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Abstract
We develop theory of realizing different types of hybrid entanglement between
discrete-variable (single photon) and continuous-variable states (coherent states). The
key mechanism for generating such hybrid entangled states is thanks to superposing
microscopic discrete-variable statewithmacroscopic continuous-variableSchrodinger
cat state on highly transmissive beam splitter followed by measurement strategies in
such away that all the information about the amplitude of the continuous-variable state
is erased. Conditions for obtaining the balanced hybrid entangled states are established
and their degree of entanglement is evaluated.

Keywords Displaced number states · DV–CV interaction · Schrodinger cat state

1 Introduction

In optical quantum information processing, there are two different approaches
described in discrete-variable (DV) [1] and continuous-variable (CV) [2] frameworks.
The approaches use one of the aspects of the particle–wave duality [3]. Many proto-
cols employ the particle-like discrete nature of light (e.g., superposition of vacuum and
single photon a0|0〉 + a1|1〉 or superposition of horizontally and vertically polarized
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photons a0|H〉 + a1|V 〉) to encode quantum information. Maximally entangled states
from four-dimensional Hilbert space are required to implement quantum protocols
with such DV states. Alternatively, the CV approach employs states which are deter-
mined in infinite-dimensional space such as coherent states |±α〉 or Schrodinger cat
states a0|−α〉±a1|α〉withmacroscopic continuous amplitudes±α [4]. Each approach
has its own inherent advantages and drawbacks [5–10]. The Bell measurement is the
main ingredient of quantum teleportation and construction of two-qubit controlled-X
operation [5], so its practical implementation is one of the major problems in quantum
information processing. Since only two of four Bell states can be discriminated by
linear optics and photodetection [6], the protocols succeed only with 50% [7, 8] or
even 25%probability [9], respectively. Theoretical schemes proposed in [1] can hardly
be realized at least at the current level of technological development. As for the CV
approach, an entangled resource can be provided, say, by a two-mode squeezed state
[2], but CV teleportation fidelity cannot be deterministic because CV resources are not
maximally entangled [10]. Recently, generation of multi-photon states entangled in
their dual wave–particle natures as well as possibility of continuous transitions back
and forth between wave-like and particle-like behavior are theoretically proposed [11,
12] and experimentally demonstrated [12]. Such refined manifestation of the wave—
particle duality promises potential applications by encoding information in terms of
the wave–particle degrees of freedom.

In the optical domain, coherent states as macroscopic states of light are most suited
in the CV framework, while single-photon states as microscopic ones are the best
candidates in the DV framework. A state that incorporates both DV and CV compo-
nents is called hybrid. Realization of hybrid entanglement is of great interest for some
reasons. On one side, it may answer fundamental questions underlying principles of
the separation between the classical and quantum worlds, for example, the question
concerning the so-called Schrödinger cat paradox [13] where macroscopic classical
states are entangled with microscopic quantum ones. On the other side, combining
both approaches to realize hybrid architecture may overcome the current limitations
[14–17]. Experimental aspects of generation of various hybrid entangled states have
been a subject of intense research [18–20].Different types of optical arrangements have
been proposed for the generation. General features of the hybridDC–CVentanglement
that could be exploited for advanced quantumoptical technologies are analyzed in [21],
relying on various manifestations of the photon subtraction technique by recording a
certain measurement outcome in an auxiliary mode. All the above-mentioned proto-
cols exploit the interaction between CV states in infinite-dimensional Hilbert spaces
and DV states in finite-dimensional Hilbert spaces. But, of interest are also hybrid
entangled DV states living in Hilbert spaces with arbitrarily different dimensions [22].

Here, we study a more general mechanism for generating DV–CV entanglements
using peculiarities of interaction between DV and CV states (DV–CV interaction).
The mechanism relies on indistinguishably displacing DV state in the phase space at
the same time by equal-in-magnitude but opposite-in-sign macroscopic displacement
vectors. Such operation can be done by mixing the DV state of interest with big-size
Schrodinger cat by means of highly transmissive beam splitter (HTBS) [23–25]. The
displacement should be performed in such a way that all information about the amount
by which the interested DV state is displaced in the phase space is totally erased. Such
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information erasing is achieved by counting photon number in the auxiliary output
modes heralding generation of the desired hybrid state. The feature of the DV–CV
interaction on a HTBS rests in the fact that the sign of the amplitude of the displaced
state in the measurement carried out in the number state basis changes when the
displacement vector changes its sign [26–28]. It is related to action of the controlled-Z
gate on theDVqubit. Thismethod proves to be universal allowing us to realize different
types of hybrid states. In particular, in this work we are concerned with generation of
two types of hybrid entangled states. The first type consists of coherent components
and single-rail qubit composed of the vacuum state and the single-photon state. The
second type is in terms of dual-rail photonic qubit. The generation schemes for the two
types of hybrid entangled states differ by an additional procedure of the displacement
in the auxiliary mode. We also establish the conditions to obtain the balanced hybrid
states whose degree of entanglement is evaluated by means of relevant entanglement
measures. The effectiveness of our entanglement generation schemes in terms of the
success probability and the fidelity is considered as well.

