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A B S T R A C T

Four different spin structures of two electrons and of two holes situated on the lowest Landau levels (LLLs) are
taken into account to investigate possible bound states of the two-dimensional magnetic biexciton formed of two
magnetoexcitons with opposite wave vectors and antiparallel dipole moments. The singlet and triplet states of
the spins of two electrons and of two holes separately, as well as of two para- and two ortho-magnetoexcitons are
considered. The general expressions describing the binding energy of the bound states and the normalization
conditions characterized by the effective spin parameter = ± ±1, 1/2 for the corresponding wave functions are
derived. The most favorable of the four considered spin configurations happened to be the triplet-triplet spin
structure of two electrons and of two holes. In its frame a metastable bound state with activation barrier
comparable with two ionization potentials of the magnetoexciton is revealed.

1. Introduction

Excitons and biexcitons in a strong magnetic field have been studied
in Refs. [1–4] using similarity of hydrogen atoms and hydrogen mole-
cule with excitons and biexcitons [5,6]. Assuming nuclei (holes) to be
sufficiently heavy to neglect their Landau quantization states, it was
shown [3,4] that in a strong magnetic field transition to the triplet
metastable state u

3 can explain the alternative excitonic bound state,
which was revealed in the form of “X-line” in the optical spectra in
experimental studies of the stressed Ge crystal in a strong magnetic field
[7]. According to Refs. [8,9] the Coulomb exchange electron-hole in-
teraction can lead to the formation of the para and ortho excitonic
states, which influence the binding energy of the biexciton. It is ex-
pected that the triplet-triplet spin states of two-dimensional magnetic
excitons can also form a metastable bound state of the magnetic biex-
citon similar to that proposed in Refs. [3,4]. Like it was found for a
hydrogen molecule [3,4], one can also expect that in a strong magnetic
field the binding energy of a biexciton can be quite large if the electron
in one of the excitons occupies the excited Landau level.

For 2D magnetoexcitons only the spinless magnetoexciton-magne-
toexciton interaction was considered and until recently the influence of
spin configurations was not taken into account. Already in the papers
[10–12] it was established that the magnetoexciton formed of electrons
and holes lying on the lowest Landau levels (LLLs), being bound in the

states with in-plane wave vectors =k 0|| , form an ideal, noninteracting
gas. 2D electrons and holes moving with the resultant wave vector

=k 0|| on the layer surface in the perpendicular magnetic field are
subjected to the Landau quantization with the same gyration points for
the Landau gauge description. They have the quantum orbits with the
same radii, which do not depend on the electron and hole masses, but
only on the magnetic length. The bound states of such e-h pairs with
wave vector =k 0|| , being bound by the direct Coulomb interaction look
as the completely neutral compound particles. Therefore, magne-
toexcitons with =k 0|| cannot form a bound state. Only two magne-
toexcitons with opposite nonzero wave vectors k and k can form
bound states with the resultant wave vector equal to zero. This possi-
bility is investigated in the present paper.

In Ref. [13] it was shown that the interaction between two mag-
netoexcitons with wave vectors =k 0|| can appear taking into account
the influence of the excited Landau levels (ELLs) as well as the Rashba
spin-orbit coupling (RSOC) generated by the perpendicular external
electric field parallel to the magnetic field. Note, that all interactions
and bound states investigated in the present paper have nothing to do
with these supplementary influences and are based on the direct Cou-
lomb interaction of electrons and holes with arbitrary masses situated
on their LLLs. In the present paper we consider only the direct Coulomb
electron-hole interaction accompanied by the successive kinematic
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exchange between two electrons or between two holes. We will assume
that the influence of the Lorentz force and of the external magnetic field
is much stronger than the Coulomb electron-hole interaction. The
Lorentz force in its turn gives rise to the Landau quantization of each
particle, and to a localized electron cloud. . The Landau quantization
state is characterized by the cyclotron energy, by the radius of the orbit
depending on the magnetic length only, as well as by the position of this
orbit in the space. The gyration point for each orbit is determined by
the wave vector of each particle. By this reason the position of mag-
netoexcitons depend on its resulting wave vector k with the vector d
between two electron clouds, which is perpendicular to the wave vector
k and its value is proportional to k| |. Since the Coulomb interaction,
which is responsible for the formation of the magnetoexciton, depends
on the distance d, it depends on k, which means a strong dependence
between the center of mass motion and the relative motion. This is a
specific property of magnetoexcitons, unlike the Wannier-Mott ex-
citons. The magnetoexciton can be viewed as electrical dipole with
center of mass motion k and the arm of the electric dipole d. If two
centers of quantization are overlapping and have coinciding gyration
points (the radii of these orbits do not depend on the mass), then they
are exactly the same for the electron and for the hole and two over-
lapping clouds form a completely neutral particle. This property is
known as a “hidden symmetry”. The interaction between two such
magnetoexcitons with k=0 equals exactly to zero.

Considerable progress has been achieved [12,14,15] in under-
standing the nature of the many-body ground state of interacting
electrons and holes under the conditions of the fractional quantum Hall
effect (FQHE) and integer quantum Hall effect (IQHE). In particular,
Paquet et al. [12] have considered possibility of the Bose condensation
of magnetoexcitons for the conditions of filling factors in the range
0< ν < 1, whereas the two-dimensional electron-hole fluid in the
FQHE regime was discussed by the authors of Ref. [14]. The theory of
magnetoexcitons under the condition of breaking charge symmetry was
proposed by Apalkov and Rashba [15].

In the present paper we describe a coplanar system of two electrons
and two holes in a strong perpendicular magnetic field, when the notion
of filling factor is not suitable. We consider the possibility of two
magnetoexcitons to form the bound state of the molecular type — the
magnetic biexciton. Because the wave vectors and the distances be-
tween two magnetoexcitons are interconnected due to the Heisenberg's
uncertainty relation, there are large distances with small wave vectors
and with small dipole moments, as well as small distances with large
dipole moments. Since in the molecule these two dipoles are changing
their arms and the distances between each other, they cannot be con-
sidered as two rigid dipoles.

