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a b s t r a c t

The periodic Anderson impuritymodel on the Lieb lattice is studied
by the slave-boson mean-field approximation in the strong inter-
action limit. The electron structure of conduction electrons on the
Lieb lattice features both the band flatness and soft gap at low
energy. With these features conduction electrons can form both
the soft-gap and the molecular Kondo singlets with the magnetic
impurities, and this leads to a competition between the soft-gap
and the molecular Kondo effects in the lattice. We find a selective
Kondo strong coupling, where at selected sites the magnetic im-
purities are strongly coupled to conduction electrons, and at the
remaining sites they are decoupled from the lattice. The selective
Kondo strong coupling occurs between the full local moment and
the full strong coupling regimes, and it yields an effective lattice
depletion. At low temperature the selection of the Kondo strong
coupling is dominant at those lattice sites, where the local density
of states of conduction electrons exhibits the flat-band feature,
independently of the impurity parameters. Rich phase diagrams
for different model parameters are obtained.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Electron correlations in flat-band lattices represent an attractive field that continues to expand
its horizon. In flat-band systems the Coulomb interaction between electrons is dominant over the
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kinetic energy, and as a consequence it can be minimized without any cost in the kinetic energy. This
leads to rich phenomena of electron correlations, for instance the flat-band ferromagnetism or the
fractional quantum Hall effect without the Landau levels [1–6]. When a magnetic impurity is coupled
to electrons of the flat band, the electron correlations at the impurity become the dominant force
that leads the magnetic moment of the impurity to form a molecular Kondo singlet with the spin
of a single electron at the flat band [7–10]. In the molecular Kondo effect, all dispersive electrons
are not involved in the Kondo singlet formation [7]. This essentially yields an entanglement of two
spin qubits in solids due to the band flatness and distinguishes the molecular Kondo effect from
the conventional Kondo effect in normal metals [7]. On the other hand, the dispersive electrons in
various flat-band lattices often have additional special features at low energy. For instance, on the
edge centered square or stacked triangular lattices the electron structure of the tight-binding model
also exhibits the Dirac linear dispersion at low energy [11,12]. When a magnetic impurity is coupled
to electrons of the special dispersive band, their many-body Kondo problem is also distinguished
from the conventional one in normal metals [13,14]. In particular, the soft-gap Kondo problem has
a very rich phase diagram [13,14]. In the such way, when a magnetic impurity is embedded in flat-
band lattices, the Kondo problem can be originated from different natures, depending on the band
properties of conduction electrons, which are coupled to the impurity.

When a flat band lattice is doped with many magnetic impurities, the magnetic moment of these
impurities could be coupled with conduction electrons from flat and dispersive bands, and they
together can form the Kondo singlets with different natures, for instance, the molecular or the soft-
gap Kondo singlets. This leads to a competition between different Kondo singlet formations. One
may expect from the competition at selected sites the magnetic impurities are strongly coupled
to conduction electrons leaving the impurities at other sites are decoupled from the lattice. This
is reminiscent of the orbital-selective Mott insulator, where the narrower orbital band becomes
insulating, while the wider band is still metallic [15–21]. The selective Kondo strong coupling yields
an effective lattice depletion. In strongly correlated electron systems the lattice depletion can lead to
intriguingphenomena such as ferrimagnetism [22,23] or the spin liquid behavior [24,25]. The selective
Kondo strong coupling is very similar to the fractionalized Fermi liquid with the breakdown of Kondo
screening [26,27]. In the fractionalized Fermi liquid the local moments are partially decoupled from
conduction electrons as a result of the breakdown of Kondo screening across the transition from a
heavy fermion liquid to a non-magnetic phase. Recently, experiments found a partial Kondo screening
of the local moments in heavy fermions on geometrically frustrated lattices [28,29].

