ .exp i0 732 ( 0 161 )

t2 π. ⋅ .exp i0 684 ( 0 6 ) π. ⋅ .exp i0 760 ( 1 216 )

t3 π. ⋅ .exp i0 664 ( 1 376 ) π. ⋅ .exp i0 690 ( 1 284 )

Table 3. Numerical results of the chosen parameters for generation of the SCQs Ψ ±S
10
( )  with size β = 2 for the 

case (i), i.e., when = = = = = .m k k k k3, 4, 20 1 2 3  F10
(3) and P10

(3) are the corresponding fidelity and success 
probability.

Ψ +S
10
( ) Ψ −S

10
( )

F10
(5) 0.975 0.973

α −0.2 −0.28

P10
(5) 0.0008 0.0012

α1 0 π. ⋅ .exp i0 034 ( 0 94 )

α2 π. ⋅ .exp i1 216 ( 0 588 ) π. ⋅ − .exp i1 585 ( 0 686 )

α3 π. ⋅ − .exp i0 738 ( 0 982 ) π. ⋅ .exp i0 948 ( 0 31 )

α4 π. ⋅ .exp i0 99 ( 0 39 ) π. ⋅ − .exp i1 401 ( 0 021 )

α5 π. ⋅ − .exp i1 414 ( 0 277 ) π. ⋅ .exp i0 295 ( 0 037 )

t1 π. ⋅ .exp i0 468 ( 1 116 ) π. ⋅ .exp i0 444 ( 1 321 )

t2 π. ⋅ .exp i0 414 ( 0 57 ) π. ⋅ .exp i0 611 ( 0 037 )

t3 π. ⋅ .exp i0 506 ( 0 628 ) π. ⋅ .exp i0 702 ( 1 084 )

t4 π. ⋅ .exp i0 868 ( 1 668 ) π. ⋅ .exp i0 876 ( 0 087 )

t5 π. ⋅ .exp i0 754 ( 1 223 ) π. ⋅ .exp i0 767 ( 0 537 )

Table 5. Numerical results of the chosen parameters for generation of the SCQs Ψ ±S
10
( )  with size β = 2 for the 

case (iii), i.e., when = = = = = = = .m k k k k k k5, 0, 20 1 2 3 4 5  F10
(5) and P10

(5) are the corresponding fidelity 
and success probability.

Ψ +S
10
( ) Ψ −S

10
( )

F10
(4) 0.985 0.972

α −0.47 −0.14

P10
(4) 0.0007 0.0017

α1 π. ⋅ − .exp i1 214 ( 0 46 ) π. ⋅ .exp i1 405 ( 0 258 )

α2 π. ⋅ .exp i0 841 ( 0 175 ) π. ⋅ − .exp i1 026 ( 0 905 )

α3 0 π. ⋅ .exp i0 091 ( 0 223 )

α4 π. ⋅ .exp i1 222 ( 0 946 ) π. ⋅ .exp i1 204 ( 0 543 )

t1 π. ⋅ .exp i0 755 ( 0 683 ) π. ⋅ .exp i0 603 ( 0 371 )

t2 π. ⋅ .exp i0 798 ( 0 056 ) π. ⋅ .exp i0 847 ( 0 158 )

t3 π. ⋅ .exp i0 531 ( 1 935 ) π. ⋅ .exp i0 595 ( 1 314 )

t4 π. ⋅ .exp i0 829 ( 0 446 ) 0.917

Table 4. Numerical results of the chosen parameters for generation of the SCQs Ψ ±S
10
( )  with size β = 2 for the 

case (ii), i.e., when = = = = = = .m k k k k k4, 2, 20 1 2 3 4  F10
(4) and P10

(4) are the corresponding fidelity and 
success probability.
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subfigures) and those of the genuine SCS β+  with β = 2 (right subfigures). The fidelity calculated for the two 
Wigner functions gives the following value = .F 0 98014033608210  which completely coincides with the value of 
the fidelity presented in Table 3. Also, we show in Fig. 4 Wigner functions of the SCQ Ψ −S

10
( )  (left subfigures) and 

the genuine SCS β−  with β = 2 (right subfigures). Again, the fidelity calculated using the Wigner functions gives 
the value = .F 0 96128544974410  which is the same as that presented in Table 3. Note that the Wigner functions 
WSCQ and WSCS of both the generated SCQ and the genuine SCS exhibit areas of negativity (i.e., areas for which 

<W W, 0SCQ SCS ), which is a specific feature to ensure nonclassicality of the states of concern. This observation 
and the full coincidence of the values of fidelities calculated by two different ways allow us to positively judge the 
relevance of the proposed scheme to generate large-size SCQs from the Fock states.

 As can be seen from the Tables 3–5, the values of experiment parameters (αi, ti) generally take the complex val-
ues and, in general, do not allow us to intuitively grasp what caused them and trace the relationship among the 
parameters. This is partly due to the fact that the parameters used must ensure the alternation of the imaginary unit 
in superposition terms of the generated states as shown above. It may also be connected with the complex structure 
of the roots of the polynomial in Eq. (38) that are dependent on amplitudes of ideal SCQs in Eqs (5, 6). Consider it 
on example of SCQs in 0-representation. Then, we have analytical expressions of purely imaginary roots 
γ β= ++ −i 2 3 31

( ) 1 , γ β= − ++ −i 2 3 32
( ) 1 , γ β= −+ −i 2 3 33

( ) 1 , γ β= − −+ −i 2 3 34
( ) 1  for 

even SCQ with =n 4 and complex roots γ =− 01
( ) , γ β= − +− − i10 2 52

( ) 1 , γ β=− − +− − i10 2 53
( ) 1 , 

γ β= − −− − i10 2 54
( ) 1 , γ β=− − −− − i10 2 55

( ) 1  for odd SCQ with n = 5. This must lead to the complex 
structure of the parameters α t( , )i i  presented in the Tables 3–5 which can be calculated only by numerical 
simulation.

