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Abstract
Paraexcitons, the lowest energy exciton states inCu2O, have been considered a good system for
realizing exciton Bose–Einstein condensation (BEC). The fact that their BEChas not been attained so
far is attributed to a collision-induced loss, whose nature remains unclear. To understand collisional
properties of cold paraexcitons governing their BEC, we perform a theoretical analysis of the s-wave
paraexciton–paraexciton scattering at low temperatures.We show the two-channel character of the
scattering, where incoming paraexcitons are coupled to a biexciton in a closed channel. Being
embedded in the paraexciton scattering continuum, the biexciton is a Feshbach resonance giving rise
to a paraexciton loss and a diminution of their background scattering length. In strain-induced traps,
the biexciton effects generally increase with stress. Thus the scattering length a of trapped paraexcitons
decreasesmonotonically with stress turning its sign as stress goes beyond a critical value. In the stress
rangewith a<0, the paraexciton loss increases with stress, whereas in that with a>0 the loss is
almost stress-independent. Importantly, that in the latter case the loss rate can be reduced to such
small values that it has no effects on BECby lowering temperatures to near oneKelvin and below.Our
approximate calculations give the critical value of stress in the range just above one kilobar; thus BEC
of strain-confined paraexcitonsmight be attained under low stress at a subkelvin temperature.

Introduction

Exciton in semiconductors is aCoulomb-boundpair of an electron in the conductionband and ahole in the valence
band. In the low-density limit, excitons behave as bosons, so theymayundergoBose–Einstein condensation (BEC)
if their lifetime is long enough to allow the system to reachquasiequilibrium [1–3]. ThereforeBEC is expected in
Cu2Owhere the dipole-forbidden1s excitons of the yellow series have a relatively long lifetime. The internal
electron–hole exchange splits the state into thenondegenerate paraexcitonandhigher lying triplydegenerate
orthoexciton, separated by an energy ofΔ=12meV [4]. Theorthoexciton is quadruply allowed,while the
paraexciton is strictly forbidden resulting in its particularly long lifetime [5].Owing to this unique property and also
to their large binding energy, paraexcitons inCu2Ohave longbeen considered a good system to realize excitonBEC.

Much effort has beenmade during the past several decades, but compelling evidence of BEC inCu2Ohas not
been obtained [6–14]. A collisional loss is believed to prevent the paraexciton density frombeing as high as
necessary for BEC [7, 12–18], but an established understanding of the process is still lacking [19]. The loss rate
has been found to increase with stress in strain-induced harmonic traps [16], which are needed to avoid
paraexciton heating and diffusion aswell as to lower the critical density [7, 20, 21]. Thus experiments lately have
been conductedwithmoderate stress at subkelvin temperatures involving low critical densities [10–13]. An
‘explosion’, however, was observedwhen the critical density was attained for trapped paraexcitons [10, 11]. The
loss is conventionally attributed toAuger recombination, but its nature has not been elucidated [19, 22]. Later,
the participation of a biexciton [23, 24] and an inelastic collision of paraexcitons [18]have been suggested, but
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theirmicroscopicmechanisms are still open formaking clear. In general, despite the recent experimental
progress toward paraexciton BEC [10–13], a fundamental issue of the problem—the interparticle interaction
remains unsolved.

To understand and possibly to control obstacles to attaining paraexciton BEC, in this paper we perform a
microscopic description of the paraexciton–paraexciton scattering at low temperatures.We begin by
formulating theHamiltonian of a closed paraexciton system starting from its original electron–hole picture.
This enables us to establish the interconversion between a pair of paraexcitons and that of orthoexcitons, which
results in the two-channel character of the paraexciton–paraexciton scattering. To obtain salient features of the
s-wave collision dominating the scattering at low temperatures, we develop an approximate way of dealingwith
the nonlocal exchange part of interaction potentials in two channels, which is also the coupling potential. This
makes it possible for us to estimate the paraexciton background scattering length, the binding energy and
envelope function of a biexciton supported by the closed channel as well as the strength of the coupling between
the biexciton and paraexciton scattering states.With this coupling, the biexciton is not a bound state that can be
detected, but a Feshbach resonance thatmanifests itself through changes it causes in collisional properties of
paraexcitons. The resonance gives rise to a paraexciton loss and an extra attractive interaction joining upwith the
background paraexciton–paraexciton repulsive interaction, which are generally enhancedwith increasing stress
in strain-induced traps. As a result, the scattering length a of trapped paraexcitons turns negative as stress goes
beyond a critical value S0. In the stress range S<S0, where a>0, the paraexciton loss rate is almost stress-
independent, whereas in the range S>S0 it increases with stress. The former case is suitable for BECdue to the
repulsive two-body interaction among paraexcitons aswell as the possibility to reduce the loss rate to harmless
for BEC values. In fact, we find for a temperature near oneKelvin that the loss rate under stress S<S0 ismore
than one order ofmagnitude less than the critical value abovewhichBEC is impossible [19]. The loss rate, which
is proportional to the paraexciton-phonon scattering rate, decreases still with temperature decreasing into the
subkelvin range. For the averaged value of the hole-to-excitonmass ratio corresponding to the accepted values of
the key exciton parameters, wefind S0 in the range just above one kilobar. This suggests that the explosion
reported in [10]may be connectedwith the negative scattering length of strain-confined paraexcitons under
moderate stress. Thus our results offer an interpretation of a number of experimental observations and suggest
that experiments on paraexciton BEC should be performed under low stress at a subkelvin temperature.