In this paper we investigate a possibility of the selective Kondo strong coupling in the magnetic
impurity flat-band lattices. One of the simplest flat-band lattices is the Lieb lattice, where the electron
structure of the tight-bindingmodel features both the band flatness and the Dirac linear dispersion at
lowenergy [30,31].With the such electron structure the Lieb lattice allows us to study the competition
between the molecular and the soft-gap Kondo strong couplings. As a result of the competition a
selective Kondo strong coupling may occur. For the purpose we study the periodic Anderson model
(PAM) on the Lieb lattice. Themodel essentially describes the hybridization between themagnetic im-
purities and conduction electrons of both the flat and the Dirac-cone bands. The competition between
the molecular and the soft-gap Kondo strong couplings could emerge at strong electron correlations.
Wewill adopt the slave-bosonmean-field approximation to study the competition [32,33]. The slave-
bosonmean-field approximation is simple, and it canwell describe the essential features of the strong
coupling(SC) and localmoment (LM) regimes in the PAM [32,33]. Recently, the slave-bosonmean-field
approximationwas also used to study the interlay between the Kondo effect and topology [34,35].We
find very rich phase diagrams depending on the impurity parameters. In general, the full localmoment
(FLM) regime, where all magnetic impurities are decoupled from conduction electrons, appears at
high temperature. At low temperature and strong hybridization, the full strong coupling (FSC) regime,
where all magnetic moments form the Kondo singlets with conduction electrons, exists. Between
the FLM and the FSC regimes, various selective Kondo strong coupling regimes occur. The stability
of the selective Kondo strong coupling is essentially due to the low-energy properties of conduction
bands, which hybridize with magnetic impurities. The obtained results predict the selective Kondo
strong coupling in heavy-fermionmaterials, topological semimetals, systemswith nonuniform lattice
coordination number, where either a flat band exists or the bands of conduction electrons have
qualitatively different low-energy properties.
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Fig. 1. The Lieb lattice structure.

The present paper is organized as follows. In Section 2 we describe the PAM on the Lieb lattice.
In this section we also present the slave-boson approach and its mean-field approximation. The
numerical results for depleted lattices are presented in Section 3, and in Section 4 the phase diagrams
for uniformhybridizations are presented. Finally, discussion and conclusion are presented in Section 5.

2. Periodic Anderson model on the Lieb lattice and slave-boson mean-field approximation

The PAM is a lattice generation of the single impurity Anderson model [36]. It describes a lattice
of localized electrons hybridized with conduction electrons. The PAM is a suitable model for studying
heavy fermion compounds [37]. Its Hamiltonian reads

H = −t
∑
⟨i,j⟩σ

c†
iσ cjσ +

∑
iσ

εif
†
iσ fiσ + U

∑
i

n†
fi↑nfi↓

+

∑
iσ

Vic
†
iσ fiσ + H. c., (1)

where c†
iσ (ciσ ) is the creation (annihilation) operator for conduction electron with spin σ at lattice

site i. t is the nearest neighbor hopping parameter. f †
iσ (fiσ ) represents the creation (annihilation)

operator for themagnetic impurity with spin σ at site i. εi is the energy level of themagnetic impurity
at site i. U is local Coulomb interaction of impurity electrons. nfiσ = f †

iσ fiσ is the impurity number
operator. For simplicity, we assume the magnetic impurities have the spin degeneracy Nf = 2. Vi is
the hybridization strength between conduction electrons and the magnetic impurity at site i. In the
tight-binding model, the electron structure of conduction electrons depends on the lattice structure.
We consider the PAM defined on the Lieb lattice. The Lieb lattice is an edge centered square lattice
(see Fig. 1). It is the basic structure of layered cuprates [1]. The Lieb lattice is bipartite, but its unit cell
contains three lattice sites. The square with three sites A, B, C can be chosen for the unit cell, as shown
in Fig. 1. We take the lattice parameter a = 1.

Without the magnetic impurities, the tight-binding model on the Lieb lattice features a flat band
touching two linearly dispersing bands at the M = (π, π ) point in the first Brillouin zone. The low
energy effective Hamiltonian can be obtained by expanding the tight-binding Hamiltonian around the
M point. We obtain at the linear order

H(δk) =

( 0 −t δkx −t δky
−t δkx 0 0
−t δky 0 0

)
= −tδk · S, (2)
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where δk = M − k, and S is the spin-1 matrices

