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Abstract
Neutrino neutral-current (NC) induced single photon production is a sub-
leading order process for accelerator-based neutrino beam experiments
including T2K. It is, however, an important process to understand because it is
a background for electron (anti)neutrino appearance oscillation experiments.
Here, we performed the first search of this process below 1 GeV using the fine-
grained detector at the T2K ND280 off-axis near detector. By reconstructing
single photon kinematics from electron–positron pairs, we achieved 95% pure
gamma ray sample from 5.738 1020´ protons-on-targets neutrino mode data.
We do not find positive evidence of NC induced single photon production in
this sample. We set the model-dependent upper limit on the cross-section for
this process, at 0.114 10 38´ - cm2 (90% C.L.) per nucleon, using the J-PARC
off-axis neutrino beam with an average energy of E 0.6~n⟨ ⟩ GeV. This is the
first limit on this process below 1GeV which is important for current and
future oscillation experiments looking for electron neutrino appearance
oscillation signals.

Keywords: T2K, neutrino, neutrino oscillation, neutrino interaction, Mini-
BooNE, CP violation

(Some figures may appear in colour only in the online journal)

1. Neutral current (NC) single photon production

Measurements of neutrino oscillation provide an emerging picture of the neutrino Standard
Model (νSM). A series of high precision neutrino oscillation measurements by T2K [1–5] and
others [6–15] are consistent with three massive neutrinos in the Standard Model (SM) [16].
The neutrino oscillation parameters are free parameters in the lepton mixing matrix of the
νSM that are determined from measurements. Among them, the Dirac CP phase, CPd , is a key
parameter to measure since it may shed light on the mystery of matter–antimatter asymmetry
of the Universe [17]. Recently T2K reported the observation of 89 en candidate events in

en nm (νe appearance), and 7 en̄ candidate events in en nm¯ ¯ ( en̄ appearance) [5]. These
observations show that CP conserving values, 0CPd = and π, fall outside the 2s confidence
intervals. Future experiments, Hyper-Kamiokande (Hyper-K) [18] and the Deep Underground
Neutrino Experiment (DUNE) [19] will use higher intensity beams and more massive
detectors to make precision measurements of oscillation with 1, 000( ) νe and en̄ candidate
events. The νe and en̄ appearance channels can also be used to search for unexpected physics
processes. The MiniBooNE experiment reports e en n( ¯ ) appearance oscillation candidate signals
from nm(nm¯ ) dominant beam [20]. One interpretation of this event excess is the existence of

Original content from this work may be used under the terms of the Creative Commons
Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the

author(s) and the title of the work, journal citation and DOI.
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sterile neutrinos [21, 22], but the excess may be events from another interaction channel that
was not considered.

NC induced photons often contribute to misidentified (misID) backgrounds in
en nm ( en nm¯ ¯ ) oscillation experiments. In these experiments, single isolated electro-

magnetic showers are signals of e en n( ¯ ) appearance in oscillations from nm (nm¯ ) dominant
beams. Photons induced by nm(nm¯ ) NC interactions could mimic these signal events. There are
two relevant backgrounds, NC induced single π0 production (NC1π0) and NC induced single
photon production (NC1γ). NC1π0 can be a significant background if one of two gamma rays
fails to be detected. Recent analysis at T2K [4] shows that this background can be rejected
effectively by introducing a likelihood-based reconstruction technique at the Super-Kamio-
kande (Super-K) far detector [2]. Similarly, liquid argon time projection chamber (TPC)
detectors [23] have achieved comparable photon identification from neutrino-produced

s0p [24, 25].
NC1γ is a rare process which has been identified as an important background process in

e en n( ¯ ) appearance oscillation experiments. This process has significant theoretical uncertain-
ties [26–29]. A single photon with energy of order 100MeV from NC1γ may be mistaken for
the e en n( ¯ ) appearance signal. Figure 1 shows diagrams associated with the NC1γ process. If
the NC1γ process is related to a radiative decay of Δ-resonance, a simple estimate of the
cross-section based on a ratio of the branching ratios ( N Ng pD  D  ), gives the cross-
section of NC1γ of ∼10−41 cm2 per nucleon around the T2K beam energy.