Results

Two-channel nature of paraexciton–paraexciton scattering
Weuse the second quantization formalism for an elucidation of the effective spin-dependent two-body
interaction among paraexcitons.We start from the fact that excitons are long-live quasiparticles introduced for
an effective description of electron–hole-pair systemswith their inherentmany-bodyColoumb-mediated
correlations. Each exciton is ‘dressed’ by theCoulomb attraction of an electronwith a hole and related to the
other ones by the ‘residual’ interaction that comes from the remaining part of themany-body correlations. As
regards the yellow-series 1s exciton in theCu2O crystal with full cubic symmetry, we consider it in the simple
two-bandmodel neglecting thefine effects connectedwith the interaction of the valence band G+

7 with the lower
lying valence band G+

8 [25]. In such an approximation the exciton is formed from electrons of the lowest
conduction band G+

6 and holes of the highest valence band G+
7 , both having effective spin 1/2. According to the

group-theoretical expansion,

G Ä G Ä G = G Å G+ + + + + ( ), 11 6 7 2 5

it splits into the nondegenerate paraexciton G+
2 with angularmomentum J=0 and the orthoexciton G+

5 with
J=1.Here the unit representation G+

1 characterizes symmetry of the s1 hydrogenlike function describing the
electron and hole relativemotion in the exciton. The relationship between basis functions of the irreducible
representations of a direct product and of those the product expanded into [26] give us
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where ñ∣ 0 is the semiconductor ground state, ∣ )0 —that statemappedon the space of excitons, +∣ )P 0k —the
momentumkparaexciton state, + ∣ )O 0M k —that of the orthoexciton (M=−1,0,1 is the projectionof the
orthoexciton angularmomentumon thequantization axis), and ñs s

+ + ∣e h 0p p, ,e e h h
stands for a correlated electron–hole
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pairwith total spinprojection s s+e h and totalmomentum +p pe h.Here s
+e p, ( s

+h p, )denotes the creationoperator
of an electron (ahole)with spinprojectionσ(s = 1 2 for spin-up and s = -1 2 spin-down) andmomentum p.
In equations (2) and (3)V is the sample volume, b-ϝ( )p k —the s1 exciton envelope function in themomentum
spacewith b m m= h x thehole-to-excitonmass ratio (m m m= +x e h ), and theparticular values ofClebsh–Gordan
coefficients are taken fromthe tables ofClebsh–Gordan coefficients relevant to irreducible representations of theOh

group [27].
Taking into account the fact, that in relevant experiments only 1s excitons are excited, we have the

relationship between correlated electron–hole pairs and excitons inverse to equations (2) and(3)
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Assuming the ortho-para conversion in a real experiment at low temperatures to be instantaneous, we
consider a closed paraexciton system, which actually includes ensembles of zero-spin correlated electron–
hole pairs. A schematic representation of such an ensemble is shown infigure 1. The residual interaction
among paraexcitons arises from correlations between the electron and hole of each pair with all the electrons
and holes of the other pairs, which are governed by theCoulomb forces and Pauli exclusion principle of
indistinguishability. It includes two-body, three-body, and highermulti-body interactions, amongwhich in
dilute conditions the two-body interaction dominates. There exist several ways of deriving an exciton
Hamiltonianwith two-body effective interaction from that of the original electron–hole system [28–32]. In our
previouswork [33], we have done this for the common case of direct-gap two-band semiconductors by adopting
the bosonization approach ofHanamura [28, 29]with the particles spin taken into consideration. The approach
can be justified as follows.When one electron–hole pair is present in the system, the internal pair correlation
(Coulomb attraction) binds the electron and hole into an exciton. The binding energy and size of the exciton are
expressed in terms of the excitonRydberg energyRx and effective radius ax, respectively. Being the energy and
length scales of the internal pair correlation, these quantities present a physical property of the semiconductor.
Strictly speaking, only in this hypothetical case of one pair in the system the exciton is an ideal (noninteracting)
boson. Alreadywhen there are two pairs, two-pair correlations produce qualitative changes. In dynamical
respect, beingmediated by interpair Coulomb forces, these correlations give rise to the exciton–exciton
interaction of the order of R nax x

3, while in statistical aspect, theymake excitons deviate frombosons by adding a
non-bosonic correction of the order of nax

3 [3]. Here n=N/V (N is the number of electron–hole pairs) is the
density of pairs in the system.When there aremore pairs, three-pair and highermulti-pair correlations lead to
three-exciton and highermulti-exciton interactions, whose scale is, respectively, ( )R nax x

3 2 and corresponding
higher orders of nax

3multiplied byRx.When n is so small that nax
3 is an infinitesimal quantity, one can consider

only the internal correlation inside pairs. A systemofN pairs is represented in the exciton space by that ofN
noninteracting excitons-bosons, which are the eigenstates of the exciton system’sHamiltonian in the linear