Spin waves in the IQHE regime were studied in Ref. [16], where the
authors mentioned similarity between magnetoexcitons and the spin
waves. Spin waves appear under the conditions of completely filled
LLLs, whereas the magnetoexcitons are described under the conditions
of nearly empty Landau levels. Using numerical diagonalization
method, it was shown [16], that two spin waves moving in-plane in
opposite directions with antiparallel electric dipoles repulse each other,
but moving in the same direction with parallel dipole moments do at-
tract each other.

A localized wave function is necessary to describe a bound state. For
this purpose the wave function of relative motion is selected to obtain
the minimum energy of the Coulomb interaction in the frame of four
localized particles forming the molecule. It was found that this can be
achieved [22] when the relative motion function has a maximum on the
ring in the momentum space and a minimum in the center. Such ap-
proach was not discussed in Ref. [16]. In the present paper we show
that a new quasi-bimagnetoexciton state is possible, which is formed by
two magnetoexcitons moving in opposite directions inside the bound
state changing continuously the antiparallel arms and the distances
between the dipoles.

Interesting candidates to study the properties of two-dimensional
spatially indirect excitons in a strong magnetic field are the graphene
layers and superlattices with alternating electron and hole layers con-
sisting of semiconducting quantum wells (QWs) [17–21]. The authors
of [17,18] have shown that the Bose-Einstein condensation of magne-
toexcitons in such multilayered systems happened to be unstable and
the formation of the biexcitons was taken into account. Assuming a
repulsive interaction of the magnetobiexcitons it was shown [17,18]
that their BEC is possible but takes place at zero temperature. Instead of
it at T≠0 the Berezinskii-Kosterlitz-Thouless phase transition and the
superfluidity are possible. The problem considered in Refs. [17,18] was
the influence of a strong perpendicular magnetic field on the spatially
indirect Wannier-Mott excitons in the superlattices with alternating
electron and hole layers. Such structures are characterized by the dipole
moments of the indirect magnetoexcitons having opposite directions
and perpendicular to the layers. On the contrary, in the present paper
we consider coplanar magnetoexcitons for which the Lorentz force
plays a decisive role. They do not have interlayer dipole moments and
acquire only the in-plane dipole moments perpendicular to their in-
plane wave vectors. It is naturally to denote the possible bound states of
the coplanar magnetoexcitons as “bimagnetoexcitons”. The term
“magnetobiexcitons” used in Refs. [17,18] is more appropriate to the
Wannier-Mott excitons in heterostructures under the influence of the
external magnetic field.

We show that the most interesting spin configurations appear when
the spins of two electrons and the effective spins of two holes form the
singlet or triplet configurations separately. The spin structure of four
particles can be obtained combining the singlet structure for electrons
and the singlet structure for holes, as well as the triplet structure for
electrons and the triplet structure for holes. The mixed spin structures
are forbidden due to the hidden symmetry. Another possibility is to
combine relatively to each other the spin of electron and of the hole
inside each magnetoexciton. In this case they can form para-exciton or
ortho-exciton from one side, and para or ortho exciton from another
side, which interact either as two para-magnetoexcitons, or two ortho-
magnetoexcitons forming a molecule state.

The possibility of two magnetoexcitons to form a bound state is
examined using the Feynman diagrams for the interactions between
particles. For a “stationary” case, when all particles exist before and
after the Coulomb scattering, the Feynman diagrams consist of four
lines: two solid lines representing the behavior of electrons and two
dashed lines representing evolution of two holes in the frame of bound
states. All matrix elements containing the Coulomb interaction integrals
are calculated in the exact analytical form. The total energy of Coulomb
interacting particles depends on the parameter of the variational
wave function and shows the existence of the metastable state with a
sufficiently high energy barrier of approximately two ionization po-
tentials of free magnetoexcitons. The mean distance between magne-
toexcitons in the bound state is R l ,0 where l0 is the magnetic
length. The calculations with more cumbersome wave function corre-
sponding to the bound state with resulting spin =S 0 formed by two
ortho-magnetoexcitons, as well as by two para-magnetoexcitons con-
firmed results obtained earlier in Refs. [22,23]. They allow to better
understand the uniqueness of previously studied triplet-triplet spin
configuration and its importance for similar biexciton spin structures in
the absence of the magnetic field.

The paper is organized as follows. In Section 2 the Hamiltonian of
2D electrons with spins and heavy holes with effective spins situated on
their LLLs and interacting through the Coulomb interactions is in-
troduced. The analytical and numerical solutions are presented in
Section 3. The obtained results are analyzed in Section 4. We concluded
in Section 5.
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2. The Hamiltonian of the electron-hole system and the wave
functions of the 2D quasi-bimagnetoexcitons

The description of 2D electrons and holes is considered in the
Landau gauge, in which the charged particles have a free motion in one
in-plane direction described by the plane waves with one-dimensional
wave numbers p and q and undergo the quantized oscillations around
the gyration points in the perpendicular direction. The quantum num-
bers = =n n 0e h of the Landau quantized levels for electrons and holes
will be omitted below. The creation and annihilation operators for
electrons and for holes are denoted as a a,p p,

†
, and b b,q q,

†
, , corre-

spondingly. These operators have a supplementary spin label = ±1/2,
which describes the spin projections of the conduction electrons and of
the effective spin of the heavy holes.

