New jou I‘Ilal Of PhYSiCS Deutsche Physikalische Gesellschaft @ DPG 10P Institute of Physics

The open access journal at the forefront of physics

PAPER « OPEN ACCESS

Biexciton as a Feshbach resonance and Bose—Einstein condensation of
paraexcitons in Cu,0O

To cite this article: Cam Ngoc Hoang 2019 New J. Phys. 21 013035

View the article online for updates and enhancements.

Bringing you innovative digital publishing with leading voices

to create your essential collection of books in STEM research.

This content was downloaded from IP address 14.162.146.101 on 08/04/2019 at 10:07


https://doi.org/10.1088/1367-2630/aaff33
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/655605250/Middle/IOPP/IOPs-Mid-NJP-pdf/IOPs-Mid-NJP-pdf.jpg/1?

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
5May2018

REVISED
4 December 2018

ACCEPTED FOR PUBLICATION
16 January 2019

PUBLISHED
31 January 2019

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 21(2019) 013035 https://doi.org/10.1088/1367-2630/aaff33

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Biexciton as a Feshbach resonance and Bose-Einstein
condensation of paraexcitons in Cu,0

Cam Ngoc Hoang

Institute of Physics, Vietnam Academy of Science and Technology, No 10 Dao Tan St, 118000 Hanoi, Vietnam

E-mail: hncam@iop.vast.ac.vn

Keywords: condensed matter theory, two-channel scattering, feshbach resonance, paraexciton loss in Cu,0, quasibiexciton,
spin-dependent exciton—exciton interaction, Bose—Einstein condensation of excitons

Supplementary material for this article is available online

Abstract

Paraexcitons, the lowest energy exciton states in Cu,0, have been considered a good system for
realizing exciton Bose—FEinstein condensation (BEC). The fact that their BEC has not been attained so
far is attributed to a collision-induced loss, whose nature remains unclear. To understand collisional
properties of cold paraexcitons governing their BEC, we perform a theoretical analysis of the s-wave
paraexciton—paraexciton scattering at low temperatures. We show the two-channel character of the
scattering, where incoming paraexcitons are coupled to a biexciton in a closed channel. Being
embedded in the paraexciton scattering continuum, the biexciton is a Feshbach resonance giving rise
to a paraexciton loss and a diminution of their background scattering length. In strain-induced traps,
the biexciton effects generally increase with stress. Thus the scattering length a of trapped paraexcitons
decreases monotonically with stress turning its sign as stress goes beyond a critical value. In the stress
range witha < 0, the paraexciton loss increases with stress, whereas in that with a > 0 theloss is
almost stress-independent. Importantly, that in the latter case the loss rate can be reduced to such
small values that it has no effects on BEC by lowering temperatures to near one Kelvin and below. Our
approximate calculations give the critical value of stress in the range just above one kilobar; thus BEC
of strain-confined paraexcitons might be attained under low stress at a subkelvin temperature.

Introduction

Exciton in semiconductors is a Coulomb-bound pair of an electron in the conduction band and a hole in the valence
band. In the low-density limit, excitons behave as bosons, so they may undergo Bose—FEinstein condensation (BEC)
if their lifetime is long enough to allow the system to reach quasiequilibrium [1-3]. Therefore BEC is expected in
Cu,O where the dipole-forbidden 1s excitons of the yellow series have a relatively long lifetime. The internal
electron—hole exchange splits the state into the nondegenerate paraexciton and higher lying triply degenerate
orthoexciton, separated by an energy of A = 12 meV [4]. The orthoexciton is quadruply allowed, while the
paraexciton is strictly forbidden resulting in its particularly long lifetime [5]. Owing to this unique property and also
to their large binding energy, paraexcitons in Cu,O have long been considered a good system to realize exciton BEC.
Much effort has been made during the past several decades, but compelling evidence of BEC in Cu,O has not
been obtained [6—14]. A collisional loss is believed to prevent the paraexciton density from being as high as
necessary for BEC [7, 12—18], but an established understanding of the process is still lacking [ 19]. The loss rate
has been found to increase with stress in strain-induced harmonic traps [16], which are needed to avoid
paraexciton heating and diffusion as well as to lower the critical density [7, 20, 21]. Thus experiments lately have
been conducted with moderate stress at subkelvin temperatures involving low critical densities [10-13]. An
‘explosion’, however, was observed when the critical density was attained for trapped paraexcitons [10, 11]. The
loss is conventionally attributed to Auger recombination, but its nature has not been elucidated [ 19, 22]. Later,
the participation of a biexciton [23, 24] and an inelastic collision of paraexcitons [18] have been suggested, but
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their microscopic mechanisms are still open for making clear. In general, despite the recent experimental
progress toward paraexciton BEC [10-13], a fundamental issue of the problem—the interparticle interaction
remains unsolved.