2 DV–CV interactions

2.1 Hybrid entanglement between a CV and a single-rail DV states

Consider a typical optical device, the beam splitter (BS), which is described by the
following unitary matrix

BS �
[
t −r
r t

]
, (1)

where t and r are, respectively, the transmittance and reflectance coefficients, satisfying
the normalization condition t2 + r2 � 1. The action of the BS on two coherent states
|α〉1|β〉2 with α and β the corresponding amplitudes, which are assumed for simplicity
to be real and positive, reads

BS|α〉1|β〉2 � |αt + βr〉1|βt − αr〉2. (2)

In a particular case, in which t ≈ 1 (i.e., r ≈ 0), β � 1 and ρ an arbitrary state
one has [29]

BS(ρ ⊗ |β〉〈β|)BS+ ≈ D(α)ρD+(α) ⊗ |β〉〈β|, (3)

with

α � βr (4)

in the limit case of t � 1. In (3), D(α) is the displacement operator whose definition
is given by (A1) in “Appendix A”, where α is displacement amplitude, the symbol ⊗
means tensor product and D+(α) is Hermitian conjugate of D(α). The action of D(α)
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Fig. 1 A schematic representation for generation of the hybrid state |Ψn〉12 in Eq. (9), using a highly
transmissive beam splitter (HTBS) to mix a CV cat state |β+〉 in Eq. (6a) with mode 3 of a DV state |ϕ〉23
in Eq. (7), which is produced by a source S. APD is commercially achievable avalanche photodiode

on aFox state |n〉yields the so-called displaced number state |n, α〉.Thedecomposition
of |n, α〉 in terms of Fox states aswell as other relevant formulas are given in “Appendix
A”. Note that in (3), when |β〉 is replaced by |−β〉 one has

BS(ρ ⊗ |−β〉〈−β|)BS+ ≈ D(−α)ρD+(−α) ⊗ |−β〉〈−β|. (5)

Note that although βmay be very large (β → ∞) and r may be very small (r → 0),
one may control them so as to keep α in (4) finite, α � const. In real experiments,
r 
� 0 and β 
� ∞, so the approximate sign is used in Eqs. (3) and (5).

Of interest in the CV framework are Schrödinger cat stateswhich are superpositions
of coherent states like these

|β〉+ � N+(|−β〉 + |β〉), (6a)

|β−〉 � N−(|−β〉 − |β〉), (6b)

where the factors N± � (
2
(
1 ± exp

(−2β2
)))−1/2

are the normalization parameters.
As for the DV framework, the dual-rail state of a single photon involving two spatial
modes of the form

|ϕ〉23 � a0|01〉23 + a1|10〉23, (7)

with |a0|2 + |a1|2 � 1, plays an important role. The state (7) can be created by sending
a photon through one input of a BS. If states (6a) and (7) are the two inputs of the
HTBS (see Fig. 1), then, using the mathematical derivation detailed in “Appendix B”,
we have

BS13
(|β+〉1|ϕ〉23

) → N+F
∞∑
n�0

c1n(α)

NnN
(tot)
n

|Ψn〉12|n〉3. (8)
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Here, we introduce the following two-mode entangled hybrid states

|Ψn〉12 � N (tot)
n

(
|−β〉1

∣∣∣ϕ(+)
n

〉
2
+ (−1)n−1|β〉1

∣∣∣ϕ(−)
n

〉
2

)
(9)

and the single-rail state of a photon composed of the vacuum and the single-photon
states

∣∣∣ϕ(±)
n

〉
2

� Nn(a0|0〉2 ± a1An|1〉2). (10)

In the above expressions

Nn �
(
|a0|2 + |a1|2|An|2

)−1/2 �
(
1 +

(
|An|2 − 1

)
|a1|2

)−1/2
, (11)

N (tot)
n �

(
2
(
1 + (−1)n−1N 2

n exp
(
−2β2

)(
1 −

(
1 + |An|2

)
|a1|2

)))−1/2
(12)

are the normalization factors, F � exp
(−α2/2

)
, while c1n(α) and An are defined by

(A15) and (B4). Clearly from (8), registration of n photons in mode 3 generates the
state |Ψn〉12 in Eq. (9), with a probability equal to

Pn(α) � N 2
+F

2 |c1n(α)|2
N 2
n N

(tot)2
n

. (13)

As it should be, the success probabilities sum up to 1, i.e.,
∑∞

n�0 Pn(α) � 1, in the
limit of t → 1 (r → 0), due to (A10).

2.2 Hybrid entanglement between a CV and a dual-rail DV states

Next, consider another type of DV–CV interaction with the DV state in the form of
two-photon entanglement occupying simultaneously four spatial modes

|φ〉3456 � a0|0101〉3456 + a1|1010〉3456, (14)

which can be created by sending each mode of the polarization-entangled state of the
form a0|HV 〉34 + a1|V H〉34, with H(V ) denoting horizontal (vertical) polarization,
through a polarization beam splitter. The optical scheme for this type of DV–CV
interaction is shown in Fig. 2 which consists of two HTBSs. One HTBSmixes an even
Schrödinger cat state |β+〉1, in Eq. (6a), with mode 5 of |φ〉3456, whereas an additional
coherent state |−β1〉2 (β1 > 0) is mixed on the other HTBS with mode 6 of |φ〉3456.
Using the mathematical derivation detailed in “Appendix C” gives

BS15BS26
(|β+〉1|−β1〉2|φ〉3456

)

→ N+F
2|−β〉2

∞∑
n�0

∞∑
m�0

c0n(α)c1m(α1)

NnmN
(tot)
nm

|Ψnm〉134|nm〉56, (15)
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Fig. 2 A schematic representation for generation of the hybrid state |Ψnm 〉134 in Eq. (16), using two highly
transmissive beam splitters (HTBSs), one (the other) is to mix a CV cat state |β+〉 (coherent state |−β〉) with
mode 5 (mode 6) of a DV state |ϕ〉3456 in Eq. (14), which is produced by a source S. APD is commercially
achievable avalanche photodiode

with finite α � βr and α1 � β1r ,

|Ψnm〉134 � N (tot)
nm

(
|−β〉1

∣∣∣ϕ(+)
nm

〉
34

+ (−1)n|β〉1
∣∣∣ϕ(−)

nm

〉
34

)
, (16)

∣∣∣ϕ(±)
nm

〉
34

� Nnm(a0|01〉34 ± a1Anm |10〉34) (17)

and the normalization factors

Nnm �
(
|a0|2 + |a1|2|Anm |2

)−1/2 �
(
1 +

(
|Anm |2 − 1

)
|a1|2

)−1/2
, (18)

N (tot)
nm �

(
2
(
1 + (−1)nN 2

nm exp
(
−2|β|2

)(
1 −

(
1 + |Anm |2

)
|a1|2

)))−1/2
, (19)

with Anm derived in (C11). From (15), it follows that co-detection of n photons in
mode 5 andm photons in mode 6 leads to generation of the hybrid entangled state (16)
that comprises CV coherent states with opposite-in-sign amplitudes and DV dual-rail
single-photon states, with a probability in the large-t (small-r ) limit equal to

Pnm(α, α1) � N 2
+F

2(α)F2(α1)
|c0n(α)|2|c1m(α1)|2

N 2
nmN

(tot)2
nm

. (20)
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These success probabilities are already normalized for any α and α1 since it is
straightforward to verify from (A10) that

∑∞
n,m�0 Pnm(α, α1) � 1.

