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We consider the dynamic charge susceptibility and the charge density waves in strongly-

correlated electronic systems within the two-dimensional t-J-V model. Using the equa-
tion of motion method for the relaxation functions in terms of the Hubbard operators,

we calculate the static susceptibility and the spectrum of charge fluctuations as func-

tions of doped hole concentrations and temperature. Charge density waves emerge for
a sufficiently strong intersite Coulomb interaction. Calculation of the dynamic charge

susceptibility reveals a strong damping of charge density waves for a small hole doping

and propagating high-energy charge excitations at large doping.
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1. Introduction

Among other unconventional normal state properties of high-Tc superconductors

(see, e.g., Ref. 1), an anomalous charge dynamics and charge-density wave (CDW)

formation have been also recently detected. Using optical methods and the res-

onance inelastic X-ray scattering, this phenomenon was observed in many experi-

ments on copper oxide compounds. The CDWs were found in the compounds YBCO

(see Refs. 2–5 and references therein), Bi-2201,6 Bi-22127–10 and Hg-1201.11,12

∗Corresponding author.

1850327-1

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
8.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 J

O
IN

T
 I

N
ST

IT
U

T
E

 F
O

R
 N

U
C

L
E

A
R

 o
n 

12
/2

4/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

http://dx.doi.org/10.1142/S0217979218503277
mailto:nguen@theor.jinr.ru
mailto:plakida@theor.jinr.ru


November 19, 2018 21:29 IJMPB S0217979218503277 page 2

N. D. Tung & N. Plakida

In all compounds, CDWs have similar characteristics: they arise in the CuO2 plane

in the underdoped region at temperatures TCDW below or nearly equal to the tem-

perature of the pseudo-gap state T ∗ but above the temperature of the supercon-

ducting transition Tc. They are characterized by the incommensurable wave-vector

(qx, qy) = 0.2–0.3 (in units of the reciprocal lattice vector) and have a short corre-

lation length of about 5–8 lattice constants. Charge modulation occurs at the sites

of the oxygen sublattice and has d-symmetry. In particular, in YBCO compound

in Ref. 2 CDW was found at hole doping 0.086 < p < 0.163 at the incommensu-

rable wave-vector in the direction (1,0,0) (0.34 . qx . 0.30) which is decreasing

with doping in the temperature range T = 100 − 160 K. In Bi2201 compound in

Ref. 10 CDW was found at hole doping 0.07 . p . 0.16 at the incommensurable

wave-vector in the direction (1,0,0) (0.23 . qx . 0.26) which is decreasing with

doping in the temperature range T = 20–125 K for an optimally doped sample

with Tc = 33 K and the pseudogap temperature T ∗ = 160 K.

In the theoretical description of CDWs in cuprates in several papers, the Fermi-

liquid approximation was used. In Ref. 13, an interplay between unidirectional and

bidirectional CDW orders in underdoped cuprates was considered within a phe-

nomenological theory. A magnetic scenario has been proposed when CDW order

appears due to spin-fluctuation exchange where a bidirectional CDW order emerges

at the onset but changes to unidirectional inside the CDW phase. In Ref. 14, an

interplay between the CDW instability and the pseudogap phase was considered

within the random-phase approximation (RPA) for correlated singleband quasi-

particles described by a Fermi-liquid type model. A microscopical theory of the

electron-hole instability due to the development of CDW at the oxygen sites in the

copper oxide plane was formulated within the spin-fermion model in Ref. 15 (for

further references within the Fermi-liquid approach, see Ref. 15).

However, cuprates are strongly correlated systems and the Fermi-liquid descrip-

tion cannot be applied. In that case, the Hubbard model16 is often considered where

numerical methods, such as the quantum Monte Carlo (QMC) method, were used

in analyzing CDWs (see, e.g., Ref. 17). Charge fluctuations within the original t-J

model were considered by QMC in Ref. 18. In the limit of strong correlations, the

Hubbard model can be reduced to the t-J model with the intersite Coulomb re-

pulsion V , the so-called t-J-V model, which is suitable for CDW description. In

particular, in the framework of this model, development of CDW and formation

of the pseudogap in the normal state of cuprates were considered in Refs. 19–21.

The correlation of CDWs with the softening of the longitudinal phonon mode in

cuprates was analyzed in Ref. 22. In these papers, the random-phase-type approx-

imation was considered when the density operator on one lattice site is presented

as an electron-hole pair similar to the Fermi-liquid approach. However, this ap-

proximation is difficult to justify in the case of strong correlations described by the

Hubbard operators.16

An accurate method is based on the projection technique for the time-dependent

correlation functions23 or the Green functions (GFs).24,25 Using this approach, we
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can obtain an exact representation for the GF for the charge or spin collective ex-

citations with the polarization operator, which is then calculated self-consistently

in terms of the full GF. Within this method, we have considered the spectra of

antiferromagnetic spin excitations for the high-temperature superconductors in the

framework of the t-J model in both the normal,26 and superconducting27 phases

and also the optical conductivity.28 Here, we calculate the dynamical charge sus-

ceptibility (DCS) in the framework of the t-J-V model in terms of the Hubbard

operators (HOs) using the method of the relaxation function.29–31 This approach

was previously used in the framework of the standard t-J model in Ref. 32. The

static charge susceptibility was considered for holes in the t-J-V model in our pre-

vious publication.33 In the present paper, we calculate the DCS for the electronic

t-J-V model by taking into account final life-time effects. We also calculate the

spectrum of electronic excitations for the t-J-V model using the projection method

for the single-particle GF similar to Ref. 34 for the t-J model.

