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A B S T R A C T

The metal-insulator phase transition diagrams of the Anderson - Hubbard model at half filling with the box and
the Gaussian disorder distributions are obtained via typical-medium theory within an approximation to the
equation of motion. The equations determining the boundary between the correlated metal, Mott insulator, and
Anderson localization phases are derived. Our results are in good agreement with those found by the more
sophisticated methods and indicate that on a qualitative level they do not depend on the choice of the above
disorder distributions.

1. Introduction

The electronic interaction and randomness play an important role in
determination for the properties of solids [1,2]. In particular, Coulomb
interaction prevailing in strongly correlated electron systems and dis-
order which always exists in real materials are two main sources
leading to metal - insulator transitions (MITs). When the latter is in-
duced by the electronic correlation, it is referred to the Mott-Hubbard
transition that can be described by the famous Hubbard model (HM).
Nevertheless, a localization of the non-interacting particle due to
random scattering induces an Anderson MIT when strong disorder
prevents the diffusion of particles [3]. Furthermore, when both disorder
and interactions are present their interplay could lead to many inter-
estingly novel effects, which are challenging both theory and experi-
ment in condensed matter physics as well as in the field of ultracold
atoms loaded in optical lattices [4,5].

The dynamical mean field theory (DMFT) is a very successful
method to capture the physics of the Mott - Hubbard MIT as well as
strongly correlated materials. The essence of theory is the mapping of
the lattice model onto a single impurity Anderson model (SIAM). The
latter describes a single correlated impurity embedded in a bath of free
electrons. The most challenging part is to solve the effective impurity
model [6]. However, the arithmetical average of the local density of
states (LDOS) obtained within such mean field theory is a failure to
distinguish the extended states from the localized ones, so it is not
suited to reveal the nature of Anderson localization. In order to get rid
of this limitation, Dobrosavljevic and Kotliar have proposed the so-
called statistical DMFT that includes a fully stochastic disorder

fluctuations in space [7]. This theory well describes both Mott and
Anderson-Mott transitions [8], however it requires extensive numerical
computations.

Based on the geometrical average to the most probable value of the
LDOS, the typical medium theory (TMT) has been developed to study
systems with disorders by Dobrosavljevic and coworkers. Instead of the
arithmetically averaged LDOS, the typical density of states (TDOS) is
approximated by taking the geometrical averaging over all possible
disorder configurations [9]. The TDOS is used as an order parameter for
Anderson localization transition because the TDOS vanishes at a critical
disorder strength. The TDOS can be easily calculated within the DMFT
because it requires only one-particle quantities [10–12]. A reasonably
accurate metal-insulator phase diagram of the box-disordered Anderson
- Hubbard model at half-filling has been investigated within the TMT -
DMFT using with different impurity solvers, such as the numerical re-
normalization group (NRG) method [10], the four boson technique
(SB4) [11]. On the other hand, the ground state phase diagram of the
half-filled Hubbard model with the Gaussian disorder distribution has
been obtained by using other methods, such as an unrestricted Hartree
-Fox approximation [13] and DMFT + Σ approach [14]. Therefore, it is
difficult to compare the influence of the different distributions (the box
and Gaussian) on the obtained phase diagrams, because we cannot
know which of the findings are due to the disorder distribution and
which ones are due to the approximate method being used.

In this report, the nonmagnetic ground state phase diagram of the
HM at half-filling with the box and Gaussian disorder distributions is
numerically constructed using the TMT - DMFT with an approximation
to the equation of motion as an impurity solver. This approach allows
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us to compare the effect of the different disorder distributions (the box
and Gaussian) on the obtained averaged local densities of states as well
as their phase diagrams.