Figure 3. Plot of even Wigner function WSCQ with = = = = =m k k k k3, 4, 20 1 2 3  (left-upper subfigure) 
and its contour image (left-bottom subfigure) generated in optical scheme in Fig. 2 with parameters taken from 
Table 3 in comparison with genuine even Wigner function WSCS with size β = 2 (right-upper subfigure) and its 
contour image (right-bottom subfigure). The fidelity calculated by using Wigner functions of generated and 
genuine states gives the result = .F 0 98014033608210  comparable to that presented in Table 3.
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 We also note the fact that the behavior of the fidelities and probabilities of the generated states in Fig. 2, 
depending on the variable parameters, is complex and difficult to explain from a logical point of view. For exam-
ple, we observed through numerical simulation that the maximum fidelity of the output state can be accompanied 

Figure 4. Plot of odd Wigner function WSCQ with = = = = =m k k k k3, 4, 20 1 2 3  (left-upper subfigure) 
and its contour image (left-bottom subfigure) generated in optical scheme in Fig. 2 with parameters taken from 
Table 3 in comparison with genuine odd Wigner function WSCS with size β = 2 (right-upper subfigure) and its 
contour image (right-bottom subfigure). The fidelity calculated by using Wigner functions of generated and 
genuine states gives the result = .F 0 96128544974410  comparable to that presented in Table 3.

Figure 5.  Dependencies of the fidelities +F10
( ) (left-hand side) and −F10

( ) (right-hand side) between displaced 
qudits generated in the optical scheme in Fig. 2 with n = 10 photons in m = 5 modes and even/odd SCS of 
amplitude β = 2 on the displaced amplitude α.
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by a significant decrease (by several orders of magnitude) in the success probability of the target state while the 
gain in the fidelity can be insignificant (about 1–2 percent). For this reason, we used only the optimal values in 
Tables 3–5 which provide a sufficiently high fidelity and success probability of the output state. The optical scheme 
in Fig. 2 allows high variability, which demonstrates the dependence +F10

( ) and −F10
( ) for the case of m = 5 on the 

parameter α in Fig. 5. In particular, we present the values of the fidelities, success probabilities and experimental 
parameters for which they are observed in Table 5 for optimal displacement amplitudes α = −0.2 and α = −0.28, 
respectively. The graph of the dependence of the probability of success on α has a more complex form with large 
oscillation amplitudes.

Discussion
We have considered novel ways to generate displaced qudits, called Schrodinger cat qudits, which may approx-
imate Schrodinger cat states of large size with high fidelity. First, we developed a theory of α-representation of 
the Schrodinger cat states (Eqs (5, 6)), where the quantity α takes pure imaginary values. The amplitudes of even 
and odd Schrodinger cat states are shifted relative to each other by π/2. Therefore, the division of the states onto 
even and odd can be made only in number states base (0-representation). These states have both even and odd 
amplitudes in any other Hilbert space defined by the displacement amplitude α. Schrodinger cat qudits are deter-
mined in an (n + 1)-dimensional Hilbert space with displaced base elements in Eqs (10, 11) shifted by quantity α 
on phase plane regarding the number states. Schrodinger cat qudits give maximal fidelity with exact Schrodinger 
cat states for any values of the displacement amplitude α. The more the number of terms n in the displaced qudit 
we take, the higher fidelity we can approximate the Schrodinger cat states of large size (see Supplementary Figures 
1–4). It is interesting to note that even and odd Schrodinger cat qudits have maximum fidelity in 0-representation 
for n being even and odd, respectively.

Then, we propose possible methods of generating Schrodinger cat qudits. One method is based on a two-mode 
entangled state in Eq. (15) containing n photons in total. The amplitudes of this state follow from Eqs (22, 23) and 
depend on both Schrodinger cat states amplitudes in Eqs (5, 6) and decomposition coefficients. The generation 
of even/odd Schrodinger cat qudits in optical scheme in Fig. 1 can be performed with a fairly high probability of 
success (see Supplementary Figures 5–8). It is shown50 that the two-mode entangled n-photon state can be real-
ized with the help of two SPDCs and a system of the beam splitters with parameters (Eqs (32, 33)) determined by 
the roots of the equation in Eq. (29). After such an entangled state in Eq. (15) is produced offline like quantum 
channel in5, either even or odd Schrodinger cat qudits can be generated using the amplitude displacement both 
in the main and auxiliary modes with the subsequent registration of a specific measurement outcome in number 
state basis. Potentially, this scheme allows one to realize Schrodinger cat qudits with a size greater than or equal 
to two (β ≥ 2) with an increase in the number n of photons used. Despite the simplicity of implementation of the 
conditional Schrodinger cat qudit generation, this scheme requires quantum channel5, realization of which may 
require great efforts. In order to seek for more possibilities of implementing large-size Schrodinger cat qudits, we 
proposed another scheme without using the initial two-mode entangled n-photon state. Instead, m + 1 (m ≥ 1) 
photon number states are used as the input states. With the help of photo-detectors and linear optics devices with 
properly chosen parameters and arranged as in Fig. 2, large-size Schrodinger cat qudits with high fidelity with the 
desired Schrodinger cat states can be obtained if no detectors click. The relevance of the method of generation of 
the desired Schrodinger cat states from photon Fock states is confirmed by means of Wigner functions.

 The main advantage of our method over other approaches (photon number subtraction26,41–43 and the breed-
ing protocol51) is the variety of strategies that can be implemented within the framework of the approach. In 
particular, the plots in Fig. 5 confirm the fact. These strategies can be aimed both at increasing the success prob-
ability (for example, reducing the number of the beam splitters in Fig. 2), and at increasing the size (β > 2) of 
the generated SCSs as accurate as possible by increasing the number of the beam splitters. The optical scheme 
in Fig. 2 can allow different inputs in the main 0 mode (for example, superposition states, low-amplitude SCSs 
to increase their size, and so on) and various states in auxiliary modes (for example, entangled states and even a 
two-mode squeezed vacuum state). Note that, in general, the optical scheme in Fig. 1 uses a completely accessible 
resource: two-mode squeezed vacuum state from which ideal SCQs in Eqs (10, 11) are produced. The scheme for 
generating an auxiliary two-mode entangled state in Eq. (15) is a rather nontrivial task. But it is quite possible in 
the future to simplify this multi-stage scheme in Fig. 1 to directly use radiation of pair of squeezers for generation 
of needed SCQs. The search for the best strategy regarding the size of the SCSs, the success probability and the 
resources that should be spent is the subject of the separate study.