In Sec. 2, we formulate the model and calculate the dynamical and static charge

susceptibilities. In Sec. 3, we present the results. At first we consider the static

charge susceptibility (Sec. 3.1) analyzing conditions for providing the CDWs and

then we describe the spectrum of charge fluctuations by taking into account their

damping (Sec. 3.2). The results are presented in Sec. 4. In Appendix, details of the

calculations are discussed.

2. The Model and the Dynamical Charge Susceptibility

2.1. The t-J-V model

To describe strongly-correlated electronic systems, we consider the t-J-V model

where in addition to the conventional hopping t and exchange interaction J terms,

the intersite Coulomb repulsion V is taken into account. It is convenient to use the

HO technique16,35 and to write the model as follows (see, e.g., Ref. 34):

H = Ht +HJ +Hc = −
∑
i6=j,σ

tij X
σ0
i X0σ

j − µ
∑
iσ

Xσσ
i

+
1

4

∑
i6=j,σ

Jij(X
σσ̄
i X σ̄σ

j −Xσσ
i X σ̄σ̄

j ) +
1

2

∑
i 6=j

Vi,jNiNj , (1)

where the HOs Xαβ
i = |iα〉〈iβ| describe transitions from the state |i, β〉 to the state

|i, α〉 on the lattice site i for the three electronic states with spin σ/2, σ = ±1

(σ̄ = −σ): the unoccupied state (α, β = 0) and two singly occupied states (α, β =

σ). The projected electron operators commonly used in description of electrons in

the singly occupied subband in the t-J model represented by ã†i,σ = a†i,σ(1 − ni,σ̄)

and ãi,σ = ai,σ(1 − ni,σ̄) in terms of the original creation and annihilation Fermi

operators a†i,σ, ai,σ can be written as the HOs Xσ0
i = ã†i,σ and X0σ

i = ãi,σ.

In (1), we introduce the hopping parameters tij = tδj,i+a1
+ t′δj,i+a2

+ t′′δj,i+a3

between the first t (a1 = ±ax,±ay ), the second t′ (a2 = ±(ax±ay)), and the third
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t′′ (a3 = ±2ax,±2ay) neighbors, respectively, (ax = ay - are the two-dimensional

lattice constants). Jij = Jδj,i+a1
is the exchange interaction for the nearest neigh-

bors. The intersite Coulomb interaction (CI) Vij = V1δj,i+a1
+ V2δj,i+a2

, where V1

and the V2 are CI between the first and the second neighbors, respectively. The

Fourier components of the hopping parameter t(q), CI V (q) and the exchange

interaction J(q) on the square lattice are given by

t(q) = 4 t γ(q) + 4 t′ γ′(q) + 4t′′ γ′′(q), (2)

V (q) = 4V1 γ(q) + 4V2 γ
′(q), (3)

J(q) = 4Jγ(q), (4)

where γ(q) = (1/2)(cos qx + cos qy), γ′(q) = cos qx cos qy, γ′′(q) = (1/2)(cos 2qx +

cos 2qy) and we take ax = ay = a = 1.

The number and spin operators in HO representation read

Ni =
∑
σ

Xσσ
i , (5)

Sσi = Xσσ̄
i , Szi = (σ/2) (Xσσ

i −X σ̄σ̄
i ). (6)

The chemical potential µ in (1) is determined from the equation for the average

number of electrons n as

n = 〈Ni〉, (7)

where 〈· · · 〉 is the statistical average with the Hamiltonian (1).

The HOs satisfy the completeness relation

X00
i +Xσσ

i +X σ̄σ̄
i = 1, (8)

which rigorously preserves the constraint of no double occupancy of any quantum

state |i, α〉 on each lattice site i. From the multiplication rules for HOs Xαβ
i Xγδ

i =

δβγX
αδ
i follow the commutation relations

[Xαβ
i Xγδ

j ]± = δij(δβγX
αδ
i ± δδαX

γβ
i ), (9)

where the upper sign refers to Fermi-type operators such as X0σ
i , while the lower

sign refers to Bose-type operators such as the number (5) or the spin (6) operators.

2.2. Memory function formalism

To study the dynamic charge fluctuations, we consider the two-time retarded Green

function (GF)25

Gq(t− t′) = 〈〈Nq(t)|N−q(t′)〉〉 = −iϑ(t− t′)〈[Nq(t), N−q(t′)]〉, (10)

Nq =
1√
N

∑
i

Ni exp(−iqri), (11)

where [A,B] = AB − BA, Nq(t) = eiHtNqe−iHt (we take ~ = 1) and ϑ(t − t′) is

the Heaviside function. The dynamic charge susceptibility (DCS) χq(ω) is given by

1850327-4
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the Fourier transform of the GF (10) as

χq(ω) = −〈〈Nq|N−q〉〉ω = i

∫ ∞
0

dteiωt〈[Nq(t), N−q]〉. (12)

A conventional calculation of the GF (10) by differentiating it over time t and

a decoupling of the higher-order GFs25 is not convenient for the GF of collective

variables as the charge density fluctuations (11). The inhomogeneous term in the GF

equation in this case is zero, [Nq, N−q] = 0, that makes it difficult to solve equations.