2. Model and methods

We consider the system described by the Anderson- Hubbard model
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where a a( )iσ iσ
† denotes the annihilation (creation) operator of an elec-

tron with spin σ at site i, =n a aiσ iσ iσ
† is the local electron number op-

erator. t is the hopping amplitude for nearest neighbor sites i and j, and
U is the on-site Coulomb repulsion. The local ionic energies ɛi follow a
continuous probability distribution P(ɛi). In our paper we consider the
box (Bo) and Gaussian (Ga) distributions which are given by:
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where Θ is the Heaviside step function and Δ denotes the disorder
strength. In order to be able to compare the two different distributions,
the value of ΔGa is chosen such that the variance of the Gaussian dis-
tribution equal that of the box distribution: ΔBo= ΔGa= Δ.

The effective single-impurity Anderson Hamiltonian with different
ɛi reads
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Here μ is the chemical potential, +c c( )kσ kσ denotes the annihilation
(creation) operator of the bath electrons with spin σ. The hybridization
function is related to the matrix element Vk and the dispersion para-
meter ɛk by
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For each ionic energy ɛi, we first calculate the local density of states
(LDOS) I= −ρ ω G ω π( , ɛ ) ( , ɛ )/i i . We can then obtain the geometrically
averaged LDOS ρgeom(ω)= exp[ < ln ρ(ω, ɛi) > ] as well as the ar-
ithmetically averaged LDOS ρarith(ω)= < ρ(ω, ɛi)> , where<O
(ɛi)> = ∫ dɛiP(ɛi)O(ɛi) is an arithmetic mean of O(ɛi). The lattice Green
function is obtained by the Hilbert transformation
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where α stands for either “geom” or “arith.”
We consider the Bethe lattice with infinite connectivity,

= −ρ W πW(ɛ) 4 1 4(ɛ/ ) /( )0
2 , for which the self-consistent condition is

given by

=η ω W G ω( ) ( )/16.2 (7)

In order to solve the effective single-impurity Anderson model (4) we
will now employ the equations of motion method [6,15]. We focus on
the paramagnetic case at half-filling, for which< ni ↑> = < ni ↓
> = < ni> ∕2 and μ=U∕2. The impurity Green function can be
approximately obtained by equation
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The equation (8) is exact in the non-interacting limit U=0 [16]. In the
non-disorder limit, U≠0, ɛi=0, Eq. (8) is reduced to the (full) Hubbard
III approximation of the Hubbard model at half-filling [17].

One has to solve Eqs. (6)–(8) numerically to get the averaged LDOS.

To proceed further, we note that in the half-filled band case, the ground
state properties can be determined by the averaged LDOS at the Fermi
level (ω=0): ρgeom(0) > 0 denotes a metallic phase; ρarith(0)= 0 in-
dicates a Mott insulator phase (hard gap); and ρgeom(0)= 0,
ρarith(0) > 0 denote an Anderson insulator phase (gapless). Due to a
symmetry of ρα(ω) and the spectral theorem, it is easy to prove that the
Green function at the Fermi level is purely imaginary, G(0)=−iπρα(0),
then it is not difficult to find the averaged LDOS at the Fermi level from
numerical solving Eqs. (7) - (8).

Next, we derive the linearized DMFT equations [18]. The purely
imaginary of Green function at the Fermi level leads to the recursive
relation = −+G iπρ(0) (0)n

α
n( 1) ( ) , where the left hand side in the (n+ 1)th

iteration step is given by the result from the (n)th iteration step. On the
metallic side the LDOS is arbitrarily small in the vicinity of the MIT
region [18,19], therefore taking account of small ρ (0)α

n( ) , by using Eq.
(7) -(8) we get
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At the boundary between metal and insulator it yields
=+ρ ρ(0) (0)α

n
α

n( 1) ( ) . Then, combining Eqs. (9) and (10) and evaluating
the averaged on ɛi we get the equations determining the MIT for both
geometrical and arithmetical means (W sets the energy unit):
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where
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for the linearized DMFT with geometrical mean, and
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where
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for the linearized DMFT with arithmetical mean. For simplicity of cal-
culation, the atomic limit is adopted for< ni> :
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Then for the Gaussian distribution the integrals (12) can be obtained
numerically, while for the box distribution both integrals (12) and (14)
are evaluated analytically with results
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The integral (14) converges if only Δ < U and in this case
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We note that our preliminary linearized-DMFT result for the half filled
Anderson - Hubbard model with the box disorder distribution has been
reported in Ref. [15], where a rough approximation is used for<
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ni> :< ni> =1, ∀ɛi.