 In general, the optical scheme in Fig. 2 can also be quite robust against photon loss, since the high fidelity of 
the output states is observed in a wide range of the parameters used. A more accurate answer concerning the effect 
of loss or/and decoherence can be obtained in a separate study.

Data Availability
The data that support the findings of this study are available from one of the corresponding authors (S.A.P.) upon 
reasonable request.
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SUPPLEMENTARY NOTE 1: THE 𝜶-REPRESENTATION OF THE SCS 

The displaced number states1 are defined through a unitary operator called the displacement 

operator 𝐷(𝛼) = 𝑒𝑥𝑝(𝛼𝑎+ − 𝛼∗𝑎) acting on a Fock state |𝑛⟩ as  

                                                                  |𝑛, 𝛼⟩ = 𝐷(𝛼)|𝑛⟩,                                                        (S1) 

where 𝛼 is a complex number in general and 𝑎 (𝑎+)  the bosonic annihilation (creation) operator2. 

Set of the displaced number states of light  

                                                             {|𝑛, 𝛼⟩, 𝑛 = 0,1,2, … ,∞}                                                    (S2)                                              

is complete for a given 𝛼. Therefore, any state can be decomposed in terms of the displaced number 

states with respective coefficients. We name such decomposition 𝛼-representation. In particular, 

for 𝛼 = 0, the 0-representation is nothing else but the decomposition in terms of the number states. 

So, the 0-representation of the even and odd SCSs in Eqs. (1, 2) of Main Material can be written 

as column-vectors with infinite number of elements as          

                                                     |𝛽+⟩ =

[
 
 
 
 
 
 
 
 
 
 
 𝑎0

(+)

𝑎1
(+)

𝑎2
(+)

𝑎3
(+)

𝑎4
(+)

𝑎5
(+)

𝑎6
(+)

𝑎7
(+)

⋮ ]
 
 
 
 
 
 
 
 
 
 
 

= 𝐺+

[
 
 
 
 
 
 
 
 

1
0

𝛽2 √2!⁄
0

𝛽4 √4!⁄
0

𝛽6 √6!⁄
0
⋮ ]

 
 
 
 
 
 
 
 

,                                                   (S3) 

 

                                                     |𝛽−⟩ =

[
 
 
 
 
 
 
 
 
 
 
 𝑎0

(−)

𝑎1
(−)

𝑎2
(−)

𝑎3
(−)

𝑎4
(−)

𝑎5
(−)

𝑎6
(−)

𝑎7
(−)

⋮ ]
 
 
 
 
 
 
 
 
 
 
 

= 𝐺−

[
 
 
 
 
 
 
 
 

0
𝛽
0

𝛽3 √3!⁄
0

𝛽5 √5!⁄
0

𝛽7 √7!⁄
⋮ ]

 
 
 
 
 
 
 
 

,                                                  (S4) 

where 𝐺± = 2𝑁±(𝛽)𝑒𝑥𝑝(−|𝛽|2 2⁄ ) are the normalization factors. Note also that |𝛽+⟩ contains only 

amplitudes proportional to  𝛽2𝑘, while |𝛽−⟩ is realized with amplitudes proportional to  𝛽2𝑘+1. The 

0-representation of the displaced number state itself is  

                                                        |𝑘, 𝛼⟩ = 𝐹(𝛼)∑ 𝑐𝑘𝑛(𝛼)∞
𝑛=0 |𝑛⟩,                                             (S5) 

Where 𝐹(𝛼) = 𝑒𝑥𝑝(−|𝛼|2 2⁄ ) is the normalization factor and the matrix elements 𝑐𝑘𝑛(𝛼) are the 

decomposition coefficients of the displaced number state |𝑘, 𝛼⟩ over the number states |𝑛⟩ (see Ref. 

3), which satisfy the condition 𝐹2(𝛼)∑ |𝑐𝑘𝑛(𝛼)|2∞
𝑚=0 = 1 because |𝑘, 𝛼⟩ is normalized to 1. These 

coefficients are the matrix elements of the transformation matrix 𝑈 which can be built from 

elements 𝑐𝑘𝑛(𝛼) in Eq. (S5) if 𝑘 and 𝑛 change from 0 up to ∞ (see Ref. 3). To get rid of the tedious 

calculations associated with the multiplication of the unitary infinite transformation matrix by the 

column vector3, we directly obtain the amplitudes of the even/odd SCS in arbitrary 𝛼-

representation.  Let us do the mathematical calculations for amplitudes of even SCS in infinite 

Hilbert space of the displaced number states |𝑘, 𝛼⟩. The amplitude 𝑎𝑘
(+)

 of even SCS in 𝛼-

representation can be calculated as 



                                        𝑎𝑘
(+)

= ⟨𝑘, 𝛼|𝑒𝑣𝑒𝑛⟩ = 𝑁+(⟨𝑘, 𝛼|−𝛽⟩ + ⟨𝑘, 𝛼|𝛽⟩) = 

                                          𝑁+(⟨𝑘|𝐷(−𝛼)𝐷(−𝛽)|0⟩ + ⟨𝑘|𝐷(−𝛼)𝐷(𝛽)|0⟩),                                (S6) 

due to completeness of the base displaced number states. Using the operator theorem2, 

                          𝐷(𝛼)𝐷(𝛽) = 𝐷(𝛼 + 𝛽)𝑒𝑥𝑝 (
𝛼𝛽∗−𝛼∗𝛽

2
) = 𝐷(𝛼 + 𝛽)𝑒𝑥𝑝(i𝐼𝑚(𝛼𝛽∗)),               (S7) 

applied to the displacement operators, we have from (S6)  

                    𝑎𝑘
(+)

= 𝑁+ (⟨𝑘|−𝛼 − 𝛽⟩𝑒𝑥𝑝 (
𝛼𝛽∗−𝛼∗𝛽

2
) + ⟨𝑘|−𝛼 + 𝛽⟩𝑒𝑥𝑝 (

−𝛼𝛽∗+𝛼∗𝛽

2
)) = 

     𝑁+ (𝑒𝑥𝑝 (−
|−𝛼−𝛽|2

2
) 𝑒𝑥𝑝 (

𝛼𝛽∗−𝛼∗𝛽

2
)