Sx =

( 0 1 0
1 0 0
0 0 0

)
, Sy =

( 0 0 1
0 0 0
1 0 0

)
, Sz =

( 0 0 0
0 0 −i
0 i 0

)
,

which obey the Lie algebra [Sα, Sβ ] = iϵαβγ Sγ . Eq. (2) shows that the low energy dynamics of the
tight-binding model on the Lieb lattice is identical to the one of the helical spin-1. The effective
Hamiltonian has three eigenvalues E± = ±t|δk|, E0 = 0, which correspond to the linearly dispersing
and flat bands touching at the M point. We will see later, these qualitatively different behaviors of
conduction electrons at low energy are the origin of the selective Kondo strong coupling. We can
refer the A, B, C sites as the orbital degree of the model. However, their Bloch functions are not
the eigenfunctions of the effective Hamiltonian, and in particular, they are not localized. The low-
energy effective Hamiltonian can be considered as the two-dimensional counterpart of the triply band
crossing lattices of topological materials [38]. The Lieb lattice can be realized by various ways such as
loading ultracold atoms in optical lattices [39], making an array of optical waveguides [40–42], or
molecular designing [43]. Recently, various proposals for simulating the PAM by loading ultracold
atoms in optical lattices have been reported [44,45]. With the advantages of quantum simulations in
optical lattice, one can expect realizations of the PAM on the Lieb lattice too.

When a single magnetic impurity is embedded in the Lieb lattice, the Kondo problem totally
depends on the local density of states (LDOS) of conduction electrons that are coupled to themagnetic
impurity [7,13]. The LDOS of conduction electrons at sites B or C exhibits both the flat-band and the
soft-gap features, whereas at sites A it only features a soft gap [1,7]. As a consequence, at sites B or
C , the magnetic impurity forms the molecular Kondo singlet with a single conduction electron [7–
10], whereas at sites A, the soft-gap Kondo effect occurs [13,14]. In the impurity lattice case, when
VB = VC = 0, the magnetic impurities hybridize only with conduction electrons at sites A, and one
may expect that only a lattice soft-gap Kondo effect occurs. In contrast, when VA = 0, the magnetic
impurities could exhibit a lattice molecular Kondo effect. For finite VA, VB, and VC , there would be a
competition between the soft-gap and the molecular Kondo effects in the lattice.

We use the slave boson method to solve the PAM [32,33]. Since the Kondo strong coupling is non-
perturbative, we concentrate on the strong correlation region. In the limit U → ∞, we represent

fiσ → f̃iσ b
†
i ,

where b†
i is the slave boson, which represents the empty state of the magnetic impurity at site i. f̃iσ

is the fermion operator for the impurities when their double occupancy is completely excluded. This
slave-boson representation enlarges the state space at every site. In order to eliminate the unphysical
states, the constrain condition

b†
i bi +

∑
σ

f̃ †
iσ f̃iσ = 1 (3)

is imposed. Within the slave-boson representation, Hamiltonian in Eq. (1) becomes

H = −t
∑
⟨i,j⟩σ

c†
iσ cjσ +

∑
iσ

εi f̃
†
iσ f̃iσ

−

∑
i

λi(b
†
i bi +

∑
σ

f̃ †
iσ f̃iσ ) +

∑
iσ

Vic
†
iσ f̃iσ b

†
i + H. c., (4)

where the Lagrange multiplier λi is introduced for imposing the constrain condition in Eq. (3). In
the mean-field approximation bi becomes a C-number, and the constrain condition is replaced by
its average

|⟨bi⟩|2 +

∑
σ

⟨f̃ †
iσ f̃iσ ⟩ = 1. (5)

The slave-boson Hamiltonian in the mean-field approximation becomes quadratic, and it can ana-
lytically be solved. Minimizing the free energy with respect to ⟨bi⟩, we obtain another mean-field
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equation

λα =

∑
σ

|Vα|
2
∫

dωf (ω)
ρc

α(ω)
ω − εα + λα

, (6)

where α = A, B, C , and f (ω) = 1/(exp(ω/T ) + 1) is the Fermi–Dirac distribution function at
temperature T . ρc

α(ω) is the LDOS of conduction electrons at site α. The mean-field equations (5)–(6)
can numerically be solved. When the solution ⟨bα⟩ ̸= 0 exists, the magnetic moments of impurities
at α sites are strongly coupled with conduction electrons. This is the SC regime, where the Kondo
singlets between themagnetic impurities and conduction electrons are formed. The solution ⟨bα⟩ = 0
indicates the LM regime, where the magnetic impurities at α sites are decoupled from the lattice.
Depending on the model parameters, the mean field equations (5)–(6) may have the following
solutions:

1. ⟨bA⟩ = ⟨bB⟩ = ⟨bC ⟩ = 0. All magnetic impurities are effectively decoupled from conduction
electrons. This is the FLM state.