Let us now discuss physical basis of our generation schemes. The hybrid entangled
states in Eqs. (9) and (16) are generated if all the amplitude information of the CV
state is erased. To erase this information, measurements aim to detect photon numbers
in the auxiliary modes. The key point in our problem is then the decomposition of
displaced number states over Fock ones (A6). The matrix elements cln(α) are written
in (A8) as αn−l times a bracketed factor. Since the bracketed factor depends only on
the absolute value of the displacement amplitude |α|, it is invariant with respect to the
transformation α → α exp(iϕ) with any angle ϕ. As for αn−l , it determines the phase
of the matrix elements when the displacement amplitude is rotated in the phase plane.
So, the matrix elements c0n(α) are those of the coherent state as seen in (A14) and
acquire a factor (−1)n under the change α → −α. As for the matrix elements c1n(α)

in Eq. (A15), it determines the displaced single photon and acquires a factor (−1)n−1

under the same changeα → −α. This difference in theway thematrix elements cln(α)

change in accordance with the change in the parity of the displaced state is akin to the
nonlinear action of two-qubit controlled-Z gate. Note, however, that this mechanism
does not work for the target entangled states in the polarization encoding like

|ϕ〉2 � a0|H〉23 + a1|V 〉2, (21)

or

|φ〉34 � a0|HV 〉34 + a1|V H〉34, (22)

as the states |H〉 and |V 〉, though have different polarizations, possess the same parity.
The coherent components of the cat (6a) simultaneously displace the target qubit
in indistinguishable manner on HTBS by the values which have opposite signs. All
information about the displaced values experienced by the target qubit disappears after
the measurement, and this uncertainty forms the superposed hybrid state. Additional
amplitude factors An in (10) and Anm in (17) appear as inherent parts of the DV–CV
interaction on HTBS. A coherent auxiliary state |−β〉2 in mode 2 is used to realize
the state (16). This state does not change the sign of c0n(α) and c1n(α).

To assess the quality of our schemes, we calculate the fidelities Fidn and Fidnm
between the states (9) and (16), which are obtained in the large-t (small-r) limit, and
the actual ones, which are generated with finite t and r . Using the expression (B16)
in “Appendix B,” we have

Fidn �
(
N (tot)
n (β)N (tot)

n (β/t)N (tot)′
n (β)

)2
, (23)

with N (tot)
n (β) and N (tot)

n (β/t) given by Eq. (12), while

N (tot)′
n (β) � 2

(
exp

(
−�β
2

2

(
1 − 1

t

)2)
+ (−1)n−1N 2

n exp
(
−�β
2

2

(
1 + 1

t

)2)
(
1 − (

1 + |An|2
)|a1|2)

)
(24)
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and

Fidnm �
(
N (tot)
nm (β)N (tot)

nm (β/t)N (tot)′
nm (β)

)2
, (25)

with N (tot)
nm (β) and N (tot)

nm (β/t) given byEq. (19),while N (tot)′
nm (β) follows fromEq. (24)

by the substitutions An → Anm and Nn → Nnm . In the general case, the fidelities
depend in a complexmanner on the parameters of the experimental setup, the amplitude
of the coherent components, the displacement amplitudeα and the value of the absolute
value |a1| of the target states in (7) and (14).

3 Balanced hybrid entangled states

The states (9) and (16) in the previous section are hybrid entangled, but unbalanced
in the sense that their component terms are in general not equally weighted, i.e.,
|a0| 
� |a1||An| in (10) and |a0| 
� |a1||Anm | in (17), respectively. Interestingly, we
can establish the conditions to obtain balanced hybrid entangled states by adjusting the
initial parameters. Namely, the condition is |a0|2 � |An|2/

(
1 + |An|2

)
and |a1|2 � 1/(

1 + |An|2
)
, under which after registering n photons in mode 3 of Fig. 1, the state (9)

becomes

∣∣∣Ψ (b)
n

〉
12

� 1

2

(
|−β〉1(|0〉2 + |1〉2) + (−1)n−1|β〉1(|0〉2 − |1〉2)

)
, (26)

where the superscript (b) means “balanced” and the zero relative phase between a0
and a1 is assumed. Applying on mode 2, the Hadamard transformation H � |0〉
(〈0| + 〈1|)/√2 + |1〉(〈0| − 〈1|)/√2 brings (26) to

∣∣∣Ψ (b)
n

〉
12

� 1√
2

(
|−β〉1|0〉2 + (−1)n−1|β〉1|1〉2

)
, (27)

which is both balanced and hybrid. The corresponding success probability and fidelity
are

P(b)
n (α) � 4N 2

+F
2|c1n(α)|2 |An(α)|2

1 + |An(α)|2 , (28)

and

Fid(b)
n � exp

(
−|α|2 1 − t

1 + t

)
. (29)

We plot in Fig. 3 the dependence of P(b)
0 , P(b)

1 , P(b)
n (t � 0.9) and Fid(b)

0 � Fid(b)
1 ,

respectively, on the displacement amplitude α for different values of the transmittance
t . These top-left and top-right subfigures reveal that both the probabilities P(b)

0 and

P(b)
1 increase with increasing t for small values of α, but turn out insensitive to t when

123



Designs of interactions between discrete- and continuous-… Page 9 of 22    68 

Fig. 3 Success probability, Eq. (28), P(b)
0 (top-left), P(b)

1 (top-right), P(b)
0,1,2 (bottom-left) and fidelity,

Eq. (29), Fid(b)
n (bottom-right) as functions of α for different values of t and n as indicated in each

subfigure

α becomes large. For a given t , the success probability P(b)
n depends on both α and n

(as in the bottom-left subfigure of Fig. 3 for t � 0.9), showing on average a favor to
a smaller value of n. However, as seen from the bottom-right subfigure of Fig. 3, the
fidelity Fid(b)

n is independent of n and becoming better when t is getting closer to 1,
for the whole range of α. From the values of the displacement amplitude, we can get
the value β of the even cat size, using the relation (4).