(−𝛼−𝛽)𝑘

√𝑘!
+ 𝑒𝑥𝑝 (−

|−𝛼+𝛽|2

2
) 𝑒𝑥𝑝 (

−𝛼𝛽∗+𝛼∗𝛽

2
)

(−𝛼+𝛽)𝑘

√𝑘!
).  (S8) 

Finally, we need to group the phase factors 

                                           exp (
1

2
(−(−𝛼 − 𝛽)(−𝛼∗ − 𝛽∗) + 𝛼𝛽∗ − 𝛼∗𝛽)) = 

                                     exp (
1

2
(−𝛼𝛼∗ − 𝛼𝛽∗ − 𝛽𝛼∗ − 𝛽𝛽∗ + 𝛼𝛽∗ − 𝛼∗𝛽)) = 

                                                             exp (−
1

2
𝕒2 − 𝛼∗𝛽),                                                          (S9) 

in the first term of (S8) and 

                                          exp (
1

2
(−(−𝛼 + 𝛽)(−𝛼∗ + 𝛽∗) − 𝛼𝛽∗ + 𝛼∗𝛽)) = 

                                        exp (
1

2
(−𝛼𝛼∗ + 𝛼𝛽∗ + 𝛽𝛼∗ − 𝛽𝛽∗ − 𝛼𝛽∗ + 𝛼∗𝛽)) = 

                                                              exp (−
1

2
𝕒2 + 𝛼∗𝛽),                                                      (S10) 

in the second term of (S8). Inserting all the phase factors into (S8), we obtain    

                    𝑎𝑘
(+)

=
𝑁+

√𝑘!
exp (−

1

2
𝕒2) ((−𝛼 − 𝛽)𝑘𝑒𝑥𝑝(−𝛼∗𝛽) + (−𝛼 + 𝛽)𝑘𝑒𝑥𝑝(𝛼∗𝛽)).         (S11) 

Similarly, the amplitudes 𝑎𝑘
(−)

 of odd SCS can be derived from relation    

                                                               𝑎𝑘
(−)

= ⟨𝑘, 𝛼|𝑜𝑑𝑑⟩.                                                      (S12) 

     Now, let us derive the Eqs. (5, 6) of Main Material. For that purpose we turn to the polar 

coordinates, given that 𝛽 > 0 and the displacement amplitude 𝑖𝛼 is pure imaginary. Then, we have 

(– 𝛼 − 𝛽)𝑘 = 𝕒𝑘𝑒𝑥𝑝(𝑖𝑘𝜑)𝑒𝑥𝑝(𝑖𝑘𝜋) and (– 𝛼 + 𝛽)𝑘 = 𝕒𝑘𝑒𝑥𝑝(−𝑖𝑘𝜑), where the angle on phase 

space is determined in Main Material. Substituting the expressions into formulas for 𝑎𝑘
(±)

, one 

obtains  

                  𝑎𝑘
(+)

=
𝑁+

√𝑘!
exp (−

𝕒2

2
)𝕒𝑘(𝑒𝑥𝑝(𝑖𝛼𝛽 + 𝑖𝑘𝜑 + 𝑖𝑘𝜋) + 𝑒𝑥𝑝(−𝑖𝛼𝛽 − 𝑖𝑘𝜑))= 

  
𝑁+

√𝑘!
exp (−

𝕒2

2
) 𝕒𝑘𝑒𝑥𝑝(𝑖𝑘𝜋 2⁄ )(𝑒𝑥𝑝(𝑖𝛼𝛽 + 𝑖𝑘𝜑 + 𝑖𝑘𝜋 2⁄ ) + 𝑒𝑥𝑝(−𝑖𝛼𝛽 − 𝑖𝑘𝜑 − 𝑖𝑘𝜋 2⁄ )) = 

                                         
𝑁+

√𝑘!
2(𝑖𝕒)𝑘exp (−

𝕒2

2
) 𝑐𝑜𝑠(𝛼𝛽 + 𝑘(𝜑 + 𝜋 2⁄ )),                                  (S13) 

                  𝑎𝑘
(−)

=
𝑁−

√𝑘!
exp (−

𝕒2

2
)𝕒𝑘(𝑒𝑥𝑝(𝑖𝛼𝛽 + 𝑖𝑘𝜑 + 𝑖𝑘𝜋) − 𝑒𝑥𝑝(−𝑖𝛼𝛽 − 𝑖𝑘𝜑))= 

  
𝑁−

√𝑘!
exp (−

𝕒2

2
) 𝕒𝑘𝑒𝑥𝑝(𝑖𝑘𝜋 2⁄ )(𝑒𝑥𝑝(𝑖𝛼𝛽 + 𝑖𝑘𝜑 + 𝑖𝑘𝜋 2⁄ ) − 𝑒𝑥𝑝(−𝑖𝛼𝛽 − 𝑖𝑘𝜑 − 𝑖𝑘𝜋 2⁄ )) = 

                                        𝑖
𝑁+

√𝑘!
2(𝑖𝕒)𝑘exp (−

𝕒2

2
) 𝑠𝑖𝑛(𝛼𝛽 + 𝑘(𝜑 + 𝜋 2⁄ )).                                 (S14) 

We neglected the overall phase factor 𝑖 in Eq. (S14) that does not affect anything and get the final 

expressions for the amplitudes of the SCS in polar coordinates as in Eqs. (5, 6) of Main Material. 

If we pull the common factor 𝑁±𝑒𝑥𝑝(−𝕒2 2⁄ ) out of the bracket, we get the superpositions as in 

Eqs. (3, 4) of Main Material whose coefficients 𝑎𝑘
(+)

 are now determined by the formulas in Eqs. 

(5, 6) of Main Material. 