2. ⟨bα⟩ = ⟨bβ⟩ = 0 and ⟨bγ ⟩ ̸= 0. At γ sites the magnetic moments of impurities are strongly
coupled with conduction electrons, while at the other sites, they are in the LM regime. We call
this state by the γ -selective strong coupling (γ -SSC). In this state the impurity α and β sites
are effectively depleted from the lattice. This depletion is purely a correlation effect. For γ = B
or γ = C the SC is characterized by the molecular Kondo singlet formation, because the LDOS
of conduction electrons at B and C sites features the band flatness [7]. When γ = A the SC is
the soft-gap Kondo type, because the LDOS of conduction electrons at A sites exhibits a soft
gap [13,14].

3. ⟨bα⟩ = 0 and ⟨bβ⟩ ̸= 0, ⟨bγ ⟩ ̸= 0. At α sites the magnetic impurities are decoupled from
conduction electrons, while at the other sites, they are in the SC regime. We refer to this state
as βγ -selective strong coupling (βγ -SSC) state. In this state the impurity α sites are effectively
depleted from the lattice.

4. ⟨bA⟩ ̸= 0, ⟨bB⟩ ̸= 0, and ⟨bC ⟩ ̸= 0. All magnetic impurities are in the SC regime. This is the FSC
state. In this state both the molecular and the soft-gap Kondo effects occur.

The critical line which is the phase boundary of the boson condensation can be determined from
Eq. (6) by taking the limit ⟨bα⟩ → 0. In this limit the magnetic impurities are decoupled from
conduction electrons and ⟨f̃ †

ασ f̃ασ ⟩ = f (εα − λα). This leads Eq. (5) to give the solution λα = εα .
Together with Eq. (6) we obtain

εα

|Vα|
2 =

∑
σ

∫
dωf (ω)

ρc
0α(ω)
ω

, (7)

where ρc
0α(ω) is the LDOS of conduction electrons in the lattice with impurity sites α depleted. Eq. (7)

determines the critical line of the boson condensation at site α. At zero temperature, f (ω) vanishes for
ω > 0. Therefore, Eq. (7) has a solution iff εα < 0. This indicates the Kondo effect occurs onlywhen the
energy level of the magnetic impurities must be below the Fermi level of conduction electrons. When
εα ≥ 0, the boson condensations cannot occur and magnetic orders instead can be stabilized [46].
In the Lieb lattice, the LDOS at the corner and edge-center sites features qualitatively different low-
energy properties, and this leads to different values of the critical lines. If the impurity energy level εα

and the hybridization Vα are nonuniformwe would obtain additional differences for the critical lines.
These features result in a very rich phase diagram. A similar result would be obtained in any system,
where the LDOSs of different orbitals have qualitatively different low-energy behaviors. This can occur
in lattices with nonuniform electron coordination numbers such as the body-centered-square lattice,
the dice lattice, or in general the decorated, depleted lattices, and quasicrystals.

In numerical calculations we use the half band width of non-interacting conduction electrons
D = 2

√
2t = 1 as the energy unit. The mean-field equations are solved by the Powell hybrid

method [47]. We are mainly interested in two cases: (i) Depleted lattices, where magnetic impurities
are regularly decoupled from conduction electrons. (ii) Uniform hybridization, where all magnetic
impurities are equally coupled to conduction electrons. All magnetic impurities lie below the Fermi
energy level of conduction electrons, i.e. εα < 0.
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Fig. 2. Depleted lattice with VA ≡ V , and VB = VC = 0. Left panel: Phase diagram for different values of εA (the solid, dotted
and dashed lines for εA = −0.05, −0.1, and −0.2, respectively). Right panel: LDOS of conduction electrons (solid line) and of
magnetic impurities (dotted line) at A site in the SC phase for V 2

= 0.25, and εA = −0.1 (T = 0.1). The broadening parameter
η = 10−4 .