For collective variables, it is more convenient to use the relaxation function approach

employing the memory function formalism.23,24,29–31 This approach was used in our

previous publications.32,33

For this, we introduce the density–density relaxation function

Φq(t− t′) = ((Nq(t) |N−q(t′))) = −iϑ(t− t′)(Nq(t), N−q(t′)), (13)

where

(A(t), B) =

∫ 1/T

0

dλ〈A(t− iλ)B〉, (14)

is the Kubo–Mori scalar product (T is the temperature in units of kB = 1). The

Fourier transform of the density–density relaxation function

Φq(ω) = ((Nq |N−q))ω = −i
∫ ∞

0

dteiωt(Nq(t), N−q), (15)

is coupled to the GF by the equation ((iȦ |B))ω = 〈〈A |B〉〉ω, iȦ = idA/dt =

[A,H], that results in the relation

χq(ω) = χq − ωΦq(ω), (16)

where χq = χq(0) = (Nq, N−q) is the static susceptibility.

Using equations of motion for the time-dependent relaxation function (13), we

can write the relaxation function (15) in the form (see Appendix A)

Φq(ω) = χq
ω − ωMq(ω)/mq

ω2 − Ω2
q − ωMq(ω)/mq

, (17)

where

mq = (iṄq | − iṄ−q), (18)

and Ω2
q = mq/χq is the energy of density fluctuations in the MFA. The memory

function Mq(ω) is given by the irreducible part of the force–force relaxation function

Mq(ω) = ((Fq |F−q))irr
ω . (19)

where the force Fq = N̈q = −[[Nq, H], H]. The irreducible part in Eq. (19) has no

parts connected by the corresponding zero-order relaxation function (see Appendix

A). This definition is equivalent to the introduction of the projected Liouville op-

erator for time dependence of correlation functions in the Mori method.23

1850327-5
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Using Eq. (16) for the DCS (12), we obtain the following representation:

χq(ω) = χq − ωΦq(ω) =
mq

Ω2
q + ωMq(ω)/mq − ω2

. (20)

The spectral density of charge fluctuations is determined by the imaginary part of

the DCS

Iq(ω) = Imχq(ω + iε) =
mq 2ωΓq(ω)

[Ω2
q + 2ω∆q(ω)− ω2]2 + [2ωΓq(ω)]2

, (21)

where we introduce the imaginary and real parts of the memory function

Γq(ω) = −(1/2mq)ImMq(ω + iε), ∆q(ω) = (1/2mq)ReMq(ω + iε). (22)

To calculate the energy of density fluctuations Ωq and the static susceptibility

χq = mq/Ω
2
q, we consider the relation

mq = (iṄq | − iṄ−q) = (−N̈q, N−q) ≈ Ω2
q (Nq, N−q), (23)

where the left-hand side is found directly using the commutation relations for the

HOs (see Appendix A)

mq = 〈[iṄq, N−q]〉 =
4

N

∑
q′

[t(q′)− t(q− q′)]〈Xσ0
q′ X0σ

q′ 〉. (24)

For the right-hand side of Eq. (23), the higher-order correlation functions in

(−N̈q, N−q) = ([[Nq, H], H], N−q) are calculated in the MFA approximation (see

Appendix A). As a result, the charge excitation energy takes the form

Ω2
q =

(−N̈q, N−q)

(Nq, N−q)
=

1

N

∑
q′

[t(q′)− t(q− q′)]

×
(
t(q′)− 1

2
J(q) + 2V (q)

)
〈Xσ0

q′ X0σ
q′ 〉+ H.c. (25)

We note that for the short-range CI considered here, the charge excitation spec-

trum is characterized by the acoustic mode Ωq ∝ q and the uniform static charge

susceptibility χq→0 = (mq/Ω
2
q)q→0 is finite.

The charge fluctuation correlation function 〈NqN−q〉 in the MFA for the DCS

(20) (for Mq(ω) = 0) is given by

〈Nq N−q〉 =

∫ ∞
−∞

dω

exp(ω/T )− 1

1

π
Imχ(q, ω + iε) =

mq

2Ωq
coth

Ωq

2T
. (26)

We assume that using the MFA for DCS instead of the full representation (20)

does not change noticeably results for the thermodynamical functions as (26). In

particular, in the classical limit, Ωq � T , we obtain the conventional relation

between the correlation function and the charge susceptibility: 〈Nq N−q〉 = Tχq. In

the quantum limit for T = 0, we have 〈Nq N−q〉 = mq/2Ωq and [mq/2Ωq]q→0 = 0.
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To calculate the electronic correlation function 〈Xσ0
q X0σ

q 〉 in Eqs. (24) and (25)

and the chemical potential in Eq. (7), we use results for the corresponding electronic

GF in the generalized MFA (see Appendix B) as

〈Xσ0
q X0σ

q 〉 = Nσ(q) =
1− n/2

exp[ε̃(q)/T ] + 1
, (27)

n =
1

N

∑
q,σ

Nσ(q) =
1

N

∑
q

(2− n)

exp[ε̃(q)/T ] + 1
, (28)

where the renormalized spectrum of electronic excitation ε̃(q) is given by Eq. (B.5).

As follows from Eq. (28), for the electronic occupation number we have a restriction

n ≤ 1.

3. Results

In numerical computations we use the following parameters in the model (1). To

reproduce the realistic electronic spectrum for cuprates which shows a transition

with doping from the four-pockets Fermi surface (FS) to a large one (see, e.g.,

Ref. 1), we take the hopping parameters t′ = 0.1t, t′′ = 0.2t. These parameters result

in the electronic excitation spectrum and the FS in a form corresponding to the

ones obtained in the Hubbard model36,37 (see Appendix B). We take conventional

values of the parameters for the t-J model for cuprates t = 0.4 eV and J = 0.4t. In

what follows, we take t as the energy unit and put t = 1. According to the model

calculations,38 the intersite CI in cuprates is sufficiently small and the parameters

in (3), can be chosen as V1 = 0.3t and V2 = 0.2t. To study the formation of the

CDWs, we vary these parameters in a certain range.