Figure 1. Example diagrams of the NC1γ processes, including (a) a radiative process,
(b) a baryonic resonance process, (c) an anomaly mediated process, and (d) a coherent
process. A single photon (γ) is emitted in all of these NC neutrino (ν)-nucleon (N) or
neutrino-nucleus (A) interactions by exchanging Z-boson (Z). Analyses can only
measure the final state gamma ray, and cannot distinguish different primary processes
of NC1γ. Here, ‘N*’ represents a baryon resonance, and ‘M’ stands for a neutral vector
meson, such as an w.
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There was some interest in studying this process in the past [30], motivated by the low
energy photon excess observed in the Gargamelle experiment [31]. One interpretation of the
MiniBooNE excesses is NC1γ production. Recently, a series of new calculations of NC1γ
have been published. These models include contributions from previously ignored anomaly
mediated photon production [32, 33], a calculation based on the chiral effective field theory
[34–36], a model including higher resonance contributions and nuclear media effect [37], and
others [38–40]. These new calculations are consistent with the NC1γ background simulation
used by MiniBooNE [41–43]. It has also been suggested that new physics processes could
make NC1γ-like final states which potentially explain MiniBooNE excesses, including heavy
neutrino radiative decay models [44–48] and massive neutral boson decay models [49–51].
Some constraints on these models have been realized [52]. For Hyper-K, the NC1γ process is
predicted to produce approximately 10% of the background. However, given the 100%
theoretical uncertainties assigned to NC1γ in both neutrino and antineutrino modes, and the
absence of measurements below 1GeV, this is a source of systematic uncertainty that should
be better understood.

This paper presents the result of the first search for NC1γ below 1GeV in the T2K near
detector data, which is relevant for current and future e en n( ¯ ) appearance oscillation experi-
ments. The NOMAD experiment at CERN performed the first search for NC1γ, and set a
limit on the total cross-section ratio of NC1γ to CC inclusive cross-section of 4.0 10 4´ -

(90% C.L.), at an averaged beam energy of E 25~n⟨ ⟩ GeV [53]. As discussed in this paper,
the selection of NC1γ candidates is challenging for lower energy neutrino beams, and this
measurement is of value to future experiments (Hyper-K and DUNE) in this energy range
which rely on counting electron (anti)neutrinos in their detectors.

2. T2K experiment

T2K is a long-baseline neutrino oscillation experiment in Japan. Neutrinos are sent to the
50kton Super-K detector with a baseline of 295km. Primary protons are extracted from the
30GeV J-PARC proton synchrotron to the dedicated neutrino beamline, where protons
collide with a carbon target to produce secondary mesons, mainly pions. These mesons decay
in the 96 m long decay pipe to produce a tertiary neutrino beam. Depending on the current
polarity of the magnetic focusing horns, the beamline can produce either nm-dominant ν-mode
beam or nm¯ -dominant n̄-mode beam. The neutrino beam simulation incorporates hadron
production data from NA61/SHINE experiment at CERN [54]. This analysis uses the ν-mode
beam data from November 2010 to May 2013, resulting total statistics of 5.738 1020´
protons-on-targets. The details of the T2K neutrino beamline is described elsewhere [55].

There are two near detectors, both located at baseline of 280 m, the on-axis near detector
INGRID [56] and off-axis near detector ND280. ND280 is a tracker detector which consists
of several sub-detectors, including plastic scintillator tracker with radiator π0-detector (P0D)
[57], plastic scintillator tracker fine-grained detectors (FGDs) [58], gas TPC [59], electro-
magnetic calorimeters (ECal) [60], and a side muon range detector [61]. The sub-detectors,
going downstream in the neutrino flux are the P0D, followed by two FGDs and three TPCs
which alternate to make the tracking region of ND280. The P0D and the FGDs provide target
mass and vertex measurements, and the subsequent TPCs provide tracking measurements. All
sub-detectors are immersed in a 0.2 T dipole magnetic field, and track measurements in the
TPCs provide charge and momentum measurements of charged particles. Figure 2 is an event
display of an NC1γ candidate event. The neutrino interaction is identified in the first FGD
(FGD1), and subsequent TPC2 measures electron and positron tracks. A rectangular region
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174.9 cm (x) 174.9´ cm (y) 54.2´ cm (z) in the FGD1 is defined to be the fiducial volume of
this analysis where the z-axis is the direction of the beam, the y-axis points upward, and the
x-axis is chosen to complete the right-hand Cartesian coordinate. The target material is
polystyrene CH2 and the number of target nucleons is 5.54 1029´ with 0.6% error.

The detector Monte Carlo (MC) simulation is based on GEANT4 [62], and neutrino
interactions are simulated by the NEUT event generator version 5.3.2 [5]. Note, the nor-
malization of the NC1γ model used in NEUT v.5.3.2 was found to be roughly 50% lower
than more recent calculations [63, 64], however, it does not affect our analysis result.