We consider the Hamiltonian describing the Coulomb interaction of
the 2D electrons and holes situated on their LLLs. For simplicity, we will
neglect the electron-hole exchange interaction leading to the splitting of
the ortho and para magnetoexciton energy levels. Nevertheless the spin
structure of the para and ortho magnetoexcitons will be taken into
account, but without the RSOC. Then the Hamiltonian can be written in
the form
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where 0 is the dielectric constant, is the layer surface area. Qˆ ( )e and
Qˆ ( )h are the electron and hole plasmon operators correspondingly.
The Hamiltonian (1) can be transcribed in the way
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The interaction coefficients depend only on the difference (p q)
for the electron-electron (e e) and the hole-hole (h h) interactions,
and on the sum ( +p q) for the electron-hole (e h) interactions. The
magnetoexciton creation operator introduced in Ref. [12] but with spin
labels [23,24] is

= = =
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Here k k k( , )x y is the vector of the center of mass in-plane motion, t
is the unidimensional vector of the relative e h motion with the
function of the relative motion eik tly 0

2 in the momentum representation,
which leads to the y k l( )y 0

2 function of the relative motion in the real
space representation. N is the degree of the degeneracy of the Landau
quantization levels, which is proportional to S. B is the magnetic field
strength, and = ±, 1/2e h are the spin quantum numbers.

The wave function of the magnetoexciton is

= = =k k a b, , ˆ , , 0 ; 0 0 0,ex e h ex e h t t
†

, ,
(4)

where 0 is the ground state of the system. The 2D magnetoexciton with
wave vector k 0 has the form of an electric dipole with the arm

=d kl0
2 oriented perpendicularly to the wave vector k . As it was shown

in Refs. [10–12] two magnetoexcitons with wave vectors =k 0 are

similar to the neutral compound of particles, have no the dipole mo-
ments and do not interact through the Coulomb forces. On the contrary,
two magnetoexcitons with nonzero wave vectors k1 and k2 do interact
opening the possibility to form bimagnetoexcitons. The wave function

of two magnetoexcitons with quantum numbers k , ,e h,1 ,1 and

k , ,e h,2 ,2 can be written as

=
+ +
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The wave function of the quasi-bimagnetoexciton with wave vector
=k 0as a bound state of two magnetoexcitons with wave vectors k

and k and spin quantum numbers , , ,e h e h,1 ,1 ,2 ,2 can be con-
structed as a superposition of the wave functions (5) introducing the

wave function kn of the relative motion, which can play the role of

the variational function determining the minimal energy of the bi-

magnetoexciton, as well as the density k| |n
2 of the magnetoexcitons

taking part in the formation of the bound state. In Refs. [8,9] it was
shown that the spin configurations of the bound states depend essen-
tially on the ratio between the ortho-para exciton splitting and the
binding energy of the biexciton. In a strong magnetic field these values
are unknown for the magnetoexciton formation and one of the purpose
is to determine one of them.

We will consider four different spin structures of the bound states.
First of all we will construct the symmetric and antisymmetric super-
positions of two electron spin states and two hole effective spin states in
the form
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In more general case we can take four different combinations of the
bound states of the type

=

×
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Their normalization integrals are
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where is the variational parameter. One can see that in the case
=e h the normalization integrals vanish and remain the unique

possibilities: = = = ±1.e h
Below we will suppose that both pairs of spins ( , )e e,1 ,2 and

( , )h h,1 ,2 are simultaneously in the states with the same
= = = ±1.e h The bimagnetoexciton wave functions in these con-

ditions are
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Due to the hidden symmetry in the system related with the same
radii of the Landau quantization orbits for electrons and for holes,
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which depend only on the magnetic length l0 and do not depend on the
effective masses me and m ,h their normalization integrals are

= L(0, , ) (0, , ) 2(1 ( )).bimex n bimex n n (10)

Side by side with correlation of spins in the frame of two electrons
and of two holes one can consider the correlations of spins in the frame
of each electron-hole pair forming the magnetoexciton.

The wave function of the para magnetoexciton looks as
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It corresponds to the resultant spin of the e-h pair =S 0 with the
projection =S 0.z

There are three wave functions k S S, ,ex or z, of the ortho mag-

netoexciton with resultant spin =S 1 and its projections = ±S 0, 1z
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The molecular states formed by two bound para magnetoexcitons
can be described by the functions
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They are characterized by the resultant spin () of four bound par-
ticles equal to zero ( =S 0). Their normalization integrals are

= L(0, ) (0, ) 2 ( ).bimex
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Following [8,9,25,26] two ortho magnetoexcitons forming the
bound states with the resultant spin =S 0 may be constructed in the
form of the invariant including all three wave functions of both ortho-
magnetoexcitons in the form
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Their normalization integrals are
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Taking into account the expressions for normalization integrals
(10), (14) and (16), the bound states for four spin structures can be
written in the universal form
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All of them have the expression
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The chosen variational wave functions of the relative motion in the

momentum and in the real space representations kn and r( )n ,

their normalization conditions and the main parameters are
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where J z( )0 is the Bessel function of the zeroth order.
The selected trial wave functions depend only on the modulus

=k k| |. x( )0 has the maximum at the point =x 0, the mean value
=x 1/(2 )2 , the radius of the quantum state r( )0 equals to =a l2 .0

The function k2 has the maximum on the 2D ring with the radius

=k l1/( ).r 0 In the real space the function r( )2 has the maximum at
the point =r 0,0 the positive values up till the point =r a,1 where it
changes sign and achieves the minimum at the point =r l 8 .2 0 Its
absolute value at the minimum is much smaller than it is in the max-
imum.

Calculating the overlapping integrals L ( )n , we obtain
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Fig. 1 shows the normalization integrals L(1 ( ))n . As one can
see the factor L(1 ( ))0 vanishes at the point = 1/2, which leads to
a singularity of the inverse function. The inverse normalization integral

L(1 ( ))2
1 is regular at any values of .