3.1. Static charge susceptibility

At first, us consider the spectrum of charge excitation energy (25) and the

static charge susceptibility χq = mq/Ω
2
q for various doping and temperature.

The spectrum of the charge excitations Ω2
q along the main directions in the BZ

Γ(0, 0) → X(π, 0) → M(π, π) → Γ(0, 0) is shown in Fig. 1 for electron concen-

trations n = 0.9 and n = 0.7 with the standard model parameters V1 = 0.3 and

V2 = 0.2 in Eq. (3) and the temperature T = 0.02 ∼ 90 K. At the center of

the BZ Γ(0, 0), the excitation energy tends to zero, Ω2
q ∝ q2. At the boundary of

the BZ at the point M(π, π) the maximum is observed, and its intensity increases

with electron concentration. The dispersion of the spectrum depends on the model

parameters. It weakly depends on the exchange interaction J but shows a strong

variation with the CI parameters V1 and V2 as discussed below.

The dependence of the static charge susceptibility χq = mq/Ω
2
q on the elec-

tron concentration shows a complicated character as shown in Fig. 2. When the

spectrum Ω2
q has the maximum at the point M(π, π) of the BZ, the static charge

susceptibility χq has the minimum and vice versa. We note that the maximum of

the static charge susceptibility found in Ref. 21 is near the point M(π, π). But the
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Fig. 1. (Color online) Spectrum of charge excitations Ω2
q along the main directions in the BZ:

Γ(0, 0)→ X(π, 0)→M(π, π)→ Γ(0, 0) for n = 0.7 (blue, solid line), n = 0.9 (black dash line).

Fig. 2. (Color online) Static charge susceptibility χq along the main directions in the BZ:

Γ(0, 0) → X(π, 0) → M(π, π) → Γ(0, 0) for n = 0.7 (blue, solid line), n = 0.8 (brown, dot-

ted line), n = 0.9 (black, dash line).

position of the maximum changes depending on the CI, as shown below. For certain

model parameters, the static charge susceptibility diverges which indicates the in-

stability of the uniform charge distribution and formation of the CDW. To analyze

this instability, it seems convenient to consider the inverse charge susceptibility χ−1
q

which vanishing indicates a transition to the nonuniform state. Figure 3 shows the

dependence of χ−1
q on the parameter V1 at a fixed V2 = 0.2. As the parameter V1

increases, the maximum of the static charge susceptibility (minimum of χ−1
q ) shifts

from the point X(π, 0) to the point M(π, π). At V1 & 0.6, the inverse charge suscep-

tibility becomes negative near this point, which indicates instability of the uniform

charge distribution and formation of the CDW. As the parameter V1 increases, the

CDW arises near M(π, π) point of the BZ. The wave-vector of the CDW increases

and, e.g., at V1 = 0.9 it equals to qx = qy ≈ 0.87(π/a). A similar strong variation

is also observed for χ−1
q under changes in the parameter V2 at a fixed V1 = 0.3 as

shown in Fig. 4. As the parameter V2 increases to V2 & 0.4, the CDW arises near

X(π, 0) point. At V2 = 0.6, the CDW wave-vector qx ≈ 0.71(π/a). Therefore, de-

pending on the CI parameters V1 and V2, which have different symmetries according
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Charge dynamics in strongly-correlated electronic systems

Fig. 3. (Color online) Inverse static charge susceptibility χ−1
q for n = 0.7 at V2 = 0.2 depending

on the parameter V1: V1 = 0.3 (blue, solid line), V1 = 0.6 (brown, dotted line), V1 = 0.9 (black,

dash line).

Fig. 4. (Color online) Inverse static charge susceptibility χ−1
q for n = 0.7 at V1 = 0.3 depending

on the parameter V2: V2 = 0.2 (blue, solid line), V2 = 0.4 (brown, dotted line), V2 = 0.6 (black,
dash line).

to (3), CDWs can arise either along the direction Γ(0, 0)→ M(π, π) as V1 increases

or along the direction Γ(0, 0) → X(π, 0) as V2 increases. As mentioned above, the

static charge susceptibility is finite as q → 0 and shows no instability. As discussed

in Sec. 1, in experiments CDWs were found in the quasi-elastic energy region at

small wave-vectors qx = 0.2− 0.3, which we also observed for the dynamical charge

susceptibility at low-energy as discussed in the next section.

The charge fluctuation correlation function 〈NqN−q〉 (26) depending on the elec-

tronic concentration is shown in Fig. 5. Its doping and the wave-vector dependence

resembles the one of the static susceptibility χq. In the classical limit, at high-

temperatures 〈Nq N−q〉 = Tχq. The temperature dependence of the static charge

susceptibility χq and 〈NqN−q〉 is weak because of the weak temperature dependence

of the functions mq and Ω2
q, which is determined by the Fermi distribution in the

correlation function Nσ(q) (27). The QMC simulation for finite clusters show sim-

ilar to Fig. 5, wave-vector dependence for the charge correlation function for the

Hubbard model [see Fig. 4.5(a) in Ref. 17] and for the t–J model [see Fig. 3(b) in

Ref. 18].
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Fig. 5. (Color online) Correlation function 〈NqN−q〉 for n = 0.7 (blue, solid line), n = 0.8
(brown, dotted line), n = 0.9 (black, dash line).