3. Event selection

The event selection of the photon sample has been developed for the νe charged current
(νeCC) measurements in ND280 [65–67], where photons make a major background for e en n( ¯ )
analysis. Thus, for these analyses the photon sample was made to study the background
distribution. In this analysis, instead, we use this sample to search for NC1γ. Photons are
identified from two tracks. These tracks are required to have opposite charges. Tracks should
start from within the fiducial volume of FGD1 scintillator tracker. To maintain the quality of
momentum reconstruction, these tracks should leave at least 18 reconstructed clusters in
TPC2 corresponding to a ∼18 cm track if they are straight in the direction of the beam.
Particle identification based on energy loss measured in TPC is applied to select electron-like

Figure 2. An example event display of an NC1γ candidate event from the data. The
neutrino beam comes from the right. A neutrino interaction happens in FGD1 (light
blue rectangular box) where green bars represent scintillation bars registered hits. Red
tracks are reconstructed positive and negative electron-like tracks identified in TPC2
with opposite curvature due to the magnetic field. One particle reaches to the FGD2 to
make another hits, and other track reaches to a surrounding sub-detector to leave hits.
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or positron-like tracks. The starting points of these tracks have to be within 10 cm of each
other. Then, the invariant mass (Minv) is reconstructed from the measured momenta of two
electron-like tracks with opposite charges. Figure 3 shows the invariant mass distribution. As
can be seen, low invariant mass is dominated by photons and we choose M 50 MeVinv < to
construct the photon sample. The photon purity in the sample reaches 95%, however, the
majority of the photons are generated outside of the fiducial volume.

We further use the surrounding sub-detectors to remove photons which are not within the
fiducial volume to make an NC1γ sample. First, we remove any events associated with muons
detected in any TPC. These interactions are most likely CC interactions and they are back-
grounds of this analysis. Second, we remove events with reconstructed clusters in the sur-
rounding ECals and P0D that are not associated with the gamma, because NC interactions in
these sub-detectors may produce photons which convert in the FGD1 detector mimicking
photons generated in the FGD1 detector. After these cuts, we selected 46 events to construct
the NC1γ sample. Figure 4 shows the reconstructed energy and scattering angle distributions

Figure 3. Invariant mass distribution of the photon sample. To select photons we apply
a cut on the reconstructed invariant mass, M 50 MeVinv < .

Figure 4. Reconstructed energy and scattering angle distribution of the NC1γ sample.
The data is shown with markers, and the simulation is shown as a histogram. The
simulation is stacked with different primary processes to produce photons. Note, the
NEUT NC1γ prediction is scaled up by a factor 300 to be visible.
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of the NC1γ sample. The peak of photon momentum is around 200MeV/c and peaked in the
forward direction. According to our simulation, the selection efficiency for NC1γ events is
1.9%. However, the sample is dominated by internal or external backgrounds. Internal
backgrounds are mainly single photons from asymmetric decays of s0p produced by NC
interactions in the fiducial volume. External backgrounds are photons generated from outside
of the fiducial volume leaving no traces in sub-detectors, and are converted to e e+ -– pairs in
the FGD1 fiducial volume. Because of the presence of these backgrounds, the expected signal
fraction, i.e. the fraction of photons produced by NC1γ process in the FGD1 fiducial volume
is less than 1% according to our simulation. Based on uncertainties in the background
processes, we could not detect the NC1γ process from this analysis, and the remaining part of
this paper focuses on setting a cross-section limit on this process.

4. Systematic errors

The NC1γ sample is dominated by internal and external backgrounds. Thus, the NC1γ cross-
section measurement is limited by these backgrounds. To constrain the internal background,
we use NCπ0 data from MiniBooNE [68] in the NUISANCE framework [69] to estimate
errors associated the π0 production. Uncertainties were set on parameters of the π0 production
model to cover the shape and normalization differences between the model predictions and
the MiniBooNE data. This gives around 15% systematic error on the prediction of the NC1π0

rate [70]. The details of the evaluation of this systematic uncertainty are given in
appendix A.1.