Figure 1.Ensemble of correlated electron–hole pairs that constitutes a closed paraexciton system. Small blue (yellow) balls with
arrows depict electrons (holes)with spin-up and spin-down. Dashed light-blue ovals confine correlated two-pair structures with
different spin combinations that constitute two correlated paraexcitons.
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approximation. In the low-density limit, wherein nax
3 is very small, na 1x

3 , butfinite, one has to consider the
effect of two-pair correlations. To do this, in the exciton-boson approach the systemof excitons-bosons is used
as an orthonormal basis for representing Coulomb-mediated two-pair correlations in the formof the effective
exciton–exciton interaction. Certainly, such an approach does not allow to describe both the exciton–exciton
interaction and their non-bosonic nature at the same time [34]. Therefore it is applicable only for the low-
density limit that is under consideration in this paper. Combined effects of the two consequences of two-pair
correlations, which are of the order of ( )R nax x

3 2 as those of three-pair correlations, have to be taken into
considerationwhen nax

3 is not very small. However, that is beyond the scope of the paper.
Thus, using the bosonization approach ofHanamura, wemap correlations among the constituents of two

zero-spin correlated electron–hole pairs, which can be in three possible spin combinations as structuresmarked
by light-blue ovals infigure 1, onto the exciton space to obtain theHamiltonian
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where Ep(k) andEo(k) denote the paraexciton and orthoexciton energy, respectively,U
d andU ex are energy

densities of the direct and exchange exciton–exciton interaction [28, 32], and h.c. stands for hermitian
conjugates. The last two terms in the curly brackets show that the exchange interaction can flip the spin of
interacting excitons. It either turns two longitudinal orthoexcitons (M=0) to a pair of transverse ones with
opposite orientations of the angularmomentum ( = -M 1, 1), or convert a paraexciton pair to a pair of
orthoexcitons, and vice versa.Here in this paper, the termorthoexcitons is used to refer exclusively to the ones
that go in pair with zero total angularmomentum. As >U 0ex [28, 30], we see that the two-body interaction in a
paraexciton system is generally repulsive except for the case of the spin-flip exchange interaction between two
orthoexcitons, which is attractive. Although the formof the attractive exchange exciton–exciton interaction is
different in different semiconductors depending on their particular symmetry, the common fact is the attraction
arises exclusively from exchange correlations between distinguished pairs. In the case under consideration, let us
pay attention to the three two-pair complexes with different spin combinations that constitute two correlated
paraexcitons. One can see that the complex depicted infigure 2(a) is unique in the sense that it does not contains
identical carriers-fermions, while the ones infigure 2(b) do. Being subject to the Pauli exclusion principle, the
two identical electrons and holes inside the complexes infigure 2(b) repel each other at distances, where their
wave functions overlap. This results in the repulsive exchange interaction between paraexcitons and longitudinal
orthoexcitons with each other as well as among themselves. Concerning the complex infigure 2(a), the principle
Pauli does not apply to its carriers. The fourmembers are on equal footing, so they prefer to stay together in the
totally symmetric complex by an attractive interaction. InCu2OwithOh crystal symmetry, however, the
repulsion between the orthoexciton and paraexciton that arises from the internal exchange predominates.
Consequently, as we see from figure 2(a), the spin-flip exchange interaction of a pair of transverse orthoexcitons
into longitudinal orthoexcitons is attractive, while that into paraexcitons is repulsive.

Thus, with the effective two-body interaction taken into consideration, a ‘paraexciton system’ theoretically
incorporates not only paraexcitons but also orthoexcitons that go in pairs. In this connection, neither the states
of paraexciton pairs nor those of orthoexciton pairs can form eigenstates ofHamiltonian (5). They form just
components, or substates of eigenstates, which have the formof two-exciton vectors with definitemomentum
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whereψpp andψpo are envelope functions, respectively, of ‘bare’ paraexciton and orthoexciton pairs. The
Schrodinger equation Y = Y- - - -( ) ( ) ( )H E KK Kp p p p p p p p leads toa systemof equations forψpp andψpo
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whereμx is assumed the same for both types of the exciton and =E k TB (kB is the Boltzmann constant,T—the
temperature)—paraexciton thermal energy.With the paraexciton scattering threshold chosen as the energy
zero,E is the relative energy of colliding paraexcitons at large distances, where theirmutual interaction
disappears. Since >E 0, the interaction potential between paraexcitons forms the energetically open channel,
also called entrance or background channel. It is coupled by the exchange exciton–exciton interaction potential
to a channel formed by the interaction potential between orthoexcitons. Being situated higher than the
paraexciton scattering threshold by 2Δ , the latter is a closed channel for the paraexciton scattering at any energy