It should be mentioned that the case = = = ±1e h is the only
possibility, because in the opposite case =e h the wave function of
the type (9) and its normalization integrals vanish.

3. Binding energies of the lowest states of 2D bimagnetoexcitons

The expectation values of the Hamiltonian (2) averaged with the
wave function (9) characterized by the wave vector =k 0, values of

= ± ±1, 1/2, and by the trial wave functions kn equal to

=E
H

(0, , )
(0, , ) (0, , )

(0, , ) (0, , )
.bimex n

bimex n Coul
LLL

bimex n

bimex n bimex n (21)

Fig. 2 shows the Feynman diagrams describing the direct Coulomb
interactions between electrons and holes accompanied with successive
kinematic exchanges of homogeneous particles.

Here we deal with the Feynman diagrams with participation of two
pairs, rather than with one pair. Since two pairs of the particles take
part in the Coulomb interaction, alongside with the direct interaction,
the exchange interaction can take place. Therefore there can exist not
only Coulomb direct dynamical interaction of two particles, but
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subsequently it can be accompanied by kinematic exchange interaction
of two homogeneous particles. There is the Coulomb direct interaction
between electrons and electrons, between holes and holes, and between
electrons and holes accompanied by the exchange interaction of
homogeneous particles — either by two electrons, or by two holes. The
case of zero intersections in the diagrams and one intersection for
electrons is shown in Fig. 2a and b, correspondingly. The case of double
intersections with holes participation is also possible and will be con-
sidered below. The intrinsic exchange electron-hole interaction in the
frame of one e-h pair is not taken into account. This means that after the
Coulomb scattering process the electron is transformed into the hole
and the hole into the electron. In these conditions the Coulomb charge-
charge interaction is transformed into the dipole-dipole interaction,
which is much smaller than the exciton binding energy.

The terms described by these diagrams as well as the similar one
describing the electron-electron and the hole-hole Coulomb interactions
are gathered in two groups introducing the spin structure index as it is
shown in the scheme below

= +

=

H

L

(0, , )| | (0, , )
Feynman diagrams
without or with two
intersections

Feynman diagrams
with one
intersection

,

(0, )| (0, ) 2(1 ( ))

bimex n Coul
LLL bimex n

bimex bimex n

(22)

with = 1 describing the triplet-triplet spin structures of 2e+2h,
= 1 for singlet-singlet spin structures of 2e+2h; = 1/2, 1/2for

ortho-ortho and para-para magnetoexcitons, correspondingly. In this

way four different spin structures of the molecule turn out to be suc-
cessfully represented in a unified manner (22). Unlike our previous
work [22], here we consider four instead of two spin structures.

The average values of the partial Hamiltonians He e
LLL and Hh h

LLL cal-
culated with the functions (9) can be expressed by

=

=

+ +

H H

W Q Q e

W Q k

il Q k Q k Q Q k k

(0, , )| | (0, , ) (0, , )| | (0, , )

( ) ( ) ( )

( ) ( ) ( )exp

{ [( ) ( ) ( )]}.

bimex n e e
LLL

bimex n bimex n h h
LLL

bimex n

N Q n n
i xQy yQx l

N Q k n n

x y y x x y y x x y y x

2 ( ) 0
2

2
2

0
2

(23)

Using the polar coordinates we can write

= = = =

= = = =
= = = =

= = =
= = =

= = =

k k k k k l z kl z

Q Q Q Q Q l y Ql y
l x l x

Q k Q k l Qkl yz z t
Q Q l Q l xy z t

k k l k l xz z t

( , ) (cos , sin ); , ;

( , ) (cos , sin ); ; ;
( , ) (cos , sin ); ; ;

( ) (sin cos cos sin ) sin( ) sin ;
( ) (sin cos cos sin ) sin( ) sin ;
( ) (sin cos cos sin ) sin( ) sin ,

x y

x y

x y

x y y x

x y y x

x y y x

0 0

0 0

0 0

0
2

0
2

1 1

0
2

0
2

2 2

0
2

0
2

3 3

(24)

where we introduced denotations

= = = = = =t t t z yz z xy z xz; ; ; ; ; .1 2 3 1 2 3 (25)

In the polar coordinates the expression (23) becomes

=

+ + =

H W Q Q e

W Q k iz t iz t iz t j e h

(0, , )| | (0, , ) ( ) ( ) ( )

( ) ( ) ( )exp( sin sin sin ), , .

bimex n j j
LLL bimex n N Q n n

iz t

N Q k n n

2 2 sin 2

2
2 1 1 2 2 3 3

(26)

In the same denotations the average e-h Hamiltonian is

=

+

+ +

H W Q Q

W Q z t

W Q k z t z t z t z t

(0, , )| | (0, , ) ( ) ( ) ( )

( ) | ( )| cos( sin )

( ) ( ) ( )[cos( sin )cos( sin ) cos( sin )cos( sin )].

bimex n e h
LLL bimex n N Q n n

N Q n

N Q k n n

4

4 2 2 2

4
2 2 2 3 3 1 1 3 3

(27)

The average value of the full Coulomb interaction Hamiltonian (2)
can be expressed as

Fig. 1. The normalization integrals with =n 0, 2 in dependence of the parameter in the cases: a) = 1 and b) = 1.

Fig. 2. The Feynman diagrams describing the direct Coulomb electron-hole
interaction in the frame of the metastable bound state of two magnetoexcitons:
a) with an intersection, and b) accompanied by the successive kinematic ex-
change between two electrons [25–27].
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= ×

× ×

× + ×

× +
+ +

H W Q

Q e W Q

z t W Q k

z t z t z t z t
iz t iz t iz t

(0, , ) (0, , ) ( ) ( )

( )( 1) ( ) ( )

cos( sin ) ( ) ( )

[cos( sin )cos( sin ) cos( sin )cos( sin )
exp( sin sin sin )].

bimex n Coul
LLL

bimex n N Q n

n
iz t

N Q n

N Q k n n

4

sin 4 2

2 2
4

2 2 3 3 1 1 3 3

1 1 2 2 3 3

2 2

2

(28)

To obtain Eq. (28) we used well known formulas [28,29].