3.2. Dynamical charge susceptibility

The spectral density of charge fluctuations (21) is calculated using the relations

for the charge excitation energy Ωq (25) and the real and imaginary parts of the

memory function (22) are given in the Appendix A, Eqs. (A.21), (A.23). At first,

we consider the charge fluctuation damping Γ(q, ω). Figures 6–8 show the energy

dependence of the damping for several values of wave-vectors and electron concen-

trations n = 0.9, 0.8, 0.7. The damping tends to zero for ω → 0 and have a broad

maximum at the energy of the order of Ωq ∼ t. Figure 9 demonstrates the damping

at the charge excitation energy Γ(q, ω = Ωq). The damping greatly increases at low

hole concentrations as shown for n = 0.9, where electron correlations are strong and

reveals maxima at X(π, 0) and M(π, π) points of the BZ. In that case, the damping

Γ(q, ω) becomes of the order of the charge excitation energy Ωq that results in a

broad spectrum of the spectral density I(q, ω) as shown in Figs. 10 and 11. At

high-energy of the order of the charge excitation energy Ωq = 1− 1.5 at large hole

doping, in particular at n = 0.7, the damping becomes weaker, Γ(q, ω) ∼ 0.5, and

a maximum in I(q, ω) emerges at this energy as shown in Figs. 10 and 11. Similar

Fig. 6. (Color online) Γ((0.0), ω) at temperature T = 0.02 for n = 0.7 (blue, solid line), n = 0.8

(brown, dotted line), n = 0.9 (black, dash line).
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Charge dynamics in strongly-correlated electronic systems

Fig. 7. (Color online) Γ((π, 0), ω) at temperature T = 0.02 for n = 0.7 (blue, solid line), n = 0.8

(brown, dotted line), n = 0.9 (black, dash line).

Fig. 8. (Color online) Γ((π, π), ω) at temperature T = 0.02 for n = 0.7 (blue, solid line), n = 0.8

(brown, dotted line), n = 0.9 (black, dash line).

Fig. 9. (Color online) Γ(q,Ωq) along the main directions in the BZ: Γ(0, 0) → X(π, 0) →
M(π, π) → Γ(0, 0) at temperature T = 0.02 for n = 0.7 (blue, solid line), n = 0.8 (brown,
dotted line), n = 0.9 (black, dash line).
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Fig. 10. (Color online) I((π, 0), ω) at temperature T = 0.02 for n = 0.7. (blue, solid line), n = 0.8

(brown, dotted line), n = 0.9 (black, dash line).

Fig. 11. (Color online) I((π, π), ω) at temperature T = 0.02 for n = 0.7. (blue, solid line), n = 0.8

(brown, dotted line), n = 0.9 (black, dash line).

maximum in charge fluctuations was found in the QMC simulation for the Hubbard

model in Ref. 17 [see Fig. 4.2(b)].

The dispersions of low-energy charge excitations for ω = 0.05 ≈ 20 mev are

shown in Figs. 12 and 13 along the directions Γ(0, 0) → M(π, π) and Γ(0, 0) →
X(π, 0), respectively. We observe a maximum in excitations at small wave-vectors

which are broad at low doping and sharper and more intensive at larger doping.

The intensity of unidirectional excitations along Γ(0, 0)→ X(π, 0) is higher in com-

parison with the diagonal direction Γ(0, 0) → M(π, π) due to weaker CI repulsion

in the latter case, V3 < V2. In experiments for various cuprates, the charge density

modulation is observed unidirectionally, along the Cu–O bonds which is explained

by a stronger coupling along the bonds.

The intensity of the peaks increases for larger values of CI as demonstrated in

Fig. 14. For higher temperatures, the damping increases which results in a more

broad peak I(q, ω) with lower intensity as shown in Fig. 15. The position of the

peak in the spectral density (21) depends on the renormalization parameter, the real
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Fig. 12. (Color online) I((qx, qy), ω = 0.05) along the direction Γ(0, 0)→M(π, π) at temperature

T = 0.02 for n = 0.7. (blue, solid line), n = 0.8 (brown, dotted line), n = 0.9 (black, dash line).

Fig. 13. (Color online) I((qx, qy = 0), ω = 0.05) along the direction Γ(0, 0)→ X(π, 0) at temper-

ature T = 0.02 for n = 0.7. (blue, solid line), n = 0.8 (brown, dotted line), n = 0.9 (black, dash
line).

Fig. 14. (Color online) I((π, π), ω) at temperature T = 0.02 for n = 0.7 at V1 = 0.3 (blue, solid
line) and at V1 = 0.45 (black, dash line).
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Fig. 15. (Color online) I((π, π), ω) for n = 0.7 depending on the temperature T = 0.02 (blue,
solid line), T = 0.05 (black, dash line).

Fig. 16. (Color online) Real part of the self-energy M ′((π, π), ω) at temperature T = 0.02 for

n = 0.7 (blue, solid line), n = 0.8 (brown, dotted line), n = 0.9 (black, dash line).

Fig. 17. (Color online) Real part of the self-energy M ′((π, π), ω) for n = 0.7 depending on the
temperature T = 0.02 (blue, solid line), T = 0.05 (black, dash line).
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Charge dynamics in strongly-correlated electronic systems

part of the memory function M ′(q, ω), which is quite large as shown in Fig. 16. The

temperature dependence of M ′(q, ω) plotted in Fig. 17 for (π, π)-point of the BZ

may change the position of the peak: for low-temperature M ′((π, π), ω) is negative,

while for larger temperature, T = 0.5, it becomes positive for energies close to the

peak position at ω ∼ 1.5 which results in shifting the maximum of the peak to a

higher-energy.