3. Depleted lattice

In this section we consider the depleted lattice, i.e., a regular set of magnetic impurities is
decoupled from conduction electrons. The regular depletion in strongly correlated electron lattices
can lead to intriguing phenomena, for instance the ferrimagnetism can occur in the Hubbard model
on the 1/4-depleted square lattice [22], or in the PAM with half of magnetic impurities regularly
depleted [23], the spin liquid behavior occurs in the Hubbard or the Heisenberg models on the 1/5-
depleted square lattice [24,25]. Here we are mainly interested in two depletion cases: (i) VA ≡ V ̸= 0,
VB = VC = 0; (ii) VA = 0, VB = VC ≡ V ̸= 0. In the first case, the sublattice of the magnetic
impurities at the edge-center sites is depleted from the whole lattice. Only at the corner sites the
hybridization between the magnetic impurities and conduction electrons remains. The LDOS of non-
interacting conduction electrons at the corner sites exhibits a vanishing gap ρ0c

A (ω) ∼ |ω|, like the
one of the Dirac electrons [14]. This case deals with the soft-gap Kondo problem [13,14]. In Fig. 2
we plot the critical lines which separates the SC phase from the LM one for various values of εA. The
SC phase exists only when the hybridization |VA| is larger than a critical value Vcr. The critical value
Vcr monotonously increases with |εA|. In Fig. 2 we also plot the LDOS of conduction electrons ρc

A(ω)
and magnetic impurities ρ

f
A(ω) at A site in the SC regime. Since the limit U → ∞ is the extreme

asymmetric case, these LDOSs do not obey the particle–hole symmetry. They exhibit a hybridization
band in the gap between two subbands of conduction electrons. The appearance of the hybridization
band is due to the condensation of the slave bosons. The low energy behavior of the LDOS can be
derived from the low energy effective Hamiltonian. Expanding the mean-field Hamiltonian around
theM point, we obtain the low energy effective Hamiltonian

H(δk) =

⎛⎜⎜⎝
0 −t δkx −t δky VA⟨bA⟩∗

−t δkx 0 0 0
−t δky 0 0 0
V ∗

A ⟨bA⟩ 0 0 εA − λA

⎞⎟⎟⎠ ,

where δk = M − k. At low energy 0 < ω/D ≪ 1, we obtain

ρc
A(ω) = −

1
π

∑
δk

Im[ω − H(δk) + iη]
−1
11 ∼ ω,

ρ
f
A(ω) = −

1
π

∑
δk

Im[ω − H(δk) + iη]
−1
44 ∼ ω,
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Fig. 3. Depleted lattice with VA = 0 and VB = VC ≡ V . Left panel: Phase diagram for εB = −0.2, εC = −0.1. Right panel:
LDOS of conduction electrons (solid line) and of magnetic impurities (dotted line) at the C site in the FSC and the SSC phases
for V 2

= 0.15, εB = −0.2, εC = −0.1. The broadening parameter η = 10−4 .

where η = 0+ is the broadening small quantity for the Green function. This low energy behavior of
the LDOS is a feature of the soft-gap Kondo problem in the asymmetric SC phase.