3. Results and discussion

Now we turn to present our numerical results with W=1 as the
energy unit. At T=0, the interaction - disorder (U −Δ) phase diagram
of the AHM with the box disorder distribution is shown in Fig. 1. We
compare our result with result obtained from the numerical solution
using four slave bosons to the TMT-DMFT [11], which is generally
consistent with that found from TMT-DMFT with the NRG impurity
solver [10] and from the statistical DMFT [8]. It is seen that the overall
structure is reproduced: the two insulating phases, Mott insulator and
Anderson localization, surround the correlated metal. The latter is
identified for small values of U and Δ. Whereas, the Mott phase stabi-
lizes with increasing U, and large Δ favors the Anderson localization.
Furthermore, the shape of metallic region is in good agreement and the
boundary between two types of insulators occurs at Δ ≈ U when U≥ 2.
In the non-interacting system, as in Refs. [13,14] our method predicts
the Anderson localization to take place at a critical value
Δc(U=0)= e∕2≈ 1.36. However, in our phase diagram the presence
of disorder increases the critical value for the Mott-Hubbard MIT from

= =U (Δ 0) 3 /2c . This value is significant smaller than found from
TMT-DMFT with the NRG and the SB4 [10,11] as well as from the
statistical DMFT [8]. To sum up the comparison, our result is in fairly
good agreement with known numerical results in Refs. [8,10,11],
therefore the detection of localization within TMT-DMFT with the EOM
is justified on a qualitative level. The ground state phase diagram of the
AHM with the Gaussian disorder distribution is presented in Fig. 2.
There is not a big difference between the two phase diagrams shown in
Figs. 1 and 2. For both disorder distributions one finds a metallic core
for small and intermediate strengths of both the disorder and the in-
teraction. Also the re-entrance behavior as a function of Δ for inter-
mediate U is similarly predicted for both disorder distributions. How-
ever, the results quantitatively differ each other. We find that for small
values of U the critical disorder strength in the system with the Gaus-
sian distribution is larger than those in the system with the box dis-
tribution. For example, in the non-interacting system the critical dis-
order (Δc(U=0)≈ 1.66) for the Gaussian distribution larger than those
(Δc(U=0)≈ 1.36) for the box distribution, which is in reasonable
agreement with numerical results from the literature [20]. Further-
more, for the Gaussian disorder distribution the direct metal - Mott
insulator transition is found for weaker disorders Δ. In this case, the

integral (14) is divergent for Δ≠0, so the Mott insulator phase is de-
termined only from numerical solution of the DMFT equations. From
Fig. 2 one can see that the border between the Mott and the Anderson
insulators for the system with the Gaussian distribution is located lower
than those with the box distribution in the (U, Δ) plane. To illustrate
these results we calculate the LDOS in the a band center (ω=0) as
functions of disorder Δ at fixed U=0.5 for both disorder distributions.
As can be seen from Fig. 3, for small <U U( 3 /2) while the geome-
trically averaged LDOS, i. e. the metallicity, decreases with increasing
disorder strength and vanishes at the critical disorder strength, the
arithmetically averaged LDOS is found to be equal the geometrically
averaged LDOS at weak disorder but then it has a rather slow decrease
and remains finite at critical one. In addition, the critical disorder
strength for Gaussian distribution larger than those obtained for the box
distribution. The behavior of ρgeom(0) for both disorder distributions at
intermediate values of interaction ( < ≤U3 /2 2.3 for the box dis-
tribution and < ≤U3 /2 1.7 for the Gaussian distribution) is shown in
Fig. 4 (U=1.2): when increasing Δ to critical value ρgeom(0) abrupt
rises from zero, then gains its maximal value, after that decreases to
zero again, i. e. in this case, when the disorder is increased at fixed U
the MIT occurs twice, in which at the first one the disorder stabilizes the

Fig. 1. T=0 phase diagram for the half filled Anderson - Hubbard model with
the box disorder distribution: a comparison between TMT-DMFT with the EOM
and the SB4 result in Ref. [11] (solid line with dots). In our result: solid (da-
shed) lines are determined by using geometrical (arithmetical) averaging from
the linearized DMFT; squares are obtained from numerical solution of the
DMFT equations. Energy parameters U, Δ are in the unit set by W=1.