Likewise, the generally unbalanced hybrid entangled state (16) can also be made
balanced by suitably tailoring the problem’s parameters under detection of certain
photon numbers in mode 5 and mode 6 in Fig. 2. Namely, if we impose the condition

a0 � a1Anm , then from (17)–(19) we have Nnm � 1/
(
|a0|

√
2
)
, N (tot)

nm � 1/
√
2,∣∣∣ϕ(±)

nm

〉
� (|01〉23 ± |10〉23)/

√
2 and therefore, the unbalanced state becomes

∣∣∣Ψ (b)
nm

〉
123

� 1

2

(|−β〉1(|01〉23 + |10〉23) + (−1)n|β〉1(|01〉23 − |10〉23)
)
, (30)

which can be transformed into

∣∣∣Ψ (b)
nm

〉
123

� 1√
2

(|−β〉1|01〉23 + (−1)n|β〉1|10〉23
)
, (31)

by applying the Hadamard transformation to the dual-rail single-photon state ofmodes
2 and 3 [30]. It is worthy to note that the balanced state (31) is obtained not for
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any registered photon numbers n and m, but only for those satisfying the condition
a0 � a1Anm we imposed above. More explicitly, by virtue of Eq. (C11), for given
parameters {a0, a1, α, α1}, n and m should be related so that a0α

(
m − |α1|2

) � a1α1(
n − |α|2). In particular, if we set a0 � a1 � 1/

√
2 andα � α1, then a balanced hybrid

entanglement is generated whenever n � m. The corresponding success probability
can then be derived as

P(b)
nn (α) � 2N 2

+F
4(α)|c0n(α)|2|c1n(α)|2. (32)

The fidelity to generate the state (30) coincides with (29) derived for production
of the state (26). If the numbers of photons detected in modes 5 and 6 in Fig. 2 are
different, i.e., n 
� m, then some terms of the superposition state

|Ψnm 〉123 � N (tot)
nm

(
|−β〉1Nnm (|01〉23 + Anm |10〉23)/

√
2 + (−1)n |β〉1Nnm (|01〉23 − Anm |10〉23)/

√
2
)

(33)

acquire an additional amplitude factor Anm in the case of |a0| � |a1| � 1/
√
2. The

dependencies of P(b)
00 (α) and P(b)

11 (α) on the displacement amplitude α are shown in
the top-left and top-right subfigure of Fig. 4, respectively, for different values of the
experimental parameter t . As can be seen from the subfigures, an increase in t leads to
a slight increase in the success probabilities under small values of α. In case of n 
� m
(see the bottom-left subfigure of Fig. 4) shows the dependence of P01(α) � P10(α)

on α : the probabilities decrease with increasing α. Note that the state (31) can also be
transformed into the hybrid entangled state with single photon in polarization basis

∣∣∣Ψ (b)
nn

〉
12

� 1√
2

(|−β〉1|H〉2 + (−1)n|β〉1|V 〉2
)

(34)

with the help of a polarizer and a polarization beam splitter. In practice, implementing
the Hadamard operation for a single-rail qubit by linear optics is a rather complicated
problem. But, we can realize the state (27) by the same technique that was used to
generate the states (9) and (16). Mixing mode 3 of the state (31) with a coherent
state with some amplitude β2 chosen such that c0n(γ ) � c1n(γ ), where β2 and γ are
connected by the relation (4), and registering n photons in the auxiliary mode, the state
to be obtained is that of (27). This condition is satisfied in the case of the displacement

amplitude γ1 �
(
−1 +

√
1 + 4n

)
/2 and γ2 �

(
−1 − √

1 + 4n
)
/2.

At this moment, we would like to remark that the balanced state (30) but not
state (33) will also be obtained under another condition a0 � −a1Anm , which for
a0 � a1 � 1/

√
2 implies Anm � −1. Then, for α � α1, the detected photon numbers

n and m that herald the generation of state (30) obey the relation n +m � 2|α|2. This
clearly reveals that n and m could be largely different if |α|2 � 1. In particular, when
either n � 0, m � 1 or n � 1, m � 0 we have |α| � 1/

√
2. With this value of

the displacement amplitude, it turns out that the state (30) is indeed generated for the
measurement outcomes being either |01〉56 or |10〉56. The bottom-right subfigure of
Fig. 4 shows the dependence of the success probability to realize the state (30) on the
transmittance t in the case of |α| � 1/

√
2. Here, four measurement outcomes |00〉56,
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Fig. 4 Success probabilities, Eq. (32), P(b)
00 (top-left), P(b)

11 (top-right), the success probability, Eq. (20),

P01 � P10 (bottom-left) and the sum of some success probabilities P(b) � P(b)
00 + P(b)

11 + P01 + P10
(bottom-right) of producing the hybrid entangled states (30) and (33) with |a0| � |a1| � 1/

√
2 in (14)

as functions of α or t for different parameters indicated in the figure legends. The black curve in the
bottom-right subfigure corresponds exclusively to the generation of the balanced state (30)

|01〉56, |10〉56 and |11〉56 give their contribution to the generation. The probability of
success is increased in this situation compared to that in the top-left and top-right
subfigure of Fig. 4.