= + +

= +

= +

=

=

=

e J z J z kt iJ z k t

z t J z J z kt

e I z I z kt

( ) 2 [ ( )cos(2 ) ( )sin(2 1) ];

cos( sin ) ( ) 2 ( )cos(2 );

( ) 2 ( )cos ,

iz t
k k k

k k

z t
k k

sin
0 1 2 2 1

0 1 2

cos
0 1

(29)

where J z( ) and I z( ) are the Bessel functions. Taking into account that

the functions W Q( ), ( )n and kn depend only on the moduli Q| |,

| | and k| |, we obtain after integration over the angles , and

=

+

= =

= =

= +

=

=

=

d d d e e e J z J z J

z J z J z J z

d d d z t z t J z J z i

d d d z t J z i

d d e e J xy I xy J xy I xy

d d e I xy

( ) ( )

( ) 2 ( ) ( ) ( );

cos( sin )cos( sin ) ( ) ( ), 1,2;

cos( sin ) ( ), 1,2,3;

( ) (2 ) 2 ( ) (2 );

(2 ).

iz t iz t iz t

k k k k

i i i

i i i

xy ixy
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1
2

0

2 1
2

0

2 1
2

0

2
1 sin 1 2 sin 2 3 sin 3 0 1 0 2 0

3 1 2 1 2 2 2 3

1
2

0

2 1
2

0

2 1
2

0

2
3 3 0 0 3

1
2

0

2 1
2

0

2 1
2

0

2
0

1
2

0

2 1
2

0

2
2 cos( ) sin( ) 0 0 1 2 2

1
2

0

2 1
2

0

2
2 cos( ) 0 (30)

The angle integration excluding the trial function x y( )n leads
to the expression

= ×

× + ×

× + ×

× +

=

( )
( )

( )

H dye

xdx x J xy dye xdx x d

d x y e dye

xdx x zdz z J x y J x z J x z J y z

J x y J x z J y z J x y J x z J y z

(0, , ) (0, , ) 4

( ) ( ) 4 ( )

( )( 1) 4

( ) ( )( ( ) ( ) ( ) ( )

( ) ( ) ( ) 2 ( ) ( ) ( )),

bimex n Coul
LLL

bimex n
e

l

n
e

l n

n
ix y e

l

n n

k k k k

0

0

2
0

0 0

1
2

0

2

1
2

0

2
sin( )

0

0 0
0 0 0 0

0 0 0 1 2 2 2

y

y

y

2

0 0

2
2

2

0 0

2
2

2

0 0

2
2

(31)

where. = +x y x y xy2 cos( ) .2 2

The calculations of integrals in Eqs. (31) and (21) for the particular

cases of variational wave functions x( )2 and x( )0 in the analytical
form are presented in the Appendix.

4. The electron structure of the 2D quasi-bimagnetoexciton

As it was shown previously [10–12] the interaction of two 2D
magnetoexcitons with wave vectors =k 0, composed of the electrons
and holes lying on the LLLs vanishes because they look as two neutral
compound particles. The interactions between them can appear under
the influence of the ELLs as well as of the RSOC [13]. In the absence of
these factors only two magnetoexcitons with the wave vectors k 0
can interact through the Coulomb forces and can form a quasi-mole-
cular state. The molecule composed of two magnetoexcitons with an-
tiparallel wave vectors k and k has the structure of two antiparallel
dipoles bound together and oriented with equal probability in any di-
rection of the layer plane. Such possibility is achieved introducing the
trial wave function of the relative motion of two magnetoexcitons in the

frame of the molecule k ,n which depends on the modulus. k.

Figs. 3 and 4 show the total energies of two bound 2D magne-
toexcitons in units I2 l for the variational wave functions x( )2 and x( )0 ,
correspondingly. Such presentation facilitates the comparison of the
obtained results with the energy of two free magnetoexcitons with wave
vectors. =k 0.

The numerical calculations made for the function

=k kl e(8 ) ( ) kl
2

3 1/2
0

2 ( )0 2 allow to obtain the full energies of the

bound states in dependence on the parameter of the trial wave
function in four cases with = ± ±1, 1/2 corresponding to two elec-
trons and holes spin structures. In four spin configurations the full en-
ergies of the bound states are greater than I2 l for all values of . All
these states are unstable as regards the dissociation in two free mag-
netoexcitons with =k 0. In spite of this, a deep metastable bound state
with the activation barrier comparable with two magnetoexciton ioni-
zation potentials I2 l in the case = 1 and = 0.5 is revealed. In the
opposite case = 1 and = 3.4 only a shallow metastable bound state
is observed. As one can see from Fig. 4, all bound states obtained with
the trial functions x( )0 are unstable.

Recall that in for the hydrogen molecule [31] the two-electron wave
function written as a product of the orbital wave function depending on
the electrons space coordinates and the spinor-type wave function de-
pending on their spin coordinates can be either combination of the
symmetric orbital wave function multiplied by the antisymmetric
spinor function gives corresponding to the singlet +

g
1 strongly bound

molecular state, which is the ground state of H2 molecule. In the anti-
symmetric +

u
3 case the energy between atoms decreases monotonically

as the distance between the nuclei increases, corresponding to the

Fig. 3. Total energies of the bound states of two 2D magnetoexcitons with wave vectors k and k , with different spin structures = ± ±1, 1/2 and with the
variational wave function k( ),2 in dependence on the parameter : a) = 1, 1/2; b) = 1, 1/2. The total energies are normalized to the value I2 ,l where Il is the
ionization potential of a free magnetoexciton with wave vector =k 0. The energy of two free magnetoexcitons with =k 0 is represented by the (dotted) line.
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mutual repulsion of the two atoms. The situation becomes completely
different in the case of hydrogen atoms in a strong magnetic field, when
the triplet term becomes a ground state with possibility of a deep po-
tential well in interatomic interaction [3,4]. Comparing the obtained
results for four spin configurations we can notice that neither ortho-
ortho configuration or para-para configuration proved to be less fa-
vorable for the formation of the metastable bound state.