    Three-dimensional plots of 𝐹𝑛
(𝑆+)

 and 𝐹𝑛
(𝑆−)

 in Eq. (14) of Main Material in dependency on 𝛼 

and 𝛽 are shown in Supplementary Figures 1 and 2, respectively, where 𝑛 varies from 2 up to 9. A 

general rule is observed. If the value of 𝑛 increases, then the values of the fidelities 𝐹𝑛
(𝑆±)

 increase 

too and approaches 1 starting from some large enough value of 𝑛 (say, 𝑛 ≥ 9). The range of the 



values of  𝛼 and 𝛽, in which high fidelities are achieved, is also increased. Visually, already with 

𝑛 = 9 the SCQs very well simulate both even (Supplementary Figure 1) and odd (Supplementary 

Figure 2) SCSs with the size as large as up to 𝛽 = 2,  within a quite wide range of the displacement 

amplitudes from 𝛼 = −2 up to 𝛼 = 2. Moreover, the range of values of the displacement amplitude 

𝛼, within which high fidelities 𝐹𝑛
(S±)

 result, is getting wider and wider for increasing 𝑛. The 

oscillatory structure of the fidelities in the plots is caused by the 𝑐𝑜𝑠 𝑠𝑖𝑛⁄  dependence of the 

coefficients 𝑎𝑘
(± )

 in Eqs. (5, 6) of Main Material. The coefficients of the even/odd optical SCSs are 

shifted relative to each other by 𝜋 2⁄  (cosine function transforms to sine with change of the phase 

𝜑 → 𝜑 + 𝜋 2⁄ ). This means that when the fidelity 𝐹𝑛
(S+)

 attains a local maximal value, the fidelity 

𝐹𝑛
(S−)

 takes a local minimum one (i.e., there is a 𝜋 2⁄  phase-shift) under coincidental values of the 

parameters 𝛼, 𝛽, and vice versa, regardless of 𝑛.  

     We also numerically found the maximum values of the fidelities 𝐹𝑛,𝑚𝑎𝑥
(S+)

 (top-left) and 𝐹𝑛,𝑚𝑎𝑥
(S−)

 

(top-right) as a function of 𝛽 for different values of 𝑛 in Supplementary Figure 3. Maximum values 

of the fidelities 𝐹𝑛,𝑚𝑎𝑥
(S+)

 and 𝐹𝑛,𝑚𝑎𝑥
(S−)

 follow from Supplementary Figures 1 and 2 and are determined 

when the displacement amplitude 𝛼 changes with a fixed value 𝛽 of the cat’s size. It is interesting 

to note that the maximum values of the fidelity 𝐹𝑛,𝑚𝑎𝑥
(S+)

 are observed when 𝑛 = 2, 4, 6, 8 (i.e., 𝑛 is 

even) in the case of 𝛼 = 0;  that is, when the SCQ is defined in Hilbert space with base number 

states (0-representation), while the maximum values of the fidelity are observed for odd values 𝑛 =
3, 5, 7, 9 in the case of  𝛼 ≠ 0 (bottom-left subfigure in Supplementary Figure 3). Contrary 

behaviors are found for the fidelities  𝐹𝑛,𝑚𝑎𝑥
(S−)

. The maximum value of 𝐹𝑛,𝑚𝑎𝑥
(S−)

 is observed for 𝛼 = 0 

in the case of 𝑛 = 3, 5, 7, 9 but for 𝛼 ≠ 0 in the case of 𝑛 = 2, 4, 6, 8 (bottom-right subfigure in 

Supplementary Figure 3). Summarizing the data from Supplementary Figures 1 to 3, we list the 

numerical values of the size 𝛽 of the SCS and the corresponding displacement amplitude 𝑖𝛼 in 

Supplementary Table 1 for which both the fidelities 𝐹𝑛
(S+)

 and 𝐹𝑛
(S−)

 take values greater than 0.99 

(𝐹𝑛
(S+)

> 0.99,  𝐹𝑛
(S−)

> 0.99)  for each value of 𝑛. A further increase in the size 𝛽 leads to the 

fact that the fidelities take values smaller than 0.99 (𝐹𝑛
(S+)

< 0.99, 𝐹𝑛
(S−)

< 0.99) for any value 

of 𝛼.  
 

                      𝐹𝑛
(S+)(𝛽) > 0.99                   𝐹𝑛

(S−)(𝛽) > 0.99 
𝑛 𝛼 𝛽 𝛼 𝛽 
2 0 0.8615 ±0.3409 0.7209 

3 ±0.328 1.0304    0   1.044 

4 0 1.2724  ±0.301  1.2267   
5 ±0.2824 1.4361  0 1.4574   
6 0 1.6405     ±0.266     1.6184   
7 ±0.2523     1.7933    0 1.8098   

8 0   1.9715     ±0.2404      1.9571    

9 ±0.2301      2.1131   0  2.1252   
 

Supplementary Table 1. Maximum values of 𝛽 which guarantee the fidelities exceeding 0.99 

with the appropriate values of the displacement amplitude 𝑖𝛼. An increase in the size 𝛽 decreases 

the fidelities below 0.99 (𝐹𝑛
(S+)

< 0.99, 𝐹𝑛
(S−)

< 0.99) for any value of the displacement 

amplitude 𝛼. The displacement amplitudes ±𝛼 are used due to symmetry in Supplementary Figs. 

1 and 2. 

     



     As mentioned above, the original SCSs  |𝛽+⟩ and |𝛽−⟩  are exactly orthogonal to each other. 

Then, it is interesting to see to what extent the SCQs  |Ψ𝑛
(𝑆+)

⟩ and |Ψ𝑛
(𝑆−)

⟩  are orthogonal to each 

other. To measure their orthogonality we plot in Supplementary Figure 4 their scalar product  

                                      𝑆𝑃𝑛 = ⟨Ψ𝑛
(𝑆−)

|Ψ𝑛
(𝑆+)

⟩ = 𝑁𝑛
(𝑆+)

𝑁𝑛
(𝑆−) ∑ 𝑎𝑘

(−)∗
𝑎𝑘

(+)𝑛
𝑘=0 ,                             (S15) 

in dependency on the parameters 𝛼 and 𝛽. We can see from this graph that the SCQs under study 

become more and more orthogonal to each other as the number 𝑛 of terms in the superposition is 

increasing. The magnitude of 𝑆𝑃𝑛 is almost completely zero in the entire range of the parameters 𝛼 

and 𝛽 for 𝑛 = 9 which suggests that the even and odd SCQs, |Ψ𝑛
(𝑆+)

⟩ and  |Ψ𝑛
(𝑆−)

⟩ can be regarded 

as orthogonal ones with  𝑛 ≥ 9, for which the fidelities are also close enough to 1, confirming the 

self-consistency of the approximation. 