Fig. 2. T=0 phase diagram for the half filled Anderson - Hubbard model with
the Gaussian disorder distribution, obtained from TMT-DMFT with the EOM.
Solid line is determined by using geometrical averaging from the linearized
DMFT; dots are obtained from numerical solution of the DMFT equations, da-
shed line is a guide to the eye.

Fig. 3. Geometrically and arithmetically averaged local density of states in a
band center (ω=0) at U=0.5 as a function of Δ for the box and the Gaussian
disorder distributions. Solid (dashed) lines are determined by using geometrical
(arithmetical) averaging. Lines with squares (dots) are obtained for the box (the
Gaussian) disorder distribution.

A.-T. Hoang, et al. Physica B: Condensed Matter 570 (2019) 320–323

322



metallic phase. We have also plotted the arithmetically averaged LDOS
ρarith(0) as a function of interaction U at fixed Δ=0.6 for both disorder
distributions in Fig. 5. The two curves have the same behavior and a
little difference between them is found only for weak and strong in-
teractions with the larger critical interaction strength for the Gaussian
distribution. We assume the higher disorders associated with the ex-
ponential nature of the Gaussian distribution are responsible for
quantitative differences between the box and the Gaussian distribution
results.

It is worth to compare our TMT-DMFT phase diagram with the
Gaussian disorder distribution with those obtained by using other
methods. In Ref. [14] the phase diagram of nonmagnetic Anderson-
Hubbard model at zero temperature with the same bare semi-elliptic
DOS was presented. The DMFT approach was used, but note that the
self-energy was not obtained by geometrically averaging over different
disorder realization. In fact, the authors of Ref. [14] used a disorder-
averaged self-energy contribution that completely misses correlations
between disorder interaction contributions. Consequently, the An-
derson MIT critical disorder Δ(U) is independent on interaction U. Also,
the main difference is that our data indicate the movement of one type
of insulator to the other without crossing the metallic phase occurs at

much lower disorder than in Ref. [14], keeping in mind that the var-
iance of the Gaussian distribution equal Δ2 in Ref. [14]. Next, we
compare our phase diagram with those for a Gaussian site-disordered
Anderson -Hubbard model on a simple cubic lattice at half-filling cal-
culated by using an unrestricted Hartree-Fock approximation in Ref.
[13]. The qualitative agreement is surprisingly good. In particular, in
both phase diagram the direct metal- Mott insulator transition is clearly
limited to a small region of the (U, Δ) plane, where both interaction and
disorder are weak.

4. Conclusions

In summary, in this paper the nonmagnetic ground state phase
diagram for the box and the Gaussian site-disordered Anderson-
Hubbard model at half-filling are obtained within the typical-medium
theory using the equation of motion as an impurity solver. Our obtained
result for the box disorder distribution is consistent with those found
from the statistical DMFT and the TMT-DMFT with the NRG and the
SB4. This supports that the statistical DMFT and the TMT - DMFT lead
to qualitatively agreeing result in general. Our phase diagram for the
Gaussian disorder distribution is in good agreement with those obtained
by using unrestricted Hartree-Fock approximation in Ref. [13] and
overcomes main shortcoming of the phase diagram in Ref. [14]. The
similar overall form of the phase diagram as well as the averaged local
densities of states obtained from the box and Gaussian disorder dis-
tribution indicate that qualitatively they are not dependent on the
choice of the above disorder distributions. However, note that this
conclusion is derived within the TMT - DMFT with an approximation to
the equation of motion as an impurity solver.

An important advantage of our approach is the considerable smaller
computational effort, which enable the use for a more complex (and
realistic) system. These may be the subject of our future study.
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