To understand and possibly to control obstacles to attaining paraexciton BEC, in this paper we perform a
microscopic description of the paraexciton—paraexciton scattering at low temperatures. We begin by
formulating the Hamiltonian of a closed paraexciton system starting from its original electron—hole picture.
This enables us to establish the interconversion between a pair of paraexcitons and that of orthoexcitons, which
results in the two-channel character of the paraexciton—paraexciton scattering. To obtain salient features of the
s-wave collision dominating the scattering at low temperatures, we develop an approximate way of dealing with
the nonlocal exchange part of interaction potentials in two channels, which is also the coupling potential. This
makes it possible for us to estimate the paraexciton background scattering length, the binding energy and
envelope function of a biexciton supported by the closed channel as well as the strength of the coupling between
the biexciton and paraexciton scattering states. With this coupling, the biexciton is not a bound state that can be
detected, but a Feshbach resonance that manifests itself through changes it causes in collisional properties of
paraexcitons. The resonance gives rise to a paraexciton loss and an extra attractive interaction joining up with the
background paraexciton—paraexciton repulsive interaction, which are generally enhanced with increasing stress
in strain-induced traps. As a result, the scattering length a of trapped paraexcitons turns negative as stress goes
beyond a critical value S. In the stress range S < Sy, where a > 0, the paraexciton loss rate is almost stress-
independent, whereas in the range S > S, it increases with stress. The former case is suitable for BEC due to the
repulsive two-body interaction among paraexcitons as well as the possibility to reduce the loss rate to harmless
for BEC values. In fact, we find for a temperature near one Kelvin that the loss rate under stress S < S; is more
than one order of magnitude less than the critical value above which BEC is impossible [ 19]. The loss rate, which
is proportional to the paraexciton-phonon scattering rate, decreases still with temperature decreasing into the
subkelvin range. For the averaged value of the hole-to-exciton mass ratio corresponding to the accepted values of
the key exciton parameters, we find Sy in the range just above one kilobar. This suggests that the explosion
reported in [10] may be connected with the negative scattering length of strain-confined paraexcitons under
moderate stress. Thus our results offer an interpretation of a number of experimental observations and suggest
that experiments on paraexciton BEC should be performed under low stress at a subkelvin temperature.

Results

Two-channel nature of paraexciton—paraexciton scattering

We use the second quantization formalism for an elucidation of the effective spin-dependent two-body
interaction among paraexcitons. We start from the fact that excitons are long-live quasiparticles introduced for
an effective description of electron—hole-pair systems with their inherent many-body Coloumb-mediated
correlations. Each exciton is ‘dressed’ by the Coulomb attraction of an electron with a hole and related to the
other ones by the ‘residual’ interaction that comes from the remaining part of the many-body correlations. As
regards the yellow-series 1s exciton in the Cu,O crystal with full cubic symmetry, we consider it in the simple
two-band model neglecting the fine effects connected with the interaction of the valence band I'S with the lower
lying valence band I'y [25]. In such an approximation the exciton is formed from electrons of the lowest
conduction band I'{ and holes of the highest valence band I}, both having effective spin 1/2. According to the
group-theoretical expansion,

Ifolfelt =T1 o T4, (1)

it splits into the nondegenerate paraexciton I'; with angular momentum J = 0 and the orthoexciton I's with
J = 1. Here the unit representation I';” characterizes symmetry of the 1s hydrogenlike function describing the
electron and hole relative motion in the exciton. The relationship between basis functions of the irreducible
representations of a direct product and of those the product expanded into [26] give us