4. Conclusion

We have considered behavior of the static χq and dynamic χq(ω) charge suscep-

tibilities in a system of electrons with strong correlations in the framework of the

t-J-V model at various hole doping. In several publications (see. e.g., Refs. 19–21)

the DCS was calculated in the random-phase-type approximation using the rep-

resentation for the density operator Niσ = Xσσ
i as a product of single-particle

Hubbard operators on the same unite site, Xσσ
i = Xσ0

i X0σ
i , which is not unique in

the Hubbard operator technique. In contrast to these works, we employ the origi-

nal representation for the density operator (11) and have calculated the collective

density–density GF. An exact representation for the DCS was derived within the

projection method for the relaxation function. The memory function, both its real

and imaginary parts, were calculated in the self-consistent Born approximation.

Studies of the static charge susceptibility have shown that for low hole

concentrations it is small but strongly increases with doping. For a sufficiently

strong intersite Coulomb repulsion, χq diverges (χ−1
q vanishes)) and CDWs arise

in the system either along the diagonal of the unit cell (near the M(π, π)-point

of the BZ) or along the edge of the unit cell (near the X(π, 0)-point of the BZ).

The susceptibility weakly depends on other model parameters such as the anti-

ferromagnetic exchange interaction J . Taking into account the damping of charge

fluctuations described by the imaginary part of the memory function, we have found

out that at low hole concentrations, e.g., for δ = 1 − n = 0.1, due to strong cor-

relations only a broad spectrum of overdamped charge fluctuations is observed. At

large hole concentrations, the Fermi-like type behavior emerges and well-defined

high-energy charge excitations appear close to M(π, π)- and X(π, 0)-points of the

BZ. The dispersion of low-energy excitations demonstrates a maximum at small

wave-vectors with the higher unidirectional intensity comparable with quasi-elastic

excitations observed in experiments but with a weaker intensity at small doping

contrary to experiments.

It should be pointed out that in the framework of the t-J-V model (1) derived

for the Zhang-Rice singlets,39 the inner structure of the unit cell of CuO2 is not

taken into account. Therefore, we cannot describe the d-wave CDWs detected in

experiments at the oxygen sites or compare the obtained results quantitatively

with experiments in cuprates. To study this problem, the more general p–d Emery

model40 should be considered where the matrix GF for p and d electron operators

should be calculated which is beyond the scope of the present paper.
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Appendix A. Memory Function

To calculate the relaxation function Φq(ω) (15), we use the projection method23,24

by composing the equations for the function Φq(t − t′) (13) after successively dif-

ferentiating it with respect to two times, t and t′. In this case, we obtain a system

of equations for the Fourier components of the relaxation functions as

ω((Nq |N−q))ω = χq + ((iṄq |N−q))ω, (A.1)

ω((iṄq |N−q))ω = ((iṄq | −iṄ−q))ω. (A.2)

The inhomogeneous term Eq. (A.1) is equal to (Nq, N−q) = χq, while in Eq. (A.2),

it is equal to zero, (iṄq, N−q) = 〈[Nq, N−q]〉 = 0. The solution of this set of

equations can be written as

Φq(ω) = Φ0
qω) + Φ0

q(ω)Tq(ω)Φ0
q(ω), Φ0

q(ω) = χq/ω, (A.3)

where we introduce the first-order scattering matrix as the current relaxation func-

tion jq = Ṅq = −i[Nq, H] as

Tq(ω) = (1/χq
2) ((jq | j−q))ω. (A.4)

To take only the irreducible part of the time dependence into account in the

scattering matrix, we define the memory function of the first-order M0
q(ω) =

((jq | j−q))
(irr)
ω according to the equation

Tq(ω) = M0
q(ω)/χ2

q + (M0
q(ω)/χ2

q) Φ0
q(ω)Tq(ω), (A.5)

which does not include the parts coupled by the “zero” relaxation function Φ0
q(ω).

Introducing the irreducible part of the time dependence for the current relaxation

function is equivalent to the introduction of the projected Liouville operator for

the time dependence of the correlation functions in the Mori method.23 Using the

function M0
q(ω), we can write the solution of Eq. (A.3) in the form

Φq(ω) =
χq

ω −M0
q(ω)/χq

. (A.6)

For a consistent description of the charge density fluctuations, we must consider the

second-order equation for the relaxation function by composing the equation for the

memory function M0
q(t−t′) by differentiating it with respect to two times, t and t′.

Introducing the memory function Mq(ω) as the irreducible part of the scattering

matrix in the equation for M0
q(ω) as in (A.3), we can write the corresponding

solution as

M0
q(ω) =

mq

ω −Mq(ω)
. (A.7)

Here, the inhomogeneous term in the equation for M0
q(t− t′) becomes

mq = (iṄq | −iṄ−q) = 〈[iṄq, N−q]〉, (A.8)
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and the memory function Mq(ω) is determined by the irreducible part of the “force”

relaxation function Fq = (d/dt)jq = N̈q as

Mq(ω) = (1/mq) ((Fq |F−q))(irr)
ω . (A.9)

Taking relations (A.6) and (A.7) into account, we can write the relaxation function

in the form given by Eq. (17):

Φq(ω) = χq
ω − ωMq(ω)/mq

ω2 − Ω2
q − ωMq(ω)/mq

. (A.10)

To complete the derivation of the relaxation function (A.10), we should calculate

the correlation function mq and the energy of charge density fluctuations Ω2
q in

Eq. (23). The function mq is defined by the first derivative of the density operator.