Figure 2.Mechanismof the exchange exciton–exciton interaction. Grey (orange) balls denote the dark paraexciton (bright
orthoexcitons)with the angularmomentumprojection equal to the sumof those of the constituent electron and hole. (a) Left: on the
top is one of three complexes of two correlated electron–hole pairs that constitute two correlated paraexcitons. The complex includes
two different pairs, so all four particles are distinguished. Each correlated pair is represented in the exciton space by a linear
combination of a paraexciton and a longitudinal orthoexciton in accordancewith equation (4). As a result, thewhole complex is
represented by a combination of a correlated pair of paraexcitons and that of longitudinal orthoexcitons. Right: the two-pair complex
on the top is obtained from the one on the left by an exchange of partners between two pairs. It is represented in the exciton space by a
pair of correlated transverse orthoexcitonswith opposite orientations of the angularmomentum. Thus, the exchange correlations
between two distinguished electron–hole pairs are reproduced in the exciton space by the spin-flipmutual interaction of paraexcitons
and longitudinal orthoexcitons into a pair of transverse orthoexcitons; the former is repulsive, while the latter is attractive. Two-side
arrows allow to read the schema from right to left when it represents the reverse process. (b)The same description as in (a) for two
other complexes.
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E<2Δ .With such energy, paraexcitons can exit in the open channel after their collision, but not in the closed
channel. Salient features of the paraexciton–paraexciton scattering can be drawn from equation (7) in the case
the coupling and interaction potentials are defined. These potentials incorporate the exchange exciton–exciton
interaction potential, whose description is a long-standing problematic issue of exciton physics. That is
connectedwith its nonlocality, which always presents in the casewhen real interactions in amany-particle
system are described in terms of an effective interaction between quasiparticles. The potential depends at any
point on thewave function everywhere in a surrounding region, whose range coincides with its range. Therefore,
coupled equation (7) form a systemof integro-differential equations in the coordinate space, which cannot be
analyzedwith usualmethods of nonlinear dynamics. Thuswe are forced tomake approximations from the
outset. First, we limit ourselves to the s-wave paraexciton–paraexciton collision at such temperatures, that
E=2Δ , whichwe refer to as low temperatures. In this case, the probability of the para-ortho up-conversion is
practically zero and the influence of the closed channel on the paraexciton scattering can be treated by
perturbation theory [26]. In the first approximation (the zeroth order in perturbation) the scattering is described
by two uncoupled channels obtained from equation (7) by leaving aside the coupling terms. Since the first order
correction is zero, the next approximation is of the second order in perturbation.

Approximate interaction potentials and solutions for bare channels
Weneed to define interaction and coupling potentials for the case of the s-type envelope functions in bare
channels. All we have is a presentation of the direct and exchange interaction densityUd andUex in the formof
averages of the screenedCoulombpotential µ( )U p e pcl

2 2 (e is the elementary charge and ò—the dielectric
constant) over the states of two excitons before and after the interaction. Generally, we can obtain an integral
presentation for the direct and exchange interaction potentials fromUd andUex by retransformingUcl(q) and
the excitonwave function ϝ, which depends parametrically onmass ratiosβ andα=1−β , to the position
space [35]. For the yellow-series 1s exciton inCu2Owith its effective radius ax comparable to the lattice constant
al, central cell corrections [36] cause complexity. By producing amomentumdependence of ò and of the exciton
effectivemass involving that ofβ, these correctionsmake the inverse Fourier transformation difficult. Especially,
that is impracticable for function ϝ because the dependence ofβ onmomentum,which is connected yet with
nonparabolicity of the G+

7 valence band [37], is hard to establish.We have to resort to approximations to capture
essential features of the exciton–exciton interaction potential.We note that, thefirstmomentum-correction to ò
adds to the direct and exchange interaction potentials a respective extra potentialthat ismore than two orders of
magnitudeweaker (that is  ( )( )a ad 10x l

2 2 with »d 0.18 [36]). Therefore in dealingwithUd andU ex we
can neglect themomentum correction and treat ò as a constant as well as put theCoulombprefactor e2 equal
to E a2 b x,Eb is the exciton experimental binding energy. In that case, to a set of values of the key exciton
parameters Eb, ax, and mx, there corresponds an averaged value ofβ according to relations m m b b= -( )1r x

and  m = E a2 r b x
2 2.With the constantβ, thedirect part of interaction potentials in bare channels is calculated

in a closed analytical form showing that itmatters only at distances rax [35]. Concerning the exchange part,
the formula forUex (see supplementary information (SI) available online at stacks.iop.org/NJP/21/013035/
mmedia) shows, that the degree of its nonlocality decreases with the decrease of the smallermass ratio,
disappearing in the limit the ratio approaches zero, when it equals the exchange energy inHeitler–London
theory of the hydrogenmolecule [38, 39]. This suggests, that the expansion ofUex into a series of powers ofβ, the
smallermass ratio inCu2O,might provide a useful approximation to the exchange interaction potential
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if appropriately truncated.Heref is any of s-wave functions of bare channels in real space, and functions
¼( ) ( )A r A r, ,0 1 depend parametrically onβ falling off exponentially at large distances. Let us take the value

β≈0.28 , whichfits to commonly accepted values ax=0.7 nm,Eb=150 meV and m = m2.6x 0 (m0 is the free
electronmass) of the key exciton parameters. For it we can truncate expansion (8) at the third term, and as a
result, equations for theχ-function (χ=r f /4π ) of the background s-wave scattering and possible biexciton
read

b b c c b c b c b c-  + + - + ¢ +  + ¢¢¢ =( ) [ ( ) ( ) ] ( ) ( ) ( ) ( )E x F x E F x F x F x2 1 0, 9b E
d