The metastable bound state with a lifetime of about few picose-
conds, and possibility of a new luminescence band due to the radiative
recombination of one electron-hole pair and the conversion of the
metastable bound state into the para-magnetoexciton and the emission
of the photon was predicted in Refs. [22,23]. The new luminescence
band should be at the higher energy side compared to the para-mag-
netoexciton luminescence line.

5. Discussion and conclusions

Bound states of two magnetoexcitons with opposite wave vectors k
and k were investigated in the lowest Landau levels approximation,
neglecting by the influence of the excited Landau levels. The electrons
and the heavy holes are situated on the LLLs with the cyclotron energies
greater than the binding energy of the 2D Wannier-Mott exciton. The
spin states of two electrons and the effective spins of two heavy holes
were combined to form states characterized by the parameter with
four different values = ± ±1, 1/2 corresponding to four different spin
structures: triplet-triplet, singlet-singlet, ortho-ortho and para-para.
Each magnetoexciton with wave vector k 0 looks as an electric di-
pole with the length of the arm between the electron and the hole equal
to =d kl .0

2 The arm is oriented in-plane perpendicular to the wave
vector k . The bound state is formed by two quickly changing dipoles
with antiparallel arms and with total wave vector equal to zero. The
bound pair of two dipoles is oriented arbitrary in the plane of the layer
and characterized by the trial wave function of the relative motion

kn , which depends only on the modulus k| |. The numerical calcu-

lations used the trial wave function =k kl e( ) (8 ) ( ) kl
2

3 1/2
0

2 ( )0 2 and
show the absence of stable molecular bound states in all four spin or-
ientations = ± ±1, 1/2. Only metastable bound states were revealed.
One of them is a deep bound state for = 1 and = 0.5 characterized
by the activation barrier comparable with two magnetoexciton

ionization potentials I2 .l For = 1 and = 3.4 only a shallow me-
tastable bound state can be formed.

The wave function k( )0 is characterized by the maximum of ex-
citon density in the point =k 0, where the interaction of excitons is
zero, and has small probability to find excitons in the range , where
their interaction is different from zero. Due to such contradictory fac-
tors the resulting Coulomb interaction is very small as compared to the
case, when the wave function has maximum on the ring in the mo-
mentum space. This fact is consistent with the influence of the hidden
symmetry [10,15].

The variants with para-para and ortho-ortho magnetexcitons have
no considerable energy barriers and cannot form metastable bound
states, as in the case of triplet-triplet spin combination.

Let us compare the bimagnetoexciton with the hydrogen molecule.
In the case of the magnetoexcitons the bound quasi-molecular states are
formed by four components of two electrons and two holes. Our singlet-
singlet spin structure of two electrons and of two holes in the biexciton
corresponds to the singlet structure of two electrons in the hydrogen
molecule, whereas the triplet-triplet spin structure corresponds to the
triplet structure in the hydrogen molecule. In our case the energy
branch of the Coulomb interaction corresponding to the singlet-singlet
spin structure with = 1 is lower than the energy branch corre-
sponding to the triplet-triplet spin structure with = 1. In the hydrogen
molecule the singlet structure is also situated lower on the energy scale
than the triplet structure. There is a close similarity between two mo-
lecules. In spite of it, in the bimagnetoexciton case in the LLLs ap-
proximation only one deep metastable bound state was revealed in the
triplet-triplet spin structure with the trial wave function x( )2 and

= 0.5. In this case the quasi-stable bound state does exist and the
formation of the quasi-bimagnetoexciton takes place, however, its en-
ergy is higher than of two free magnetoexcitons. The existence of the
metastable bound state, as well as the absence of the stable bound state
in the structure of the 2D bimagnetoexciton are the manifestation of the
hidden symmetry in the system. It is reflected especially in the calcu-
lations of the encountered normalization integrals.
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Appendix

To calculate integrals (31) we consider first the trial wave function x( )2 in the form

= = ×

× + +

+

=

x y x y e e

x y xy I xy I xy k

( ) (8 ) (8 )

2 [ (2 ) 2 (2 )cos( ( ))].

x y x y

xy k k

2
3 1/2 2 3 1/2 ( )

2 2
(2 ) 0 1

2 2 2

(A1)

Fig. 4. The total energy of two bound 2D magnetoexcitons with the trial wave function x( )0 for different spin structures = ±1 in dependence on the parameter :
a) = 1, b) = 1.

I.V. Podlesny, et al. Physica E: Low-dimensional Systems and Nanostructures 115 (2020) 113638

7



Using the integrals (30), one can obtain the expression

= ×

× + +
+

+

=

= +

=

d d x y e e

x y J xy I xy J xy I xy
xy J xy I xy J xy I xy

k J xy I xy

( )( 1) (8 )

{( )[( ( ) 1) (2 ) ( ) (2 )]
2 [( ( ) 1) (2 ) ( ) (2 )]

( ) (2 )}.

ixy x y

k k k

k k k

k k k

1
2

0

2
1

2
0

2

2
sin( ) 3 1

2 ( )

2 2
0 0 1 2 2

0 1 1 2 2 1
2

1 2 2

2 2

(A2)

Here the derivatives of the Bessel functions I z( )n and J z( )n of the integer order were used [28–30].