In the second depletion case, VA = 0, and VB = VC ≡ V ̸= 0, the sublattice of magnetic impurities
at the corner sites is depleted. The LDOS of conduction electrons at the edge-center sites features both
the soft gap and the band flatness. This case yields the molecular Kondo problem [7–10]. In Fig. 3 we
plot the phase diagram. When εB ̸= εC , it displays three different phases. In contrast to the previous
depleted case, there is no critical point and the SC phase always exists for any non-zero hybridization
V . The FSC phase, where ⟨bB⟩ ̸= 0, ⟨bC ⟩ ̸= 0, occurs in the low-temperature region, while the FLM
phase, where ⟨bB⟩ = ⟨bC ⟩ = 0, is the high temperature one. Between the FSC and FLM phases is
the SSC phase, where the magnetic impurities are strongly coupled with conduction electrons only
at either sites B or C , and all other magnetic impurity sites are effectively depleted from the lattice.
This depletion is a strong correlation effect by the site selective condensation of the slave bosons
due to the asymmetry between B and C sites. When εB = εC , the SSC disappears. In this case the B
and C sites are equivalent, and their symmetry cannot be broken. In Fig. 3 we also plot the LDOS in
the FSC and SSC phases. In the FSC phase, the soft-gap hybridization band still exists near the Fermi
level in the gap between the two subbands of conduction electrons, similar to the one in the previous
depleted case. In addition to the soft-gap hybridization band, two narrow subbands appear at the gap
edge of the conduction electron subbands. They are the hybridization bands between the flat band of
conduction electrons and magnetic impurities. The flat-band hybridization bands can be interpreted
as a consequence of the molecular Kondo effect of magnetic impurity in the flat band [7]. However, in
contrast to the single impurity case, where the soft-gap conduction electrons are quenched from the
molecular Kondo singlet formation [7], the soft-gap conduction electrons at sites B and C still form
the hybridization bandwith themagnetic impurities. In the SSC phase, where the boson condensation
occurs only at sites B or C , the soft-gap hybridization band is smeared out, while the two flat-band
hybridization bands still remain. These features of the LDOS distinguish the SSC from the FSC phase.
Measuring the LDOS one would detect the soft-gap hybridization band, as well as, distinguish the SSC
and the FSC phases.

4. Uniform hybridization

In this sectionwe consider the case VA = VB = VC ≡ V , i.e. the hybridizations are the same at every
lattice site. However, the asymmetry of the magnetic impurities still can be maintained by varying
εα . The impurity asymmetry between the B and C sites would give two different critical lines. They
together with the critical line for the boson condensation at A sites could form a rich phase diagram.
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Fig. 4. Uniform hybridizations VA = VB = VC = V . Left panel: Phase diagram for εA = −0.2, εB = εC = −0.1 (solid lines).
The dotted line is the phase boundary between the FSC and BC-SSC phases when εA = εB = εC = −0.1. Right panel: LDOS
of conduction electrons (solid line) and of magnetic impurities (dotted line) at A and B sites in the FSC phase for V 2

= 0.25,
εA = −0.2, εB = εC = −0.1 (T = 0.1). The broadening parameter η = 10−4 .

4.1. Case |εA| ≥ |εB| = |εC |

In this case all edge-center sites are equivalent. The phase diagram can be obtained from the critical
lines determined by Eq. (7). The critical lines separate the phase space (V , T ) into three regions as
shown in Fig. 4. At low temperature and strong hybridization, ⟨bB⟩ = ⟨bC ⟩ ̸= 0 and ⟨bA⟩ ̸= 0. This
yields the FSC state. At high temperature and weak hybridization, ⟨bA⟩ = ⟨bB⟩ = ⟨bC ⟩ = 0. This is the
FLM phase. In the intermediate region, ⟨bB⟩ = ⟨bC ⟩ ̸= 0 and ⟨bA⟩ = 0. This is the BC-SSC phase. It
is equivalent to the FSC of the depleted lattice with VA = 0. However, the depletion of the magnetic
impurities at A sites is a correlation effect, where the soft-gap Kondo effect at A sites is absent. This
depletion still occurs when εA = εB = εC , i.e. when all magnetic impurity parameters are uniform.
This selective Kondo SC at sites B and C is due to the flat-band singularity of the LDOS at sites B and
C . The BC-SSC always exists for weak hybridizations regardless of the magnetic impurity parameters.
Actually, in the BC-SSC phase the molecular Kondo effect is dominant. For εA = εB = εC , two phase
boundaries, which separate the BC-SSC phase from the FSC and FLM ones, asymptotically approach
each other at high temperature, as it is shown in Fig. 4.

In Fig. 4 we also plot the LDOS of conduction electrons and magnetic impurities at sites A and
B in the FSC phase. The BC-SSC phase is equivalent to the FSC phase in the A-site depleted lattice,
which we have already considered in Section 3. In the FSC phase the LDOS at sites A and B exhibits
different features. At A sites the LDOS exhibits two soft-gap hybridization bands, which locate in the
gap between two conduction bands. Their appearance is due to the boson condensation at A sites.
Since the Kondo effect atA sites is the soft-gap type, the LDOS atA sites does not have the hybridization
bands of the flat band and impurities. In contrast, at B or C sites, two hybridization bands additionally
occur at the gap edges due to the boson condensations at B and C sites. These hybridization bands
have the same feature of the flat-band hybridization bands, which occur in the A-site depleted lattice.
These features are typical properties of the LDOS in the FSC phase.