E E E E0 1
2

2
3

3

b b c c b c b c b c-  + - + D - - ¢ -  - ¢¢¢ =( ) [ ( ) ( ) ] ( ) ( ) ( ) ( )E x F x E F x F x F x2 1 2 0, 10b b
d

b b b b0 0 1
2

2
3

3

withE0 the biexciton energy, ºx r ax, and functions F F F F, , ,0 1 2 3 expressed in terms of functions
A A A A, , ,0 1 2 3 (see SI). A change in deciding on a particular value for a key parameter entails quantitative
changes in solutions for bare channels as well as their coupling, but the qualitative picture of the paraexciton
scattering remains the same as presented below for b = 0.28.
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On the normalization of scattering functions fE by the k scale, c0 has the asymptotic form c » -x a abg x0

[40]. By a numerical solution of equation (9) forE=0wefind the background scattering length »a a1.45bg x,
which is considerably smaller than our rough hard-core estimate [35] and that computed by quantumMonte
Carlo simulations forβ=α [41]. The parameter determines solely the background phase shift δbg of slow
paraexcitons [26]. Condition for paraexcitons to be slow depends on the range of paraexciton–paraexciton
interaction potential   = +bg

d ex, which in its turn is defined by functions ¼( ) ( )F x F x, ,0 3 .We get the
range about 3ax, thus paraexcitons having »- ( )k a3 0.48x

1 nm−1 are slow. To be specific, we set the point
T=1.2 K corresponding to k≈0.06 nm−1 the upper bound of the slow paraexcitons range, but loosely,
paraexcitons at temperatures of order of 2 Kwith k<0.1 nm−1 can still be considered to be slow.

As to equation (10), wefind by the customary variational procedure, that it has one bound state—the
biexcitonwith binding energy  = D - »E2 13b 0 meV and the correspondingwave function

c = - - - - -
-( ) { [ ( )]}{ [ ( )]} ( )x x x x1.026 61 exp 0.712 54 exp 1.89 exp 0.952 exp 1.89 0.952 . 11b

10 0.212 546

The obtained value for b ismuch larger than the result of Brinkman et al [42] and coincides with that ofHuang
[43]. Comparison is, however, inappropriate because in thoseworks the exchange exciton–exciton interaction
and central cell corrections have been neglected.

To have an idea of the shape of interaction potentials bg and   = -d
cl

ex, we perform localization
procedures to obtain their approximate local equivalents [44]. Neglecting for simplicity smallβ3-terms in
equations (9) and (10), we turn them into usual Schrodinger equations by transformations c = F( ) ( ) ( )x T x xE E E

and c = F( ) ( ) ( )x T x xb b b , respectively. The acquired energy-dependent local equivalent potentialsVbg andVcl

are shown infigure 3. Their shape resembles that of the interaction potential between hydrogen atoms,
respectively, in their singlet and tripletmolecular states [26]. For actual interexciton distances the interaction
between paraexcitons in the background channel is repulsive, whereas that between orthoexcitons in the closed
channel is attractive. Being shifted upward by 2Δ , the closed channel involves the biexciton energy

= D -E 2 b0 (the black line inside the potential well) to be embedded in the paraexciton scattering
continuum.

Effects of biexciton as a Feshbach resonance
As a perturbation, when being ‘turned on’ the coupling of two channels induces transitions between the
biexciton and paraexciton’s incoming and outgoing scattering states, whichmake the biexciton an intermediate
state [26] for the paraexciton scattering. The biexciton is no longer a bound state, but just a scattering resonance
[45], or a quasistationary state having complex energy - GE i 2c0 withΓc the resonancewidth [26], also called
the coupling strength. Consequently, the quasibiexciton has afinite lifetime τ=ÿ/Γc parameterizing its
exponential decaywith time. This explains the fact why the biexciton has not been detected inCu2O. Resonance
scattering of paraexcitons on the quasibiexciton, which is schematically depicted infigure 4, happenswhen their

Figure 3.Approximate local equivalents of interaction potentials in bare channels.Vbg is presented forE=0 andVcl—for E=E0.
The biexciton is depicted by the black line in the potential well ofVcl with a grey strip around showing the resonance width.
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energymatches the interval of widthΓc around E0 (see figure 3). Such a phenomenon is long known in nuclear
physics as a Feshbach resonance [46]. They have lately become an important experimental tool for controlling
properties of cold atomic gases [47]. A distinctive feature of the quasibiexciton is that, it is a decaying state by
itself having awidthΓqb connectedwith all dampingmechanisms—partly a consequence of the fact, that the
systemunder consideration is not quite closed, but coupled to surroundings. In these conditions, the
paraexciton scattering is an elastic collision in the presence of inelastic processes that lead to the decay of the
quasibiexciton as a complex of electronic excitations. Effects of such a decaying resonance on the paraexciton
scattering follow straightforwardly fromnonrelativistic Breit–Wigner formulas [26]. In particular, the  -matrix
of the s-wave paraexciton scattering has the form




d= +
G

- G + G

⎡
⎣⎢

⎤
⎦⎥[ ]