= + =+ +
dI z

dz
n
z

I z I z dJ z
dz

n
z

J z J z( ) ( ) ( ); ( ) ( ) ( ).n
n n

n
n n1 1 (A3)

Taking into account Eq. (A2), the second term in the right hand side of the average value (31) can be transcribed in the following way

= ×
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× +

+ +
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+

+

+ +

+ +

+ +

+
=

+
= +
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=
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=
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(A4)

Similar calculations using the trial wave function =k e( ) 4 k l
0

2
0
2 result in
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The third contribution to the average value (31) is
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The first term in the average value (31), as well as the overlapping integrals L ( )n can be calculated analytically

= =
+ +

+
+

e
l
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(A7)

= =
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I e
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1
4

3

Here Il is the ionization potential of the 2D magnetoexciton with wave vector =k 0|| . It is convenient to rewrite Eq. (A7) in the form
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For the trial function x( )0 we obtain more simple expression instead of Eq. (A7)
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In Eq. (A4) for ( , , )2 2 there are three integrals containing only one modified Bessel function I xy(2 ) with = 0, 1, which depend on the
parameter of the variational wave function x( )2
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Another three integrals I I,4 5 and I6 containing the products of two Bessel functions of the type J bx I cx( ) ( )0 0 and J bx I cx( ) ( )0 1 were also calculated
analytically:
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1 2 3
8

2
0
3 2

(4 1)
128 0

5
2 7

4 1
3

2 (4 1)
16 1

5
2 1

8 2
5

2

5
0

2

0

3 2
0 0

1
16 0

3
2 (4 1)

8 0
5

2 1
2 1

5
2

6
0 0

4 2
0 1

1
16 0

1 (4 1)
16 0

2 1
4 1

2

3
2 1

3
2 (4 1)

16 1
5

2 1
4 2

5
2

2 1
2

2

4

2
2

2

2 1
2

2

2
2

2 1
2

2

3
2

2

(A11)

Here were used notations [30].

= = = =

=

=

=

= +

= + ×

× +

+ + +
I q c I q c I q c I q c K k

I q c E k K k

I q c k E k k K k

I q c k K k k E k

I q c k k K k k k E k

I q c k k

k K k k k k E k

( , ) ; ( , ) ; ( , ) ; ( , ) 2 ( ),

( , ) [2 ( ) ( )],

( , ) [8(1 2 ) ( ) (5 8 ) ( )],

( , ) [(1 ) ( ) (1 2 ) ( )],

( , ) [(1 )(1 8 ) ( ) (1 16 16 ) ( )],

( , ) [(2 5 8 )

(1 ) ( ) 2(1 2 )(1 4 4 ) ( )].

q c

q

q c

c

q c

k
q

k
q

k
q

k
k

q k

k
k

q k

k k
k

q

0
1 1

( )
0
2

( )
1
2

( )
0
1 2 (1 2 )

0
3

2 (1 2 )

0
5

2 1
2

(1 2 ) 2 2

1
3

2 1 (1 2 )
(1 )

2 2

1
5

2 1
2

(1 2 )
(1 )

2 2 2 4

2
5

2 1
2 (1 )

(1 2 ) 2 4

2 2 2 4

2 2 1 2 2 2 3 2 2 2 3 2

2

2 3
3

2 5
5

2 3
3 2

2 5
5 2

2 2
2 5

5

(A12)

The complete elliptic integrals of the first and second kinds K k( ) and E k( ) depend on the modulus k, which in its turn depends on the parameters
q and c in the way

=
+

= + + =k q
q c

q c1
2

1 , 1 4 4
8

; 1
2

.
2 2

1
2 2

(A13)

In the range of the small values < <k 1, the series expansions of the functions K k( ) and E k( ) can be used

+ +K k k k E k k k( )
2

1
4

9
64

; ( )
2

1
4

3
64

;
k k0

2
4

0

2
4

(A14)

In this limit the apparent singular expressions in formulas (A10) can be transformed in the regular forms
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+

+ +

( )
( )

k K k k E k k k

k k K k k k E k k k

k k k K k k k k E k k k

[(1 ) ( ) (1 2 ) ( )] 1 ;

[(1 )(1 8 ) ( ) (1 16 16 ) ( )] 1 ;

[(2 5 8 )(1 ) ( ) 2(1 2 )(1 4 4 ) ( )] ; 0

k

k

k

1 2 2 3
4

3
8

2

1 2 2 2 4 15
4

15
8

2

1 2 4 2 2 2 4 105
16

2
2 (A15)

Using these expressions we obtain simplified formulas in the limit k 0

= =

=

( ) ( )I q c k k I q c k k

I q c k

( , ) 1 ; ( , ) 1 ;

( , ) ; 0.

k
q k

k
q k

k
k

k
q

1
3
4

(1 2 )
(1 )

3
8

2
1

15
8

(1 2 )
(1 )

15
8

2

2
105
32 (1 )

(1 2 )

3 2 2 3
3 2

5 2 2 5
5 2

5 2 2
2

2 5
5 (A16)

The value of integrals I for different values of the parameter for = + +q (1 4 4 )/(8 )2 and =c 1/2 are represented in Fig. 5.

Fig. 5. The table integrals I as function of for different indices and . a), b), c), d): = + +q (4 4 1)/(8 ),2 =c 1/2; e): = + + +q (1 4 4 )/(2(1 4 )),2 2

= +c 1/(1 4 )2 .