More generally, relaxing any constraints on α, α1 the state (30) appears for arbitrary
n 
� m if the condition |a0| � |a1||Anm | is imposed, which is valid when |a1|2 �
1/

(
1 + |Anm |2). Then, if n and m photons are registered in mode 5 and mode 6,

respectively, the state (30) is generated with the probability

P(b)
nm (α) � 4N 2

+F
4|c0n(α)|2|c1n(α)|2 |Anm(α, α1)|2

1 + |Anm(α, α1)|2
(35)

and the fidelity given by Eq. (29). Note that expression (35) goes into formula (32) in
the case of n � m as |Ann(α, α1)| � 1 for α � α1. Numerical results show similar
dependencies of the success probability on the displacement amplitude as in Fig. 4.

The possibility to generate the hybrid state with coherent and one-photon single-rail
components was experimentally demonstrated [19] with the target being the two-mode
squeezed state

|ϕ1〉si � Nλ(|00〉si + λ|11〉si ), (36)
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which appears as output from optical parametric down-conversion for the signal s and
idler i modes in the very low gain limit, with Nλ the normalization factor. Then, using
the same calculation technique for Fig. 1a, we can obtain the state (9) with one-photon
single-rail components

∣∣∣ϕ(±)
n

〉
2

� Nn

(
|0〉2 ± λA−1

n |1〉2
)
. (37)

The success probability in this setup is the same as given by Eq. (13) with c1n
(α) and Anm replaced by c0n(α) and A−1

nm , respectively. By imposing the condition
λA−1

n � 1, the balanced hybrid entangled state (26) can be produced.
Finally, we also give an example of hybrid converter enabling tomap discrete qubits

to coherent state ones. Let us take the state (31) and use a beam splitter to perform the
transformations |01〉23 → t |01〉23 + r |10〉23 and |10〉12 → t |10〉12 − r |01〉12. Then,
due to simultaneous presence of a single photon in bothmodes and indistinguishability
between the events, the following superpositions of coherent states

|Φ1〉1 � N1(t |−β〉 − r |β〉)1 (38a)

and

|Φ2〉1 � N2(r |−β〉 + r |β〉)1, (38b)

with N1,2 the corresponding normalization factors, are expected to obtain, provided
that the following measurement outcomes |01〉23 and |10〉23, respectively, are found.
The states (38a) and (38b) can be considered as CV qubits subjected to a one-qubit
transformation in basis |±β〉.

4 Degree of entanglement

The hybrid entangled states (27) and (31) are though balanced, but this does not
mean that they are maximally entangled. The reason rests in the non-orthogonality
of the component coherent states which have the same size but opposite signs. To
evaluate to which extent those states are entangled (i.e., the degree of their entan-
glement), a relevant entanglement measure should be used and computed. One of
the entanglement measures is the so-called negativity [31] which is easy to com-
pute in a four-dimensional Hilbert space. This quantity is derived from the positive
partial transpose (PPT) criterion for separability [32] and possesses all required prop-
erties for the entanglement measure. The negativityN of a bipartite composed system
AB characterized by a density matrix � is defined by N � (∥∥�TA

∥∥ − 1
)
/2, where

�TA is the partial transpose of � with respect to the subsystem A and
∥∥�TA

∥∥ � Tr∣∣�TA
∣∣ � Tr

√(
�TA

)+
�TA is the trace norm of the sum of the singular values of the

operator �TA , where
(
�TA

)+
means Hermitian conjugate operator of original �TA . The

maximum value of the negativity of a quantum state is one, i.e., Nmax � 1, which
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indicates that the corresponding state is maximally entangled. For the states (27) and
(31), our calculation yields

N �
√
1 − exp

(−4|β|2), (39)

which tends to 1 (N → Nmax) in the case of an infinitely large value of the amplitude
of the coherent states, i.e., |β| → ∞. Thus, mathematically, the balanced hybrid
states (27) and (31) are non-maximally entangled for a finite |β|. However, since exp(−4|β|2) drops very quickly with increasing |β|, these states can be considered as
(near-)maximally entangled for sufficiently large values of the amplitude |β| as in our
cases.

Alternatively, we can also assess the degree of entanglement by another convenient
measure called concurrenceC [33]. For the most general pure state of a two-qubit sys-
tem |Ω〉12 � a

∣∣0̄〉1
∣∣0̄〉2+b

∣∣0̄〉1
∣∣1̄〉2+c

∣∣1̄〉1
∣∣0̄〉2+d

∣∣1̄〉1
∣∣1̄〉2 with { ∣∣0̄〉1,

∣∣1̄〉1} , {
∣∣0̄〉2,

∣∣1̄〉2}
some orthonormal basis for qubit 1 (2) and |a|2 + |b|2 + |c|2 + |d|2 � 1, the concurrence
is determined by

C � 2|ad − bc|. (40)

Now, to calculate the concurrence of the state (27), we make use of the
Gram–Schmidt theorem to build an orthonormal basis for the coherent states as

∣∣0̄〉 �
|β〉 and

∣∣1̄〉 � (|−β〉 − Z |β〉)/√1 − Z2, with Z � 〈β|−β〉 � exp
(−2|β|2) [34].

Then, the state (27), in terms of
{ ∣∣0̄〉1,

∣∣1̄〉1} and
{ ∣∣0̄〉2 ≡ |0〉2,

∣∣1̄〉2 ≡ |1〉2
}
, becomes

∣∣∣Ψ (b)
n

〉
12

� 1√
2

(
Z
∣∣0̄〉1

∣∣0̄〉2 + (−1)n−1
∣∣0̄〉1

∣∣1̄〉2 +
√
1 − Z2

∣∣1̄〉1
∣∣0̄〉2

)
. (41)

Similarly, for the state (31), in terms of
{∣∣0̄〉1,

∣∣1̄〉1} and{∣∣0̄〉2 ≡ |01〉23,
∣∣1̄〉2 ≡ |10〉23

}
, we have

∣∣∣Ψ (b)
nm

〉
12

� 1√
2

(
Z
∣∣0̄〉1

∣∣0̄〉2 + (−1)n
∣∣0̄〉1

∣∣1̄〉2 +
√
1 − Z2

∣∣1̄〉1
∣∣0̄〉2

)
. (42)

From (41) and (42), it immediately follows by virtue of (40) that the concurrence
of both the states (27) and (31) is C � √

1 − Z2 which exactly coincides with the
negativity N derived in (39) above.