Using the commutation relations of the HOs for the Hamiltonian (1), we obtain

iṄi = [Ni, H] = −
∑
j,σ

tij(X
σ0
i X0σ

j −Xσ0
j X0σ

i ). (A.11)

Then for the correlation function, we have

mij = 〈[iṄi, Nj ]〉 = 2δi,j
∑
m

tim〈Xσ0
i X0σ

m 〉 − 2tij〈Xσ0
i X0σ

j 〉+ H.c. (A.12)

Using the Fourier transformation of mij , we get Eq. (24).

For calculation of the energy of charge density fluctuations Ω2
q in Eq. (23), we

should consider the second derivative −N̈i. Using the commutation relations of the

HOs, we obtain

−N̈i = [[Ni, H], H] =
∑

jm,σσ′

tim

[
(tmjX

σ0
i Bσ

′σ
m X0σ′

j − tij Xσ0
m Bσ

′σ
i X0σ′

j )

− 1

2
(JmjX

σ0
i X0σ′

m − JijXσ0
m X0σ′

i )(Bj
σ′σ − δσ,σ′)

−δσ,σ′(Vmj − Vij)NjXσ0
i X0σ

m

]
+ H.c., (A.13)

where due to the completeness relation (8), we have

Bσ
′σ

j = (X00
j +Xσσ

j )δσ′σ +X σ̄σ
j δσ′σ̄ = (1−Nj/2 + σSzj )δσ′σ + Sσ̄j δσ′σ̄.(A.14)

The Fourier transformation of Eq. (A.13) results in the relation

−N̈q =
1

N

∑
σσ′

∑
k,p

[t(p)− t(q− p)]

{[
t(k)− 1

2
J(k + p)

]
Xσ0

q−pX
0σ′

k Bσ
′σ

k+p

+ δσσ′V (k + p)Xσ0
q−pX

0σ
k Nk+p

}
+ H.c. (A.15)

Now, we consider the scalar product (−N̈q, N−q). The second derivative −N̈i (A.13)

in the direct space reveals that it depends on products of three fermionic- and
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bosonic-type operators which refer to different lattice sites and therefore their

correlation function, can be decoupled into independent correlation functions. For

instance, we can write

(Xσ0
q−pB

σ′σ
k+pX

0σ′

k , N−q) = 〈Xσ0
q−pX

0σ′

k 〉(Bσ
′σ

k+p, N−q)

= −(1/2)δq−p,kδσ′σ〈Xσ0
k X0σ

k 〉(Nq, N−q), (A.16)

where only the number operator Ni in Bσ
′σ

j in (A.14) gives a contribution to the

scalar product. Using this approximation, we obtain for the spectrum of charge

fluctuation Eq. (25).

Now, we calculate the memory function (19) in the DCS (20) which is defined

by the equation Mq(ω) = ((Fq |F−q))irr
ω = ((N̈q | N̈−q))irr

ω . Using the spectral rep-

resentation for the retarded GFs,25 the memory function can be written as the

many-particle time-dependent correlation function

Mq(ω) =
1

2π

∫ ∞
−∞

dω′
eβω

′ − 1

ω′ (ω − ω′)

∫ ∞
−∞

dt eiω
′t〈N̈−q N̈q(t)〉irr. (A.17)

Assuming an independent propagation of electronic and charge excitations

on different lattice sites given in Eq. (A.13), we can decouple the many-

particle time-dependent correlation functions into products of single-particle time-

dependent correlation functions similar to the decoupling in Eq. (A.16) above. For

instance, taking into account that N−q = N†q for the charge fluctuation contribu-

tion, we obtain

〈X0σ
q−pX

σ0
k N†k+pX

σ′0
q′−p′(t)X0σ′

k′ (t)Nk′+p′(t)〉

= δσ,σ′δk,k′δp,p′〈X0σ
q−pX

σ0
q−p(t)〉〈Xσ0

k X0σ
k (t)〉〈N†k+p Nk+p(t)〉. (A.18)

The time-dependent correlation functions in Eq. (A.18), can be calculated from the

spectral representations25

〈BA(t)〉 =

∫ ∞
−∞

dω e−iωtf(ω)[−(1/π)]Im〈〈A |B〉〉ω, (A.19)

where f(ω) is the Fermi function n(ω) for the correlation function 〈Xσ0
k X0σ

k (t)〉 and

the Bose function N(ω) for the charge correlation functions. Considering the lowest

order approximation for the single-particle correlation functions in Eq. (A.18), we

use the MFA for the corresponding GFs:

Ak(ω) = − 1

π
Im〈〈X0σ

k |Xσ0
k 〉〉ω+iδ = Qδ(ω − ε̃k),

− 1

π
Im〈〈Np |N†p〉〉ω+iδ =

1

2Ωp
[δ(ω − Ωp)− δ(ω + Ωp)].

(A.20)

Integration over time t in Eq. (A.17) results in final formula for Mq(ω) (A.9).