The third contribution ( , , )3 2 in Eq. (A6) is determined by integrals I I,7 8 and I9. The integral I7 equals to

= + =

=
+ + +

I dye dxx e dzz e J xy J xz J xz J yz( ( ) ( ) ( ) ( ))

.

x z

q q q

7
0 0

3

0

3
0 0 0 0

4 (4 1)
(4 1)

2 (4 3)
(4 1)

3
4(4 1)

y2
2

2 2

2
2 3 1/2

2
2 4 3/2

2
2 4 5/2 (A17)

It was calculated taking into account that the product of two Bessel functions J xz J yz( ) ( )0 0 can be transformed into the expression J xy J xz( ) ( )0 0 by
the interchange of the variables x z, and using the integral [30]:

=dzze J xz
p

e( ) 1
2

.pz
x

p

0
0 4

2
2

(A18)

Two integrals I8 and I9 contain three Bessel functions

=I dye dxx e dzz e J xy J xz J yz( ) ( ) ( ),
y

x z
8

0

2

0

3

0

3
0 0 0

2
2 2

(A19)

and

=
=

I dye dxx e dzz e J xy J xz J yz2 ( ) ( ) ( ).
n

y
x z

n n n9
1 0

2

0

3

0

3
2 2 2

2
2 2

(A20)

They are calculated using the formulas [28–30].
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=

=

=

+

( ) ( )
( )dzze J xz J yz e I

dxxe J bx I cx J

x e J cx I q c

( ) ( ) ,

( ) ( ) exp ,

( ) ( , ) .

z xy

px
p

c b
p

bc
p

qx

0
0 0

1
2 0 2

0

1
2 4 2

0

1

x y2 ( 2 2)
4

2 2 2

(A21)

The third contribution ( , , ),n3 described by the formula (A6), in the case of the wave function x( )0 looks as

= + +e
l

I I I( , , ) 16 [ ].3 0

2

0 0
7
0

8
0

9
0

(A22)

These integrals are more simple than in the case of the trial wave function x( )2 and equal to

= =

= =

= =

= =

+

+

= + =

+ +
+ +

I dye dxxe dzze J xy J xz I q c

I dye dxxe dzze J xy J xz J yz I q c

I dye dxxe dzze J xy J xz J yz I q c

q c

2 ( ) ( ) ( , ),

( ) ( ) ( ) ( , ),

2 ( ) ( ) ( ) ( , ),

; .

x z

x z

n
x z

n n n n n

7
0

0 0 0
0 0

2
2(1 4 ) 0

1 2

8
0

0 0 0
0 0 0

1
2

1
(1 4 ) 0

1 2

9
0

1
0 0 0

2 2 2
1

(1 4 ) 1 2
1 2

1 4 4
2(1 4 )

1
(1 4 )

y

y

y

2
2

2 2
2

2
2

2 2
2

2
2

2 2
2

2
2 2 (A23)

There are still four double integrals I I10 13 in the composition of the expression (A4). They were calculated analytically exactly below. In all of
them as the first step was used the table integral [30].

= =Z p b c dxxe J bx I cx
p

e J bc
p

( , , ) ( ) ( ) 1
2 2n

px
n n

c b
p n2

0
2 2

( )
4 2

2
2 2

(A24)

and its derivatives

= + +

=

= =

= + + + + +

+ + +

+ = =

= + +

+ + + +

+

+ +

+

+ +

( ) ( )

( )( )
( )

( )

( )
( )

( )
( ) ( )

( )
( ) ( )

Z p b c n J

J dxx e J bx I cx

Z p b c dxx e J bx I c x

e J n n

n J J

Z p b c dxx e J bx I cx

e n J

n J J

( , , ) exp 2 1

( ) ( );

( , , ) ( ) ( , )

1 1 2

4 5 ;

( , , ) ( ) ( )

2( 1)

2 3 .

d
dp n p

c b
p

c b
p n

bc
p

bc
p n

bc
p

px
n n

d
dp n

px
n n

p

c b
p n

bc
p

c b
p

c b
p

c b
p

bc
p

c b
p n
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p
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p n
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p

p c
n
c p n

px
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p
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p c

p
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p n
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p
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p

b
p
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p n
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p
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p n
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p

2
1

2 4 4 2 2

2 2 1 2
0

3
2 2

2
0

5
2 2

1
2 2
4 2 2 8 4 8

4 2 2 1 2 8 2 2 2

2
2

0

4
2 2 1

1
2

2 2
4

2 4 2 2

4 2 4 2 1 2 4 2 2 2

2
2 2 2 2

2

2
2

2

3
2 2 2 2 2 2

2 2 2 2

2 2

2
2 2

2
2

2 2 2
2

(A25)

In all these formulas it is necessary to substitute the parameters = =p x b y2 , and =c y2 . They lead to the expressions
=c b p y( )/(4 ) (4 1)/(8 ),2 2 2 2 =bc p y( )/(2 ) /2;2 =c p y/(2 ) /2; =bc p y( )/(4 ) /4,2 2 3 =b c p y( )/(4 ) /(8 ),2 2 3 =p1/(2 ) 1/(8 ).2 2 Formulas (A25) make

possible to calculate the integral

= ×

× + + + + ×

× +

+

+ +

( )( )
( ) ( )

dxx e J xy I xy e

n y J n y

J J

( ) (2 )

{ 2( 1) 2 3

.

x
n n

y

y
n

y y

n
y y

n
y

0

4 2
2 2 1

1
8

2
(4 1)

8
2

2 2 4
(4 1)

8
2

2 1 2 8 2 2 2

2
2

(4 2 1)
8

2

2 2 2

2 3
2

2

(A26)

The following integration over the variable y, using the table integral [30].

=z e J cz dz I q c( ) ( , ),qz

0

1

(A27)

gives the possibility to calculate the last four double integrals as follows:
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+

= +

=
+
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=
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(A28)

In the case of the trial wave function x( )0 such integrals do not appear. The contributions to the energy spectrum expressed by the integrals
I I1 13 are shown in Fig. 6 in dependence on the parameter of the trial wave function. k( ).2

Fig. 6. The integrals I I1 13 in dependence on the parameter of the trial wave function k( ).2
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