5 Conclusion

We have developed the theory of interactions between the discrete-variable and
continuous-variable (DV–CV interaction) states on highly transmissive beam splitters
(HTBSs). Generation of the hybrid entanglement between DV states (single photons)
and CV ones (coherent states) has special interest in fundamental quantum mechanics
within the framework of demonstration of Schrödinger cat states [13]. The theory is
based on peculiarities of the DV–CV interaction by means of HTBS. Manipulations
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with DV and CV states are pretty well known, while the DV–CV interaction is a fairly
new and less known problem, so designing such interactions would bring notable
advantages for the implementation of quantum protocols [17]. Coherent components
of a Schrödinger cat state with opposite-in-sign amplitudes simultaneously displace
the target microscopic state in an indistinguishable manner if the subsequent regis-
tration of photons in the auxiliary mode is made. This indistinguishability gives rise
to generation of a set of the hybrid entangled states whose amplitudes differ from
each other by known values. The change in sign of the displacement amplitude leads
to the fact that the amplitudes of the decomposition of the displaced states of light
vary depending on the overall parity of the photon being registered and the target
displaced state. Thus, the hybrid entanglement arises irrespective of the number of
registered photons due to action of the mechanism of DV–CV interactions. In general,
the generated hybrid states are unbalanced (i.e., their component terms are unequally
weighted), but the initial parameters of the generation scheme can be chosen so as to
equalize the weights of the hybrid states making them balanced.

Here, two optical schemes to realize two different types of hybrid entangled states
have been proposed. One of them (see Eq. (9)) is formed from coherent components
and single-rail qubit composed of the vacuum and the one-photon states. Either state
of a single photon occupying two modes as in Eq. (7) or two-mode squeezed state
with small value of the squeezing parameter as in Eq. (36) can be served as the
target state for generation of the hybrid states. The other type of hybrid entanglement
of the form of Eq. (16) can be obtained by using two-photon four-mode state as
in Eq. (14) as the target one. Moreover, by generating the hybrid states (31) with
dual-rail photon as components, one can also transform them to those in polarization
basis as in Eq. (34). The proposed schemes can generate balanced hybrid states with
near-maximal entanglement under certain conditions which have been established in
this work. The success probabilities to generate the states of concern in dependence
on the displacement amplitude, and the HTBS parameter are obtained analytically
and shown graphically. The best strategies to generate the balanced hybrid states
with the greatest success probabilities and maximum fidelities are considered as well.
The schemes rely on a probabilistic preparation heralded by detecting the photon
numbers. In this way, noisy environment only affects the count rate but not the fidelity
of the resulting states. Therefore, the proposed method is more suitable to create
entanglement between different subsystems that differ in size or in the way they are
most conveniently described in DV and CV framework. Note that the implementation
of the optical circuits presented here requires aminimum irreducible number of optical
elements, thus increasing the effectiveness of our schemes.

Finally, we would like to note that superpositions of coherent states (SCSs) in the
form of Eqs. (6a) and (6b) are not the only ones that can be exploited to generate the
concerned hybrid entanglement. As a matter of practical experience, instead of the
states (6a) and (6b), researchers use other CV states that approximate them quite well
[35, 36]. Yet, then the following question may be raised: how good is the DV–CV
interaction for the generation of hybrid entanglement if the SCSs are replaced by their
analogues with good fidelity? Even though superposition of coherent states may be
substituted by squeezed vacuum for small size, while squeezed single photon may
approximate odd superposition of coherent states of larger amplitude, consideration
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of such delicate issues are beyond the scope of the present work but deserves sepa-
rate analysis. Nevertheless, it can be expected that the designed DV–CV interaction
mechanisms may also generate hybrid entanglement with high fidelity by using CV
states other than ECSs, implying the universality of our designs.
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02.A03.21.0011, while N.B.A. is supported by the National Foundation for Science and Technology Devel-
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Appendix A: Decomposition of displaced number state in terms
of Fock states

The displacement operator D(α) is unitary and determined by

D(α) � exp
(
αa+ − α∗a

)
, (A1)

with α the displacement amplitude and a(a+) the bosonic annihilation (creation) oper-
ator. Its action on an arbitrary pure state

|ψ〉 �
k∑

n�0

an|n〉, with
k∑

n�0

|an|2 � 1, (A2)

reads

D(α)|ψ〉 �
k∑

n�0

an|n, α〉, (A3)

where

|n, α〉 � D(α)|n〉 (A4)

is called a displaced number state, which is characterized by two numbers: a quantum
discrete number n and a classical continuous parameter α (α specifies the size of the
state [23]). Note that |0, α〉 � D(α)|0〉 � |α〉 is nothing else but the coherent state.
For a given α the states

{|n, α〉, n � 0, 1, 2, . . . ,∞}, (A5)

with the inner products 〈n, α|m, α〉 � δnm constitute the basic set of the displaced
number state. The decomposition of a displaced number state in terms of Fock states
is [23]

|l, α〉 � F
∞∑
n�0

cln(α)|n〉, (A6)
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with F � exp
(−|α|2/2) and cln(α) are determined in [26] by

cln(α) � αn−l

√
l! n!

l∑
k�0

(−1)kCk
l |α|2k

l−1∏
k�0

(n − l + k + 1), (A7)

or the same

cln(α) � αn−l

√
l! n!