To constrain the external background, we estimate the variations of the mass distribution
outside of the fiducial volume, and photon propagation from external materials. We use CC
inclusive data sample collected from the outside layers of FGD1, which is dominated by
muons produced by neutrino interaction with materials surrounding the fiducial volume. The
data-MC disagreement is around 6% except for up-going events where the disagreement is
38%. These data suggests that the up-going external background is not properly modeled, and
this would add an additional systematic error to the up-going photon external background.
Thus, we limit our measured region to be 0 252f < <  and 288 360f < < , where f is
the angle of reconstructed photon direction projected on a x–y plane with 0f = on the
+x axis. By removing up-going events in the sample, 39 events are left in the NC1γ sample.

Through the MC we evaluate the material and density errors affecting the photon pro-
pagation from inactive materials to the fiducial volume. For this, we define the photon
effective mean free path (EMFP) EMFPl to find the uncertainty of the external photon
backgrounds which produce the e e+ -– pairs. We estimate the variations of EMFP in the dead
materials by using mass error from technical reports and from surrounding muons mea-
surement. We then propagate changes on the EMFP to the probability that a photon arrives in
the FGD1. Although this is a reasonable approach to estimate the variation of the external
photon background from the simulation, this method creates large variation in the number of
external photon events, i.e. small errors in density and material composition at the production
and propagation result in a large variation in the conversion points in FGD1 after propagation
through dead materials. We estimate a 27% systematic uncertainty on the prediction of the
external background. This procedure is described in appendix A.2.

After evaluating the errors associated to backgrounds, we also add uncertainties coming
from simulation of neutrino flux, detector, and other neutrino interaction processes. Table 1 is
the summary of all errors for this analysis. The largest error is the external background
variation which is the limiting systematic uncertainty in this analysis. Internal background,
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mainly errors associated to pion production, and statistics also contribute to the final error of
this analysis.

5. Result

After evaluating all errors, we generate sets of the background simulations (toy MC), and
from this distribution and data, we set the limit of the expected number of events from the
NC1γ process. By using the MC, we convert this limit to the total NC1γ cross-section limit.
Thus, our result is a model-dependent cross-section limit. The total cross-section limit derived
by this method is found to be 0.114 10 38< ´ - cm2 (90% C. L.).

Figure 5 shows the result. Cyan and blue lines represent the sensitivity and the limit from
this analysis, and the blue histogram shows the flux shape used by this analysis. The black

Figure 5. The NC1γ cross-section limits from this analysis. The cyan line is the 90%
C.L. sensitivity from the MC, and the blue line shows the 90% C.L. limit from this
analysis. Both are averaged over J-PARC neutrino flux. The blue histogram shows the
distribution (arbitrary unit) of the J-PARC ν-mode muon neutrino flux used by this
analysis [55]. The results are compared with one of recent calculation (black curve)
[37]. Note, the model is terminated at the neutrino energy 2.0 GeV= . The result is also
compared with the result from NOMAD (red line) [53, 71].

Table 1. The summary table of the errors on this analysis. The largest source of
uncertainty comes from the asymmetric uncertainty on the external background.

Error type Values (%)
Statistical error 14.7

Pion background 15.4+ / 13.4-
External background 26.8+ / 16.0-
Flux 7.7
Detector 6.6
Neutrino interaction 4.3+ / 3.8-

Total error 30.6+ / 21.0-
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curve is a recent calculation of the NC1γ cross-section [37]. As can be seen, our limit is far
from the expected signal. This is mostly due to uncertainties of internal and external back-
ground predictions where we rely on external data and simulation to evaluate them instead of
constrain them by in situ measurements. Nevertheless, we achieve to set the first limit on this
process below 1GeV. The results are also compared with those from NOMAD [53].
NOMAD performed a search for NC1g , and NOMAD reported the upper limit of the process
in terms of the cross-section ratio to CC inclusive cross-section, 4.0 10 4´ - (90% C.L.). By
multiplying this ratio with the NOMAD reported CC inclusive cross-section [71], we cal-
culate the NC1g total cross-section upper limit from NOMAD, 0.0068 10 38< ´ - cm2 (90%
C.L.) [72].