4.2. Case |εA| < |εB| = |εC |

Like the previous subsection, in this case the impurity energy levels at B and C sites are the same,
however, they lie lower than the impurities at A sites. The phase diagram is plotted in the left panel of
Fig. 5. In addition to the BC-SSC phase like the one in the previous subsection, the A-SSC phase appears
in the high temperature and strong hybridization region. This A-SSC phase is equivalent to the one of
the lattice with the depletion of magnetic impurities at B and C sites, since ⟨bB⟩ = ⟨bC ⟩ = 0. The BC-
SSC phase exists only at low temperature and weak hybridization. The phase diagram also shows a
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Fig. 5. Phase diagram for uniform hybridizations VA = VB = VC = V . Left panel: case εA = −0.1, εB = εC = −0.2. Right panel:
case εA = −0.05, εB = −0.1, εC = −0.15.

Fig. 6. Phase diagram for uniform hybridizations VA = VB = VC = V . Left panel: case εA = −0.1, εB = −0.05, εC = −0.15.
Right panel: case εA = −0.15, εB = −0.05, εC = −0.1.

quadruple critical point, where the FSC, FLM, BC-SSC and A-SSC phases coexist. However, this feature
no longer exists when εA = εB = εC . This case (Section 4.2) is not adiabatically connected to the
previous one (Section 4.1).

4.3. Case |εA| < |εB| < |εC |

This case is also equivalent to the case |εA| < |εC | < |εB|. The phase diagram is very rich as it is
shown in the right panel of Fig. 5. In addition to the FSC and FLM phases, both the two-site and single-
site SSC phases appear. There are two quadruple critical points. Unlike the previous cases (Sections
4.1–4.2), the BC-SSC phase has the asymmetry ⟨bB⟩ ̸= ⟨bC ⟩ due to εB ̸= εC . The A-SSC phase is
equivalent to the one in the lattice with the impurity B and C sites depleted, whereas the B-SSC phase
breaks the symmetry between B and C sites. In the B-SSC phase the boson condensation at B sites is
preferably selected due to |εB| < |εC |. In the opposite case |εC | < |εB|, the boson condensation at C
sites is selected instead. A similar selection also occurs in the AB-SSC phase. However, when εB = εC ,
both the asymmetric B- and AB-SSC phases disappear.

4.4. Case |εB| < |εA| < |εC |

This case is also equivalent to the case |εC | < |εA| < |εB|. The phase diagram is plotted in the
left panel of Fig. 6. There is a quadruple critical point. Similar to the previous case (Section 4.3), the
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asymmetric B- or AB-SSC phases also occur due to |εB| ̸= |εC |. Since |εB| < |εA| < |εC |, the boson
condensation at sites B is more favorable than the one at sites A and C . As a consequence, the Kondo
SC at sites B is always selected except in the FLM regime. This feature is absent in the previous case,
where |εA| < |εB|, in which the A-SSC phase occurs instead. When |εC | < |εA| < |εB| the Kondo SC at
sites C is selected.

4.5. Case |εB| < |εC | ≤ |εA|

This case is also equivalent to the case |εC | < |εB| ≤ |εA|. The phase diagram is plotted in the right
panel of Fig. 6. Unlike the previous cases, there is no a quadrupole critical point. Since |εB| and |εC | are
smallest among the energy levels of impurities, the Kondo SC at sites B or C are more favorable, and
they are selected except for the FLMphase. In Fig. 6, the B-SSC phase, which exists at high temperature
and weak hybridization, is selected due to |εB| < |εC |. There is a critical point, which separates the
BC-SSC and FSC phases.