( )
( )exp 2i 1 i

i 2
, 12bg

c

c qb
0

where  is the detuning of the scattering energy from the resonance,  = D - - E2 b (see figure 3). From
herewe have the total s-wave scattering cross section s p= -( ) k2 1 Ret 0

2,





s

p
d d d= +

G G + G

+ G + G
+

G
+ G + G

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )
( )

( )
k

4 sin
2 2

cos 2 2
2 2

sin 2 . 13t bg
c c qb

c qb
bg

c

c qb
bg2

2
2 2 2 2

As seen, the coupling to the quasibiexciton causes a resonance scattering superimposed on the paraexciton
background scattering. It is described by the two last terms in brackets presenting, respectively, the resonance
scattering and its interferencewith the background scattering. They include two quasibiexciton effects. First, a
paraexciton loss described by the inelastic cross section s p= -( ∣ ∣ ) k1r 0

2 2, whose rate is


   

s p
m m

= =
G G

+
G

+
G

-⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )A v

E
4

6

2 2
1

2 2
, 14r

x x

c qb c qb
2 2 1

where m=v E6 x is themean thermal velocity of the scattering particle withmassμx/2.Wewould like to
note, that no quasibound state affect higher waves, so the paraexciton loss at any temperature DT k2 B is
connected entirely with the s-wave quasibiexciton. Characterizing the decaying resonance, the loss rate depends
on G 2qb , alongwith G 2c determining the scale of Feshbach resonance effects. Let us assume, thatΓqb is
about two times the paraexciton decaywidth, G » G2qb p. Besides a negligibly small population relaxation rate,
Γp comprises homogeneous broadening due to the exciton–exciton and exciton–phonon scattering, G -x x and
Γph, and inhomogeneous broadeningΓinh due tofluctuations of the sample structure and applied fields.We see,
thatΓphmakes the paraexciton loss persistent at low densities as reported in [7, 18] and [20], andΓinh is a source
of uncertainty contributing to the divergence of experimental estimates of the loss rate [12, 14]. Further, the loss
rate of trapped paraexcitons depends on an external factor in the formof stress S, which reduces the ortho-para
splitting,D = - +c S c S12 1 2

2 (c1≈2.03 meV kbar−1, c2≈0.14 meV kbar−2) [20, 48]. Leaving aside a stress
dependence ofΓp, we expect roughly from equation (14) thatAfirst increases with S reaching its largest value at
the true resonance  = 0, then decreases. In fact, atT=2Kwhere  = 0 under S≈3.4 kbar, the increase of
the ratewas observed for discrete stress values from1.5 to 3.5 kbar [16].

Figure 4.Resonance scattering of paraexcitons on the quasibiexciton. Two paraexcitons collide and form temporarily the
quasibiexciton, which decays after some time into two paraexcitons. Two-side arrows allow one to read the schema in two directions
showing that the formation and decay of the quasibiexciton take place repeatedly.
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The other quasibiexciton effect is characteristic of Feshbach resonances. It is a change introduced to the
paraexciton–paraexciton interaction described by the elastic cross section s s s= -e t r . Clearly, the terms other
than d4 sin bg

2 andσr in equation (13) together present an additional interaction joining upwith the background
repulsive interaction between paraexcitons. Rich physics of resonance effects, whose scale is defined by the ratio
between the quasibiexciton total width and detuning, is beyond the scope of this paper. In the followingwe
confine our analysis to slow paraexcitons undermoderate stress relevant to recent experiments [10–13] and also
to a part of an earlier experiment byDenev and Snoke [16]. Their elastic cross section has the form

  
s p -

G
+

G
+

G
-


⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
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⎛
⎝⎜

⎞
⎠⎟

⎤
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⎫
⎬
⎭

∣ ( )a
k

4
1

2
1

2
, 15e ka bg

c c p
1

2 1 2

bg

which shows the emergence of a resonance term µ -Ga 2cres in the paraexciton scattering length
= +a a abg res presenting an extra attractive interaction.

Quantitative estimates and interpretation of experimental results
To estimate quasibiexciton effects, we have to evaluateΓc andΓp. Stressmoves the quasibiexciton position,
which is already quite close to the scattering threshold in an unstressed crystal, further downwards (see figure 3).
A resonance that is close to the scattering threshold has an energy-dependent width, gG = k2c 0 with γ0 a
constant [26, 40, 47]. The quantity is derived from the second-order correction to the discrete energy level
caused by the coupling potential as a perturbation, p f f dG = å á ñ -[ ∣ ∣ ] ( )E E2 3c b qq 0

ex 2 [26, 40]. Using
functionsχ0,χb and  ex obtained in the previous subsection for computing the transitionmatrix element, we
get γ0≈7.05 nmmeV. As toΓp, we put G G + G-p x x ph neglecting inhomogeneity of the strain field (see
table 1). It is known, that at such low temperatures that the paraexciton energy is less than m u 2x

2 , where
= ´u 4.5 105 cm s–1 is the velocity of the longitudinal acoustic phonon, the paraexciton–phonon scattering is

exponentially restrained [20, 49]. As a result, atT2KΓph is extremely small. In fact, at low densitiesΓph

amounts to the paraexciton decaywidthΓp that has been reported to be 80 neV atT=1.2 K [50]. In strain-
induced traps,Γp depends on stress through G = +- ( )n K Ax x ( p=K a v4 2 —the elastic collision rate), but
our estimates show that formoderate stress its highest value is just of order ofmicroelectronvolts. Under
conditions of recent experiments on trapped paraexcitons inCu2O (T2 K, S<2 kbar), we have detuning
 > 3 meV, hence G( )p

2 is negligible and equations (14) and (15) give, respectively,

Table 1.Denotations and abbreviations.