 

SUPPLEMENTARY NOTE 2: SUCCESS PROBABILITIES FOR SCQs BY SCHEME 

USING TWO-MODE ENTANGLED STATE  

In this note we deal with success probabilities for generation of SCQs by the scheme using the two-

mode entangled state in Eq. (15) of the Main Material.  Namely, we build the maximum values of 

the success probabilities that can be obtained for certain values of the auxiliary parameter 𝛼′ in 

dependence on 𝛼 and 𝛽. Maximal success probabilities 𝑃𝑛0
(𝑆+)

 and 𝑃𝑛1
(𝑆+)

 are shown in 

Supplementary Figures 5 and 6, while quantities 𝑃𝑛0
(𝑆−)

 and 𝑃𝑛1
(𝑆−)

 are displayed in Supplementary 

Figures 7 and 8, respectively. These values also depend on the number of terms in generated 

superposition 𝑛 and on the registered number 𝑘 of photons. The general tendency is that the 

approximation under consideration here is better for a larger 𝑛 but the corresponding maximal 

success probability decreases with increasing 𝑛.  

 

SUPPLEMENTARY NOTE 3: DERIVATION OF FORMULA (34) FOR 𝒎 = 𝟏 AND 𝒎 =
𝟐                                              
First, consider the simplest case with 𝑚 = 1 for which there are two modes: mode 0  and mode 1. 
Let the states incoming to the beam splitter 𝐵𝑆01, which has transmission (reflection) coefficient 

𝑡1 (𝑟1), be  |𝑘0⟩0|𝑘1⟩1 = |𝑘0𝑘1⟩01 with 𝑘0, 𝑘1 ≥ 0 being photon numbers.  The beam splitter acts 

on creation operators like this 
                                                             𝑎0

+ → 𝑡1𝑎0
+ + 𝑟1𝑎1

+,                                                       (S16) 

                                                            𝑎1
+ → −𝑟1

∗𝑎0
+ + 𝑡1

∗𝑎1
+.                                                     (S17) 

By virtue of Eqs. (S16) and (S17), after the beam splitter the input states |𝑘0𝑘1⟩01 is transformed 

to 

                                         𝐵𝑆01|𝑘0𝑘1⟩01 =
1

√𝑘0!𝑘1!
𝐵𝑆01 (𝑎0

+𝑘0𝑎1
+𝑘1) |00⟩01 =   

                                                       
(𝑡1𝑎0

++𝑟1𝑎1
+)

𝑘0(−𝑟1
∗𝑎0

++𝑡1
∗𝑎1

+)
𝑘1

√𝑘0!𝑘1!
|00⟩01.                                       (S18) 

The action of the displacement operator 𝐷1(𝛼1) on mode 1 of the state in Eq. (S18) can be written 

as 

                                                      𝐷1(𝛼1)𝐵𝑆01|𝑘0𝑘1⟩01 =
1

√𝑘0!𝑘1!
  

             𝐷1(𝛼1)(𝑡1𝑎0
+ + 𝑟1𝑎1

+)𝑘0𝐷1
+(𝛼1)𝐷1(𝛼1)(−𝑟1

∗𝑎0
+ + 𝑡1

∗𝑎1
+)𝑘1𝐷1

+(𝛼1)𝐷1(𝛼1)|00⟩01        (S19) 

thanks to the identity 𝐷1
+(𝛼1)𝐷1(𝛼1) = 1. Next, using the properties 𝐷1(𝛼1)𝑎1

+𝐷1
+(𝛼1) = 𝑎1

+ − 𝛼1
∗ 

and 𝐷1(𝛼1)|0⟩1 = |𝛼1⟩1 = 𝑒𝑥𝑝(−|𝛼1|
2 2⁄ )∑

𝛼1
𝑙

√𝑙!

∞
𝑙=0 |𝑙⟩1 we bring Eq. (48) to Eq. (S18) to get  

                           𝐷1(𝛼1)𝐵𝑆01|𝑘0𝑘1⟩01 =
(𝑡1𝑎0

++𝑟1(𝑎1
+−𝛼1

∗))
𝑘0

(−𝑟1
∗𝑎0

++𝑡1
∗(𝑎1

+−𝛼1
∗))

𝑘1

√𝑘0!𝑘1!
|0⟩0   

                                                           × 𝑒𝑥𝑝 (−
|𝛼1|2

2
)∑

𝛼1
𝑙

√𝑙!

∞
𝑙=0 |𝑙⟩1.                                             (S20) 



We are interested in the situation when neither detectors click (i.e., no photons are registered at all 

the detectors). In such situation the post-selected state reads (by formally replacing 𝑎1
+ by zero in 

Eq. (S20)) 

                       |Γ𝑛
(1)

⟩
0

=
1

√𝑃𝑛
(1)

(𝑡1)𝑘0(−𝑟1
∗)𝑘1(𝑎0

+−
𝑟1
𝑡1

𝛼1
∗)

𝑘0
(𝑎0

+−
−𝑡1

∗

𝑟1
∗ 𝛼1

∗)
𝑘1

√𝑘0!𝑘1!
𝑒𝑥𝑝 (−

|𝛼1|2

2
) |0⟩0 = 

                    
1

√𝑃𝑛
(1)

(𝑡1)𝑘0(−𝑟1
∗)𝑘1

√𝑘0!𝑘1!
[𝐷0 (

𝑟1
∗

𝑡1
∗ 𝛼1) 𝑎0

+𝐷0
† (

𝑟1
∗

𝑡1
∗ 𝛼1)]

𝑘0

[𝐷0 (
−𝑡1

𝑟1
𝛼1) 𝑎0

+𝐷0
† (

−𝑡1

𝑟1
𝛼1)]

𝑘1

 

                                                             × 𝑒𝑥𝑝 (−
|𝛼1|2

2
) |0⟩0,                                                         (S21)                                                                                                                            

where 𝑛 = 𝑘0 + 𝑘1  and 

                                          𝑃𝑛
(1)