⎛
⎜⎜⎜⎜⎜⎝

n(n − 1) . . . (n − l + 1) − C1
l |α|2n(n − 1) . . . (n − l + 2)

+C2
l |α|4n(n − 1) . . . (n − l + 3) + · · ·

+(−1)kCk
l |α|2k

l−1∏
k

(n − l + k + 1) + (−1)l |α|2l

⎞
⎟⎟⎟⎟⎟⎠

,

(A8)

where Ck
l � l! /(k! (l − k)!) and

l−1∏
k

(n − l + k + 1) � n(n − 1) . . . (n − l + k + 1). (A9)

The matrix elements cmn(α) in (A7) satisfy the normalization condition [26]

F2
∞∑
n�0

|cln(α)|2 � 1. (A10)

From the explicit expressions (A7) or (A8) of cln(α), it is possible to check the
following relation

cln(−α) � (−1)n−l cln(α). (A11)

Obviously, for even l (i.e., l � 2m)

c2m,n(−α) � (−1)nc2m,n(α), (A12)

and for odd l (i.e., l � 2m + 1)

c2m+1,n(−α) � (−1)n−1c2m+1,n . (A13)

In particular, for l � 0 and l � 1 one has [26]

c0n(α) � αn

√
n!

, (A14)

c1n(α) � αn−1

√
n!

(
n − |α|2

)
, (A15)
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satisfying the normalization conditions

F2
∞∑
n�0

|c0n(α)|2 � 1, (A16)

F2
∞∑
n�0

|c1n(α)|2 � 1. (A17)

One also has

c0n(−α) � (−1)nc0n(α), (A18)

c1n(−α) � (−1)n−1c1n(α). (A19)

Appendix B: DV–CV interaction for generation of hybrid entangled
states (9)

The action of HTBS on an even cat (6a) and a dual-rail one-photon state (7),

BS13
(|β+〉1|ϕ〉23

) � N+
(
BS13

(|−β〉1|ϕ〉23
)
+ BS13

(|β〉1|ϕ〉23
))

, (B1)

can be calculated term by term as follows. For the first term in the RHS of (B1), we
have

BS13
(|−β〉1|ϕ〉23

) � BS13D1(−β)D3(−α)BS+13BS13|0〉1D3(α)|ϕ〉23
� D1(−β/t)D3(0)BS13|0〉1(a0|0〉2|1, α〉3 + a1|1〉2|α〉3)

� FD1(−β/t)
∞∑
n�0

c1n(α)(a0|0〉2 + a1An|1〉2)BS13(|0n〉13),
(B2)

while the second term reads

BS13
(|β〉1|ϕ〉23

) � BS13D1(β)D3(α)BS+13BS13|0〉1D3(−α)|ϕ〉23
� D1(β/t)D3(0)BS13|0〉1(a0|0〉2|1, −α〉3 + a1|1〉2|−α〉3)

� FD1(−β/t)
∞∑
n�0

(−1)n−1c1n(α)(a0|0〉2 − a1An |1〉2)BS13(|0n〉13).

(B3)

In (B2) and (B3)

An(α) � c0n(α)

c1n(α)
� α

n − |α|2 . (B4)
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Summing up (B2) and (B3) yields

BS13
(|β+〉1|ϕ〉23

)

� FN+

( |�0(−β)〉123 + |�0(β)〉123 + r
(|�1(−β)〉123 + |�1(β)〉123

)
+r2

(|�2(−β)〉123 + |�2(β)〉123
)
+ · · ·

)
, (B5)

where

|�0(−β)〉123 � |−β/t〉1
∞∑
n�0

c1n(α)tn(a0|0〉2 + a1An|1〉2)|n〉3, (B6)

|�0(β)〉123 � |β/t〉1
∞∑
n�0

(−1)n−1c1n(α)tn(a0|0〉2 − a1An|1〉2)|n〉3, (B7)

|�1(−β)〉123 � |1,−β/t〉1
∞∑
n�1

c1n(α)tn−1√n(a0|0〉2 + a1An|1〉2)|n − 1〉3, (B8)

|�1(β)〉123 � |1, β/t〉1
∞∑
n�1

(−1)n−1c1n(α)tn−1√n(a0|0〉2 − a1An|1〉2)|n − 1〉3,
(B9)

|�2(−β)〉123 � |2,−β/t〉1
∞∑
n�2

c1n(α)tn−2

√
n(n − 1)

2!
(a0|0〉2 + a1An|1〉2)|n − 2〉3,

(B10)

|�2(β)〉123 � |2, β/t〉1
∞∑
n�2

(−1)n−1c1n(α)tn−2

√
n(n − 1)

2!
(a0|0〉2 − a1An |1〉2)|n − 2〉3.

(B11)

Using the above expressions, we can obtain the formulas (8)–(12) in Sect. 2.1.
The fidelity Fidn in (23) is derived as follows. If n photons are registered in mode

3 of Fig. 1(a), then we have, up to the first order of smallness of r ,

∣∣∣Ψ (n)
r

〉
12

� N (n)
r

(∣∣∣Ψ (n)
0

〉
12

+ r
√
n + 1

c1n+1
c1n

∣∣∣Ψ (n)
1

〉
12

)
, (B12)

where

∣∣∣Ψ (n)
0

〉
12

� N (tot)
n (β/t)

(
|−β/t〉1

∣∣∣ϕ(+)
n

〉
2
+ (−1)n−1|β/t〉1

∣∣∣ϕ(−)
n

〉
2

)
, (B13)

∣∣∣Ψ (n)
1

〉
12

� N (tot)
n1 (β/t)

(
|1,−β/t〉1

∣∣∣ϕ(+)
n+1

〉
2
+ (−1)n|1, β/t〉1

∣∣∣ϕ(−)
n+1

〉
2

)
, (B14)
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with N (tot)
n (Eq. (12)) and N (tot)

n1 the corresponding normalization factors. As for the

normalization factor N (n)
r in (B12), it is given by

N (n)
r �

⎛
⎜⎜⎜⎝

1 + r2(n + 1)
|c1n+1|2
|c1n|2

+r
√
n + 1

(
c1n+1
c1n

〈
Ψ

(n)
0 |Ψ (n)

1

〉
+

(
c1n+1
c1n

)∗〈
Ψ

(n)
1 |Ψ (n)

0

〉)

⎞
⎟⎟⎟⎠

−1/2

. (B15)

Thus, the analytical expression for the fidelity Fidn in (23) is

Fidn �
∣∣∣〈Ψn |Ψ (n)

r

〉∣∣∣2 � N (n)2
r

⎛
⎜⎜⎝

∣∣∣〈Ψn |Ψ (n)
0

〉∣∣∣2 + r
√
n + 1

×
((

c1n+1
c1n

)∗〈
Ψn |Ψ (n)

0

〉〈
Ψn |Ψ (n)

1

〉∗
+
c1n+1
c1n

〈
Ψn |Ψ (n)

0

〉∗〈
Ψn |Ψ (n)

1

〉)
⎞
⎟⎟⎠,

(B16)

up to the first order in r .