Exciton binding energy Eb
Exciton effective radius ax

Exciton totalmass and reducedmass μx andμr

Ortho-para splitting energy Δ

Direct exciton–exciton interaction potential d

Approximate exchange exciton–exciton interaction potential  ex

Interaction potential between paraexcitons  +d ex

Interaction potential between orthoexcitons  -d ex

Paraexciton scattering energy =E k TB

Paraexciton background scattering length abg
Quasibiexciton binding energy b

Quasibiexciton energy = D -E 2 b0

Quasibiexciton resonancewidth (coupling strength) Γc

Quasibiexciton ownwidth Γqb

Paraexciton energy detuning from resonance  = -E E0

Diminution of abg caused by resonance scattering ares
Paraexciton (total) scattering length = +a a abg res

Paraexciton elastic cross section s p= a4e
2

Paraexciton inelastic cross section σr

Mean thermal velocity of the scattering particle m= ( )v k T6 B x
1 2

Paraexciton loss (inelastic collision) rate s=A v r

Paraexciton elastic collision rate s=K v e

Paraexciton broadening by exciton–exciton interaction G = +- ( )n K Ax x

Paraexciton broadening by exciton–phonon interaction Γph

Inhomogeneous broadening Γinh

Paraexciton decay width G = G + G + G-p x x ph inh

Applied stress S

Critical stress, underwhich aturns its sign S0
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One can see that the paraexciton scattering length depends on stress through the energy detuning . It is
obvious from figure 5, where a is shown as a function of stress for two values of the temperature, that a depends
little onT, butmonotonically decreases with stress turning its sign at a value S0 in a low stress range. The critical
stress value is almost temperature-independent being about 1.07 kbar atT=0.8 K and 1.08 kbar atT=0.1 K.
BECof a trapped Bose gaswith a<0 is possible [51–53], but unstable leading to the condensate’s collapse
[54–56]. This happenswhen the number of condensate particles exceeds a critical number » ∣ ∣N a a0.46cr ho

(aho—themean harmonic oscillator length). For the trapwith aho≈0.615 μmunder S=1.4 kbar atT=0.8 K
from [10], we getNcr≈1200. It seems that this numberwas exceeded, so the formed condensate collapsed and
subsequently exploded.

Concerning the loss rate µ GA p
2, its stress dependence is connectedwith that of both Gp and . Among

two terms ofΓp, G -x x depends on stress viaA (see table 1), whileΓph is stress-independent. As amatter of fact, at
low temperatures the interaction of paraexcitonswith phonons consists of their interactionwith longitudinal
acoustic phonons, which does not depend on stress, and thatwith transverse acoustic phonons, which is
negligibly weak [57]. ForT=1.2 K,whereΓph=80 neV, we compute G -x x andA by iterations in the stress
range from0.2 kbar to 2 kbar for the density reported in [10–13]. The result is shown infigures 6(a) and (b),
respectively, forΓp andA. Including a termproportional to µK a2, both parameters have theirminimumat S0,
where a=0, then begin to rise gaining steep increase when stress approaches the point 2 kbar, which is on the
way to the resonance area of  » 0 at S≈3.5 kbar. Asmentioned earlier, the increase ofAwith stress under
moderate and higher stress has actually been observed atT=2 K [16]. Furthermore, it is important to note, that
for stress S<S0 the decrease ofΓpwith increasing stress, which is connectedwith that ofK (see figure 6(a)),
balances the decrease of 2 resulting in almost stress-independent loss rate in the low stress range up to
1.1 kilobar, as seen from figure 6(b). The rate in thewhole stress range remains very low, just of order of
10−20 cm3 ns–1. Even if the inhomogeneous broadening raises the value by an order, it is still below the critical
value 5×10−19 cm3 ns–1 abovewhich noBEC is possible [19]. The stress independence of the paraexciton loss
rate and its low value in the low stress range have been reported in [16] andmentioned again in [17]. Concerning
the relationship between the elastic and inelastic collision rates, we notice, that apart from the close vicinity of S0,
whereK<A (see figure 6(b), the inset), the former absolutely dominates with ratioK/A about 50. The factor is
favorable for evaporative cooling of thermal paraexciton clouds [58]. As to the relationship between two terms of
the paraexciton decaywidth, we see from the inset infigure 6(a) that near S0 G »- 0x x , soΓph is themain
termofΓp, whereas far from the point G »- nKx x predominates. Under stress about 1.5 kbar and higher,
G » G -p x x, soA decreases with temperature as µv T1 2. Then from the value » ´ -A 5 10 19 cm3 ns–1 under
stress 1.5 kbar atT=1.2 Kdrawn from figure 6(b) one can infer thatA is about ´ -4 10 19 cm3 ns–1 at
T=0.8 K and ´ -2 10 19 cm3 ns–1 atT=0.2 K. These values are an order ofmagnitude lower than those ones
reported in [12] and [13], respectively. The applied stress used in experiments of [13] is reported to be lower,
than that used in experiments of [12], so the value ofAmust be less still. To our knowledge, so far [12] and [13]
are the onlyworks reporting values ofAmeasured in the subkelvin temperature range.Moreover, it seems to us

Figure 5. Stress dependence of the paraexciton scattering length.
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that in experiments of [13] Stolz and his coworkers were close to the stress range that is appropriate for BEC,
where a 0 and the paraexciton loss is inefficient to have any effect.