=
1

𝑘0!𝑘1!
𝑒𝑥𝑝(−|𝛼1|

2)∑ |𝑚𝑘(𝑡1, 𝑟1, 𝛼1)|
2𝑘!𝑛

𝑘=0 ,                            (S22) 

is the success probability. Here, the amplitudes 𝑚𝑘(𝑡1, 𝑟1, 𝛼1) are obtained by expanding the 

expression (𝑡1𝑎0
+ − 𝑟1𝛼1

∗)𝑘0(−𝑟1
∗𝑎0

+ − 𝑡1
∗𝛼1

∗)𝑘1 = ∑ 𝑚𝑘(𝑡1, 𝑟1, 𝛼1)𝑎0
+𝑘𝑛

𝑘=0  in powers of the creation 

operator 𝑎0
+. We do not provide analytical expressions for 𝑚𝑘(𝑡1, 𝑟1, 𝛼1) because of their 

complexity of representation. However, these expressions can be directly obtained in numerical 

simulation. If we define 𝑁𝑛
(1)

 and  𝛽𝑘
(1)

 as in Eqs. (39) and (40) of Main Material, we can rewrite 

|Γ𝑛
(1)

⟩
0
 in the following form  

                                           |Γ𝑛
(1)

⟩
0

= 𝑁𝑛
(1) ∏ 𝐷0(𝛽𝑘

(1)∗)𝑎+𝐷0
†(𝛽

𝑘
(1)∗)𝑛

𝑘=1 |0⟩0,                           (S23) 

which upon action of 𝐷0(𝑖𝛼) on mode 0 yields the output state  |Ω𝑛
(𝑚)

⟩
0
 of Eq. (34) in Main Material 

for 𝑚 = 1. 
     Now, consider the case of 𝑚 = 2 for which there are three modes: the principal mode 0 and two 

auxiliary modes 2 and 3. The input state is  |𝑘0𝑘1𝑘2⟩012, with photon numbers  𝑘0, 𝑘1, 𝑘2 ≥ 0.  Two 

beam splitters with parameters (𝑡1, 𝑟1) and  (𝑡2, 𝑟2) are used to mix modes 0, 1 and modes 0, 2, 

respectively,        

                                  𝐵𝑆01
(1)

𝐵𝑆02
(2)|𝑘0𝑘1𝑘2⟩

012
=

𝐵𝑆02
(2)

𝐵𝑆01
(1)

𝑎0
+𝑘0𝑎1

+𝑘1𝑎2
+𝑘2

√𝑘0!𝑘1!𝑘2!
|000⟩012 = 

                          
(𝑡1(𝑡2𝑎0

++𝑟2𝑎2
+)+𝑟1𝑎1

+)
𝑘0(−𝑟1

∗(𝑡2𝑎0
++𝑟2𝑎2

+)+𝑡1
∗𝑎1

+)
𝑘1(−𝑟2

∗𝑎0
++𝑡2

∗𝑎2
+)

𝑘2

√𝑘0!𝑘1!𝑘2!
|000⟩012.               (S24) 

A subsequent unitary operation is associated with two displacement operators 𝐷1(𝛼1) and 𝐷2(𝛼2) 

that transform the state in Eq. (S24) into  

                                                 𝐷1(𝛼1)𝐷2(𝛼2)𝐵𝑆01
(1)

𝐵𝑆02
(2)|𝑘0𝑘1𝑘2⟩

012
= 

                                =  
1

√𝑘0!𝑘1!𝑘2!
∙ (𝑡1(𝑡2𝑎0

+ + 𝑟2(𝑎2
+ − 𝛼2

∗)) + 𝑟1(𝑎1
+ − 𝛼1

∗))
𝑘0

 

                                           × (−𝑟1
∗(𝑡2𝑎0

+ + 𝑟2(𝑎2
+ − 𝛼2

∗)) + 𝑡1
∗(𝑎1

+ − 𝛼1
∗))

𝑘1

 

                                                 × (−𝑟2
∗𝑎0

+ + 𝑡2
∗(𝑎2

+ − 𝛼2
∗))

𝑘2|0𝛼1𝛼2⟩012.                                (S25) 

If we are again interested in generating the conditional state when no clicks are seen in the auxiliary 

modes (the state in Eq. (S25) is projected onto |00⟩12), then we can formally replace the creation 

operation 𝑎2
+ by zero in formula (S25) to obtain the state 

               |Γ𝑛
(2)

⟩
0

=
1

√𝑃𝑛
(2)

(𝑡1𝑡2)𝑘0(−𝑟1
∗𝑡2)𝑘1(−𝑟2

∗)𝑘2

√𝑘0!𝑘1!𝑘2!
(𝑎0

+ −
𝑡1𝑟2𝛼2

∗+𝑟1𝛼1
∗

𝑡1𝑡2
)
𝑘0

(𝑎0
+ −

𝑟1
∗𝑟2𝛼2

∗−𝑡1
∗𝛼1

∗

𝑟1
∗𝑡2

)
𝑘1

 

                                               × (𝑎0
+ −

−𝑡2
∗𝛼2

∗

𝑟2
∗ )

𝑘2

𝑒𝑥𝑝 (−
|𝛼1|2+|𝛼2|2

2
) |0⟩012 = 

                           
1

√𝑃𝑛
(2)

(𝑡1𝑡2)𝑘0(−𝑟1
∗𝑡2)𝑘1(−𝑟2

∗)𝑘2

√𝑘0!𝑘1!𝑘2!
[𝐷0 (

𝑡1
∗𝑟2

∗𝛼2+𝑟1
∗𝛼1

𝑡1
∗𝑡2

∗ ) 𝑎0
+𝐷0

† (
𝑡1
∗𝑟2

∗𝛼2+𝑟1
∗𝛼1

𝑡1
∗𝑡2

∗ )]
𝑘0

 



                       [𝐷0 (
𝑟1𝑟2

∗𝛼2−𝑡1𝛼1

𝑟1𝑡2
∗ ) 𝑎0

+𝐷0
† (

𝑟1𝑟2
∗𝛼2−𝑡1𝛼1

𝑟1𝑡2
∗ )]