5. Discussion and conclusion

The PAM in the Lieb lattice exhibits very rich phase diagrams. Depending on the parameters
of the magnetic impurities, different SSC phases occur. However, at low temperature only the BC-
SSC and FSC phases exist regardless of the impurity parameters. There is a critical point which
separates the BC-SSC and the FSC phases. Across their phase boundary, the magnetic impurities at
A sites are changed from the LM to the SC regimes, while the impurities at B and C sites are always
strongly coupled to conduction electrons. This selection of the Kondo SC at sites B and C indicates
the domination of the flat-band Kondo effect at low temperature. Indeed, for a single impurity, the
flat or narrow bands suppress the participation of other dispersive electrons in the Kondo-singlet
formation, and as a consequence only the molecular Kondo effect occurs [7]. Only at enough strong
hybridizations all magnetic impurities are strongly coupled to conduction electrons. The selective
Kondo SC is similar to the fractionalized Fermi liquid [26,27], because across the transition from the
FSC to the BC-SSC phase, the Kondo screening at A sites is broken down, leaving the local moments
at A sites decoupled. One can also notice that the energy level of the magnetic impurities also plays a
distinct role in the SSC. The magnetic impurities with deeper energy level (i.e. the absolute value of
the energy level is larger) are less favorable to be selected for the Kondo SC regime. In particular, the
magnetic impurities with deepest energy level are depleted from the lattice except for the FSC phase
at strong hybridizations. With deeper energy level, the magnetic impurities are harder to be coupled
with those conduction electrons, which are near the Fermi energy in order to form the Kondo singlet.
However, in the SSC the band flatness plays a dominant role, because at low temperature the Kondo
SC is selected at those lattice sites, where the LDOS has the flat-band feature, regardless of the energy
level of magnetic impurities.

The selective Kondo SC is expected to occur in a number of systems. First, it occurs in the magnetic
impurity flat-band lattices. The perovskite lattice structure can be considered as a generation of the
Lieb lattice [31,48]. One can expect the selective Kondo SC occurs in heavy fermion perovskites. It is
similar to the partial localization in heavy fermions of Uranium compounds, where both itinerant and
localized 5f states coexist [49,50]. In the partial localization electrons in orbitals withweak hybridiza-
tion are selected to be localized [49,50]. Flat bands also exist in geometrically frustrated lattices, such
as the kagome, checkerboard lattices [51]. Recently, experiments showed the Ce moments in heavy
fermions on the kagome-like lattice CePdAl are partially screened by the Kondo physics [28,29]. This
is closely related to the selective Kondo SC. Actually, the electron structure of the tight-bindingmodel
on the kagome lattice also has a flat band and two Dirac-cone bands [52]. However, in contrast to
the Lieb lattice, in the kagome lattice the flat band does not touch the crossing point of two linearly
dispersing bands. A possibility of the selective Kondo SC in the kagome lattice requires a further study.
Second, the selective Kondo SC can occur in topological semimetals with triply band crossing when
magnetic impurities are doped, because their low-energy effective Hamiltonian is identical to the
one of the tight-binding model in the Lieb lattice [38]. Although, the band flatness in the triply band
crossing semimetals exists only nearby the high-symmetric crossing point, it could still distinguish
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the orbital with band flatness from the other orbitals with the linear dispersion. As a consequence,
the LDOS of these orbitals would be different, and this leads to the orbital SSC phases. The SSC may
also occur in the 6- and 8-fold degenerate band semimetals too [38]. Although these semimetals
may not feature the band flatness, their orbital LDOSs are still qualitatively different, and this may
also lead to the orbital SSC phase when magnetic impurities are doped. Third, the selective Kondo
SC can also occur in lattices with nonuniform coordination number. In the Lieb lattice, the A sites
have the coordination number z = 4, while at the B or C sites z = 2. The nonuniform coordination
number also occurs in various lattice structures, such as the body-centered-square lattice, the dice
lattice, or in general the decorated lattices, depleted lattices, quasicrystals. Although the lattices with
the nonuniform coordination number may not feature the band flatness, the nonuniformity of the
coordination numbers may lead the LDOS at different sites to be qualitatively different. As a result,
the orbital SSC may be stabilized at low temperature.

In this paper we have found the selective Kondo SC in flat-band lattices. However, we have only
considered the non-magnetic phases and the interplay between the band flatness and the Kondo
singlet formation. The finite Coulomb interaction of the impurities can result in a magnetic stability.
Especially, when electron hopping between magnetic impurity sites is included, it together with
the Coulomb interaction can generate the flat-band ferromagnetism [1]. The interlay between the
band flatness, magnetism and the Kondo effect would result in complexity which deserves research
attention.
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