Discussion

It is the analogy of excitons with atoms that hasmotivated the search for BEC inCu2O.However, the
distinguishing feature is that excitons are composite entitiesmade from charge-carriers—fermions, whose
Coulomb-mediated correlations are ruled by the Pauli exclusion principle. The internal structure of excitons
produces the spin-dependent exciton–exciton interaction that governs their BEC. In the case of yellow-series 1s
excitons inCu2O, it results in the interconversion between a pair of paraexcitonswithmutual repulsive
interaction and that of orthoexcitons, which attract each other, leading to the two-channel character of the
paraexciton–paraexciton scattering.We have described the scattering at low temperatures bymeans of
perturbation theory. By an approximate way of calculating the nonlocal exchange exciton–exciton interaction
potential, we have been able to estimate the paraexciton background scattering length abg and the binding energy
b of the biexciton supported by the closed channel as well as the corresponding envelope functions. Together
with the approximate exchange exciton–exciton interaction potential, these functions have enabled us to assess
the coupling strength Gc of the biexciton and paraexciton scattering states. The couplingmakes the biexciton a
Feshbach resonancewith its two characteristic effects—a loss of particles in the open channels and a diminution
of their background scattering length, which give us clues about themechanism of obstacles to achieving
paraexciton BEC. First, the loss of paraexcitons observed in numerous experiments is elucidated, which turns
out to be connectedwith continuing transitions of paraexciton’s incoming and outgoing scattering states to the

Figure 6. Stress dependence of the decay and loss parameters of slow paraexcitons (a) of the decay width and its two components, and
(b) of the loss rate on the background of the fiftyfold reduced elastic collision rate.
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quasibiexciton as an intermediate state. Reflecting the paraexciton’s decaying nature characteristic of
semiconductor electronic excitations, the loss rate is proportional to the paraexciton decaywidth Gp, which
comprises of the exciton–exciton and exciton–phonon scatteringwidths and also the inhomogeneous
broadening. Themultiparameter dependence ofΓp explains thewide divergence of experimental reports on the
magnitude and temperature dependence of the paraexciton loss rate. At relatively high temperatures, when
exciton–phonon scattering is effective, the rate can be high being likely themain cause of the paraexciton
saturation in an unstressed crystal. However, of our interest in this paper are strain-confined paraexcitons at low
temperatures. By shifting paraexciton and orthoexciton energies in different ways, stress reduces the ortho-para
splittingΔ bringing the quasibiexciton closer in energy to paraexciton scattering states. This factor in general
enhances quasibiexciton effects. Consequently, at some stress value S0, the background scattering length is
balanced by the diminution induced by the quasibiexciton, so a=0, then it turns negative for S>S0. As BECof
trapped bosonswith a<0 is unstable leading to the condensate’s collapse, one has to use stress S S0 to create
BECof trapped paraexcitons. This stress range is appropriate for BEC still by the fact, that here the paraexciton
loss rate is almost stress-independent with its value determinedmainly by that of the paraexciton-phonon
interaction. Therefore one can reduce the loss rate to such small values that it has no effect on BECby lowering
the temperature to the range near one Kelvin and below, where the paraexciton-phonon interaction is
exponentially inhibited.

Our numerical analysis that has been donewith the averaged value of themass ratioβ=0.28 gives S0 in the
range just above one kilobar. This leads to a thought that the ‘explosion’ seen byGonokami’s group under stress
of 1.4 kbar is connectedwith attractive interaction between trapped paraexcitons. The value of the critical stress
is, however, just tentative. The calculation of S0 has been relied on three parameters abg, b andΓc computed by
using approximate interaction and coupling potentials. Themass ratio, which the shape of the potentials
depends on, is uncertain because of central cell corrections. The used averaged value forβ has been derived from
a set of accepted values of the key exciton parameters as a result of an approximation. The last leads to errors of
order of one percent in the calculated potentials, whichmake the values obtained for b andΓc to be not exact
ones. Particularly aboutΓc, wewould like to note, that the resonance width has been obtained from the second-
order correction to the quasibiexciton energy produced by the coupling potential as a perturbation. Thatwas a
rough approximation because the exchange exciton–exciton interaction potential is not weak. The perturbation
caused by this potential to quasistates of bare channels seemsmore complicated. Clearly, further work is needed
on this question. In this context, our treatment gives just general qualitative features of collisional properties of
cold paraexcitons leavingmuch room for quantitative reexamination by experiments as well as by other
theoretical approaches.
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