𝑘1

[𝐷0 (−
𝑡2𝛼2

𝑟2
) 𝑎0

+𝐷0
† (−

𝑡2𝛼2

𝑟2
)]

𝑘2

, 

                                                              × 𝑒𝑥𝑝 (−
|𝛼1|2+|𝛼2|2

2
) |0⟩0,                                                    (S26)         

where 𝑛 = 𝑘0 + 𝑘1 + 𝑘2 and  

                     𝑃𝑛
(2)

=
1

𝑘0!𝑘1!𝑘2!
𝑒𝑥𝑝(−(|𝛼1|

2 + |𝛼2|
2))∑ |𝑚𝑘(𝑡1, 𝑟1, 𝑡2, 𝑟2, 𝛼1, 𝛼2)|

2𝑘!𝑛
𝑘=0 ,           (S27) 

being the success probability. Here, the amplitudes 𝑚𝑘(𝑡1, 𝑟1, 𝑡2, 𝑟2, 𝛼1, 𝛼2) follow from the 

decomposition of operator expression (𝑡1(𝑡2𝑎0
+ − 𝑟2𝛼2

∗) − 𝑟1𝛼1
∗)𝑘0(−𝑟1

∗(𝑡2𝑎0
+ − 𝑟2𝛼2

∗) −
𝑡1
∗𝛼1

∗)𝑘1(−𝑟2
∗𝑎0

+ − 𝑡2
∗𝛼2

∗)𝑘2 = ∑ 𝑚𝑘(𝑡1, 𝑟1, 𝛼1)𝑎0
+𝑘𝑛

𝑘=0   and are not presented due to their 

complexity. If we define 𝑁𝑛
(2)

 and  𝛽𝑘
(2)

 as in Eqs. (39) and (40) of Main Material, then we can cast 

|Γ𝑛
(2)

⟩
0
 into the following form                                                                                                                                                    

                                           |Γ𝑛
(2)

⟩
0

= 𝑁𝑛
(2) ∏ 𝐷0(𝛽𝑘

(2)∗
)𝑎0

+𝐷0
†(𝛽𝑘

(2)∗
)𝑛

𝑘=1 |0⟩0,                            (S28) 

which, upon the action of 𝐷0(𝑖𝛼) on the principal mode 0, is nothing else but the output state  

|Ω𝑛
(𝑚)

⟩
0
 of Eq. (34) of Main Material for 𝑚 = 2.  

     Likewise, the formula (34) of Main Material can be derived analytically for any 𝑚 > 2. 

However, the formulation gets more cumbersome and thus will not be presented explicitly. 
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Supplementary Figure 1.  Fidelity 𝐹𝑛
(S+)

 between even SCS, Eq. (1) of Main Material, and its 

truncated version, Eq. (10) of Main Material, in dependency on its size 𝛽 and displacement 

amplitude 𝛼 of the base elements. From top to bottom and from left to right, the SCS dimension 

grows from 𝑛 = 2 up to 𝑛 = 9.   

 

 



 
 

Supplementary Figure 2. Fidelity 𝐹𝑛
(S−)

 between even SCS,  Eq. (2) of Main Material, and its 

truncated version, Eq. (11) of Main Material, in dependency on its size 𝛽 and displacement 

amplitude 𝛼 of the base elements. From top to bottom and from left to right, the SCS dimension 

grows from 𝑛 = 2 up to 𝑛 = 9. 

 



 
 

 

Supplementary Figure 3. Maximal fidelities 𝐹𝑛,𝑚𝑎𝑥
(S+)

 (top-left) and 𝐹𝑛,𝑚𝑎𝑥
(S−)

 (top-right) between 

SCSs, Eqs.  (1, 2) of Main Material, and SCQs, Eqs.  (10, 11) of Main Material, against its size 𝛽. 

The displacement amplitude 𝛼𝑛,𝑚𝑎𝑥
(+)

 (bottom-left) and 𝛼𝑛,𝑚𝑎𝑥
(−)

 (bottom-right) of the base elements 

under which the maximal fidelities are observed are shown in dependency on 𝛽.  

 

 

 

 



 
 

 

Supplementary Figure 4. Absolute value of scalar product 𝑆𝑃𝑛, Eq. (S15), between even and odd 

truncated versions of SCQs, Eqs. (10, 11) of Main Material, in dependency on size 𝛽 and 

displacement amplitude 𝛼 of the base elements. From top to bottom and from left to right, the scalar 

product |𝑆𝑃𝑛| becomes smaller approaching to zero when 𝑛 grows from 𝑛 = 2 up to 𝑛 = 9. 

 

 

 

 

 

 

 



 
  

Supplementary Figure 5. Three-dimensional plots of maximal success probabilities 𝑃𝑛0
(𝑆+)

 to 

generate SCQs, Eqs. (10, 11) of Main Material, in dependency on its size 𝛽 and displacement 

amplitude 𝛼. From top to bottom and from left to right, the SCS dimension grows from 𝑛 = 2 up 

to 𝑛 = 9. 

 



 

Supplementary Figure 6. Three-dimensional plots of maximal success probabilities 𝑃𝑛1
(𝑆+)

 to 

generate SCQs, Eqs. (10, 11) of Main Material, in dependency on its size 𝛽 and displacement 

amplitude 𝛼. From top to bottom and from left to right, the SCS dimension grows from 𝑛 = 2 up 

to 𝑛 = 9. 

 



 

Supplementary Figure 7. Three-dimensional plots of maximal success probabilities 𝑃𝑛0
(𝑆−)

 to 

generate SCQs, Eqs. (10,11) of Main Material, in dependency on its size 𝛽 and displacement 

amplitude 𝛼. From top to bottom and from left to right, the SCS dimension grows from 𝑛 = 2 up 

to 𝑛 = 9. 



 

Supplementary Figure 8. Three-dimensional plots of maximal success probabilities 𝑃𝑛1
(𝑆−)

 to 

generate SCQs, Eqs. (10,11) of Main Material, in dependency on its size 𝛽 and displacement 

amplitude 𝛼. From top to bottom and from left to right, the SCS dimension grows from 𝑛 = 2 up 

to 𝑛 = 9. 

 