6. Outlook

In this article, we described the search for NC1γ process below 1GeV, using the T2K off-
axis near detector. Although we found 39 NC1γ candidate events, these events are consistent
with predicted background events and we set the first limit on the NC1γ cross-section below
1GeV, at 0.114 10 38< ´ - cm2 (90% C.L.). An excellent tracking system allows to construct
a 95% pure photon sample, however, there are two main factors which limit our analysis.
First, the analysis does not use an internal constraint on NCπ0 production rate, and we rely on
external data to understand NCπ0 production rate uncertainties. Ideally, we should utilize a
simultaneous measurement of photons and s0p so that the systematics of π0 production rate
can be constrained. NCπ0 production has been measured in P0D [73], and such measurement
in FGD has been developed [74]. Second, an internal constraint for external background is not
available, and we rely on mainly simulation to estimate the incoming photon background.
Such background could be internally measured if the detector had a large active veto region,
and similarly could be suppressed if the detector had less dead material between the active
veto and the fiducial volume. This may be achieved by the P0D where larger fiducial volume
than FGDs can reduce external background. New active detectors developed for T2K, such as
WAGASCI [75] may overcome these problems and set a better limit by utilizing better
tracking with relatively larger fiducial volume. Some current neutrino experiments, such as
MINERvA [76], MicroBooNE [23], SBND and ICARUS [77] have larger fiducial volumes
with less inactive detector regions, and these experiments have better control for both internal
and external backgrounds, and they also have the chance to make the first measurement of
NC1γ process.
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Appendix. Background error estimation

A.1. Internal background error estimation

In this section, we discuss the error estimation of the largest internal background, NCπ0

production rate. There is a tension in π0 momentum space between the NEUT prediction and
the MiniBooNE NCπ0 data. Six parameters are used to cover this discrepancy. First,
uncertainties are set on the π0 production model parameters, including the resonant axial mass
(M 0.95 0.15A

RES =  GeV), the C5
A form factor normalization (C 1.01 0.12A

5 =  ), and the
isoscalar contribution normalization (I 1.30 0.201 2 =  ). Second, three additional ad hoc
systematic parameters are added. The first one is the shift of the Δ resonance peak and we
introduced a 0.4% systematic error. The second one is the width of the Δ resonance and we
introduce a 14% systematic error. And the third is the normalization of NC coherent π0

production channel and we introduce a 100% error. These six systematic errors cover the
difference between MiniBooNE NCπ0 data and NEUT. The resulting systematic uncertainties
used in this analysis are presented in the second row of table 1.

A.2. External background error estimation

In this section, we discuss the error estimation of the largest external background, the external
photon conversion rate in the fiducial volume. Although changing parameters in the simu-
lation allows us to evaluate the error in the number of photons arriving in the fiducial volume
from external materials, this is CPU intensive, and impractical. Instead, we define EMFPl , the
EMFP of the photon in the material, and we apply changes to EMFPl to evaluate photon
background systematics.

The number of photons N xi( ) radiated at a given position xi away from its creation point
x0i is written in the following way,

N x N x x xexp . A.1i i i i
0 0

EMFPl= - -( ) ( ) [ ∣ ∣ ] ( )
For external photons converted in the fiducial volume, we generate the systematic variation in
the simulation by applying a weight defined by the ratio of the equation (A.1):

w
x x

x x

exp

exp
. A.2i i

i i

0
EMFP

0
EMFP

l
l

º
- - ¢

- -
[ ∣ ∣ ]
[ ∣ ∣ ]

( )

To apply this weight to a simulated event, one must know the distance that the photon
traverses in the particular material, x xi i

0-∣ ∣ and EMFPl . To calculate the nominal EMFPl (in
the numerator of equation (A.2)), we proceed in two ways: first, for photons with starting
points within the dead materials, EMFPl is found by fitting to the MC sample for different
locations surrounding the FGD. Second, for photons starting in active regions of the sub-
detectors, we calculate it analytically, using

m1 . A.3
i

i
i

EMFP ål l= ( )
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Here, mi and il are the mass fraction and the mean free path of a material i. The mean free
path il of photons for arbitrary material i can be written as [78]

r D Z L f z ZL1 3.1 , A.4e
2

atom
2

rad radl a= - + ¢[ ( ( )) ] ( )

where we use the fine structure constant a, classical electron radius re, atomic density Datom,
atomic number Z, Tsai’s radiation length Lrad and Lrad¢ with a high order correction f (Z) [79].
Using equation (A.4), one can modify the density (hence the mass) and the composition of the
material to change the mean free path. The mass variations of materials, where a typical
systematic uncertainty is of the order of a few %, are derived from detector design reports
[57–61] and CC inclusive data leaving signals at the outer layers of the fiducial volume
of FGD1.

We apply this for photons coming from all directions, traverse different sub-detectors and
materials, to find the distribution of external background variations. The shape of the weights
for photons traversing a large distance of material is skewed towards high number of events.
The skew reflects that a small change in the density of materials causes large errors in the
number of photons converted in the fiducial volume. Note that the asymmetry of the errors
was taken into account for the analysis and this is shown in the third row of table 1.
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