Appendix C: DV–CV interaction for generation of hybrid entangled
states (16)

Consider the following action of two HTBSs

BS15BS26
(|β+〉1 |−β1〉2 |φ〉3456

)
� N+

(
BS15BS26

(|−β〉1 |−β1〉2 |φ〉3456
)
+ BS15BS26

(|β〉1 |−β1〉2 |φ〉3456
))

.

(C1)

Following the steps of calculation as in “Appendix B”, we have

BS15BS26
(|−β〉1|−β1〉2|φ〉3456

)
� BS15D1(−β)D5(−α)BS+15BS26D2(−β1)D6(−α1)BS

+
26BS15BS26|00〉12D5(α)D6(α1)|φ〉3456

� D1(−β/t)D5(0)D2(−β1/t)D6(0)BS15BS26|00〉12(a0|01〉34|0, α〉5|1, α1〉6 + a1|10〉34|1, α〉5|0, α1〉6)
(C2)

and

BS15BS26
(|β〉1|−β1〉2|φ〉3456

)
� BS15D1(β)D5(α)BS+15BS26D2(−β1)D6(−α1)BS

+
26BS15BS26|00〉12D5(−α)D6(α1)|φ〉3456

� D1(β/t)D5(0)D2(−β1/t)D6(0)BS15BS26|00〉12(a0|01〉34|0,−α〉5|1, α1〉6 + a1|10〉34|1,−α〉5|0, α1〉6).
(C3)

Combining the decomposition (A6) with Eqs. (A18) and (A19), we obtain

BS15BS26
(|β+〉1|−β1〉2|φ〉3456

) � N+F
2 ×

⎛
⎜⎜⎝

|�0(−β, −β1)〉123456 + |�0(β, −β1)〉123456
+r

(|�1(−β,−β1)〉123456 + |�1(β, −β1)〉123456
)

+r2
(|�2(−β)〉123 + |�2(β)〉123

)
+ · · ·

⎞
⎟⎟⎠,

(C4)
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where

|�0(−β,−β1)〉123456 � |−β/t〉1|−β1/t〉2
∞∑
n�0

∞∑
m�0

c0n(α)c1m (α1)(a0|01〉34 + a1Anm |10〉34)|nm〉56,

(C5)

|�0(β, −β1)〉123456 � |β/t〉1|−β1/t〉2
∞∑
n�0

∞∑
m�0

(−1)nc0n(α)c1m (α1)(a0|01〉34 − a1Anm |10〉34)|nm〉56,

(C6)

|�1(−β,−β1)〉123456 � |1, −β/t〉1|−β1/t〉2
∞∑
n�1

∞∑
m�0

c0n (α)c1m (α1)
√
ntn+m−1(a0|01〉34 + a1Anm |10〉34)|n − 1m〉56

+ |−β/t〉1|1,−β1/t〉2
∞∑
n�0

∞∑
m�1

c0n (α)c1m (α1)
√
mtn+m−1(a0|01〉34 + a1Anm |10〉34)|nm − 1〉56 (C7)

|�1(β,−β1)〉123456 � |1, β/t〉1|−β1/t〉2
∞∑
n�1

∞∑
m�0

(−1)nc0n(α)c1m (α1)
√
ntn+m−1(a0|01〉34 − a1Anm |10〉34)|n − 1m〉56

+ |β/t〉1|1,−β1/t〉2
∞∑
n�0

∞∑
m�1

(−1)nc0n(α)c1m (α1)
√
mtn+m−1(a0|01〉34 − a1Anm |10〉34)|nm − 1〉56, (C8)

|�2(−β, −β1)〉123456 � |2, −β/t〉1|−β1/t〉2
∞∑
n�2

∞∑
m�0

c0n(α)c1m (α1)

√
n(n − 1)

2!
tn+m−2

(a0|01〉34 + a1Anm |10〉34)|n − 2m〉56

+ |0, −β/t〉1|2, −β1/t〉2
∞∑
n�0

∞∑
m�1

c0n(α)c1m (α1)

√
m(m − 1)

2!
tn+m−2

(a0|01〉34 + a1Anm |10〉34)|nm − 1〉56

+ |1, −β/t〉1|1,−β1/t〉2
∞∑
n�1

∞∑
m�1

c0n(α)c1m (α1)
√
nmtn+m−2

(a0|01〉34 + a1Anm |10〉34)|n − 1m − 1〉56, (C9)

|�2(β, −β1)〉123456 � |2, −β/t〉1|−β1/t〉2
∞∑
n�2

∞∑
m�0

(−1)nc0n(α)c1m (α1)

√
n(n − 1)

2!
tn+m−2

(a0|01〉34 − a1Anm |10〉34)|n − 2m56

+ |0, −β/t〉11 |2,−β1/t〉2
∞∑
n�0

∞∑
m�1

(−1)nc0n(α)c1m (α1)

√
m(m − 1)

2!
tn+m−2

(a0|01〉34 − a1Anm |10〉34)|nm − 1〉56

+ |1,−β/t〉1|1,−β1/t〉2
∞∑
n�1

∞∑
m�1

(−1)nc0n(α)c1m (α1)
√
nmtn+m−2

(a0|01〉34 − a1Anm |10〉34)|n − 1m − 1〉56, (C10)

with

Anm(α, α1) � c1n(α)c0m(α1)

c0n(α)c1m(α1)
� α1

(
n − |α|2)

α
(
m − |α1|2

) . (C11)

In the limit t → 1 one obtains formula (15) in Sect. 2.2.
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