In particular, for the damping of charge fluctuations (22) Γq(ω) which is

determined by the imaginary part of the memory function M ′′q (ω) = ImMq(ω+ iε),
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we obtain

Γ(q, ω) =
exp(βω)− 1

mqω

Q2

N2

∑
p,k

[
1

4
(A(q,k,p)2 +B(q,k,p)2) + C(q,k,p)2

]

× 1

Ωp
{n(ε̃k)[1− n(ε̃k−p+q)](N(Ωp)δ(ω − ε̃k + ε̃k−p+q − Ωp)

+ [1 +N(Ωp)]δ(ω − ε̃k + ε̃k−p+q + Ωp))

+ [1− n(ε̃k)]n(ε̃k−p+q)(N(Ωp)δ(ω + ε̃k − ε̃k−p+q − Ωp)

+ [1 +N(Ωp)]δ(ω + ε̃k − ε̃k−p+q + Ωp))}. (A.21)

Here, the interaction functions are given by

A(q,k,p) = [t(k− p)− t(k− p + q)]t(k),

B(q,k,p) = [t(k− p)− t(k− p + q)]J(p), (A.22)

C(q,k,p) = [t(k− p + q)− t(k− p)]V (p).

The real part of the memory function M ′q(ω) = ReMq(ω + iε) is calculated from

the dispersion relation

M ′(ω) =
1

π

∫ ∞
−∞

dω′
M ′′(ω′)

ω′ − ω
. (A.23)

It is important to point out that in the equation of motion method for the GF for

the memory function and the damping of charge fluctuations (22), we have found

out that these functions are described by the decay process of charge fluctuations

into a particle-hole pair accompanied by a bosonic excitation. In the commonly used

RPA, the decay process is described only by a creation of particle-hole pairs which

results in quite different kinematics given by the conservation laws for momenta

and energies.

Appendix B. Electronic Spectrum

To calculate the electronic spectrum in the extended t-J-V model (1) with the

intersite CI, we use the results of Ref. 34. From the equations of motion for the

single-particle GF25

Gij,σ(t− t′) = 〈〈X0σ
i (t) |Xσ0

j (t′)〉〉, (B.1)

we obtain the zero-order GF in the generalized MFA

G0
ijσ(ω) = Q{ωδij − εijσ}−1, (B.2)

where the frequency matrix

εijσ = 〈{[X0σ
i , H], Xσ0

j }〉Q−1,

Q = 〈X00
i +Xσσ

i 〉 = 1− n/2.
(B.3)
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In q-representation, the GF (B.2) and the renormalized spectrum of electronic

excitations are given by

G0(q, ω) = Q
1

ω − ε̃(q)
, (B.4)

ε̃(q) = −4t αγ(q)− 4t′ βγ′(q)− 4t′′ βγ′′(q) + ω(c)(q)− µ, (B.5)

ω(c)(q) =
1

N

∑
k

V (q− k)N(k). (B.6)

The renormalization of the spectrum (B.5) caused by the AF short-range order

is determined by the parameters

α = Q

[
1 +

C1

Q2

]
, β = Q

[
1 +

C2

Q2

]
, (B.7)

where the spin correlation functions for the first and the next neighbors are

C1 = 〈SiSi±ax/ay 〉 =
1

N

∑
q

γ(q)Cq,

C2 = 〈SiSi±ax±ay 〉 =
1

N

∑
q

γ′(q)Cq. (B.8)

For the spin correlation function Cq = 〈SqS−q〉, we take the model34

Cq =
CQ

1 + ξ2[1 + γ(q)]
, CQ =

3n

4

{
1

N

∑
q

1

1 + ξ2[1 + γ(q)]

}−1

, (B.9)

where the parameter CQ is defined from the normalization condition 〈SiSi〉 =

(3/4)n = (1/N)
∑

q Cq. The spin correlation function Cq is determined by the

AF correlation length ξ and has the maximum at the AF wave-vector Q = (π, π),

where γ(Q) = −1. The values of correlation functions C1, C2, the AF correlation

length ξ, and parameters α, β for various hole doping δ are given in Table B.1. The

contribution ω(c) (B.6) from the CI for parameters V1 = 0.3, V2 = 0.2 appears to

be small, of the order of few percents, and is ignored in the calculations.

For the hopping parameters t′ = 0.1t, t′′ = 0.2t, we obtain the electronic spec-

trum shown in Fig. B.1, which is similar to that calculated within the Hubbard

Table B.1. Static spin correlation functions
C1, C2, AF correlation length ξ, and the
renormalization parameters (B.7) at various

hole concentrations δ = 1− n.

δ = 0.05 0.10 0.20 0.30

C1 −0.26 −0.21 −0.14 −0.10

C2 0.16 0.11 0.06 0.04
ξ 3.40 2.50 1.70 1.40

α 0.03 0.17 0.37 0.50

β 0.83 0.75 0.72 0.71
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Fig. B.1. (Color online) Dispersion of the electron spectrum along the main directions in the

BZ: Γ(0, 0)→ X(π, 0)→M(π, π)→ Γ(0, 0) for n = 0.7 (blue, solid line), n = 0.8 (brown, dotted
line), n = 0.9 (black, dash line), n = 0.95 (red, dash-dotted line).

Fig. B.2. (Color online) Fermi surface in the quarter of the BZ for n = 0.7 (blue, solid line),
n = 0.8 (brown, dotted line), n = 0.9 (black, dash line), n = 0.95 (red, dash-dotted line).

model in Ref. 37 (for details see Ref. 36). Namely, the renormalization of the spec-

trum induced by the spin correlation functions (B.8) provides the FS ε̃kF = 0 with

hole pockets at low doping as shown in Fig. B.2. Note that emerging of the hole

pockets results in the pseudogap state with a low density of states in the region

close to (±π, 0), (0,±π) points in the BZ.
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