1 1
Plj | 0) = ZF(p - ﬂk)—(eljz,kfphjl/zp + ejl/z)k*Ph{;Z,p)l 0 >’ (2)
N NG
eon phiiapl 0), M =1,
1 1
Oy 10) = ZF(P — Bk) x —(€1+/2,k—phj1/2,p - e_+1/2,k_ph1+/2’},)| 0), M=0, 3)
JV 4 NG

ej—l/Z,kfphjl/Z,p| 0), M=-1,

where | 0 ) is the semiconductor ground state, | 0 )—that state mapped on the space of excitons, P/| 0 )—the
momentum k paraexciton state, Oy, | 0 )—that of the orthoexciton (M = — 1,0,1 is the projection of the
orthoexciton angular momentum on the quantization axis), and e;; . h (;: », | 0 ) stands for a correlated electron-hole
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Figure 1. Ensemble of correlated electron—hole pairs that constitutes a closed paraexciton system. Small blue (yellow) balls with
arrows depict electrons (holes) with spin-up and spin-down. Dashed light-blue ovals confine correlated two-pair structures with
different spin combinations that constitute two correlated paraexcitons.

pair with total spin projection 0, + 0, and total momentum p, + p,,. Here ¢ b (hyt p) denotes the creation operator
of an electron (a hole) with spin projection o (¢ = 1/2 for spin-upand ¢ = —1/2 spin-down) and momentum p.
In equations (2) and (3) Vis the sample volume, f(p — (k)—the 1s exciton envelope function in the momentum
spacewith 3 = p, /1, the hole-to-exciton mass ratio (¢, = p, + [, ), and the particular values of Clebsh—Gordan
coefficients are taken from the tables of Clebsh—Gordan coefficients relevant to irreducible representations of the Oy,
group [27].

Taking into account the fact, that in relevant experiments only 1s excitons are excited, we have the
relationship between correlated electron—hole pairs and excitons inverse to equations (2) and (3)

ei/ab, W72l 0) = = F(aks — A0 1] 0)

1
erran, 120l 0) = ﬁmakh — BRI 1, + Ogcs1)] 0)s

1
ejl/z,ke h1+/2,kh| 0)=—Fr(ak; — ﬂke)(Pl::+k,, - O(;,rk£+kh)| 0),

N2V
1
e on bl 0) = N Faky — Bko)OF 1 41,1 0). 4)

Assuming the ortho-para conversion in a real experiment at low temperatures to be instantaneous, we
consider a closed paraexciton system, which actually includes ensembles of zero-spin correlated electron—
hole pairs. A schematic representation of such an ensemble is shown in figure 1. The residual interaction
among paraexcitons arises from correlations between the electron and hole of each pair with all the electrons
and holes of the other pairs, which are governed by the Coulomb forces and Pauli exclusion principle of
indistinguishability. It includes two-body, three-body, and higher multi-body interactions, among which in
dilute conditions the two-body interaction dominates. There exist several ways of deriving an exciton
Hamiltonian with two-body effective interaction from that of the original electron—hole system [28—32]. In our
previous work [33], we have done this for the common case of direct-gap two-band semiconductors by adopting
the bosonization approach of Hanamura [28, 29] with the particles spin taken into consideration. The approach
can be justified as follows. When one electron-hole pair is present in the system, the internal pair correlation
(Coulomb attraction) binds the electron and hole into an exciton. The binding energy and size of the exciton are
expressed in terms of the exciton Rydberg energy R, and effective radius ,,, respectively. Being the energy and
length scales of the internal pair correlation, these quantities present a physical property of the semiconductor.
Strictly speaking, only in this hypothetical case of one pair in the system the exciton is an ideal (noninteracting)
boson. Already when there are two pairs, two-pair correlations produce qualitative changes. In dynamical
respect, being mediated by interpair Coulomb forces, these correlations give rise to the exciton—exciton
interaction of the order of R, na;, while in statistical aspect, they make excitons deviate from bosons by adding a
non-bosonic correction of the order of na; [3]. Here n=N/V (N is the number of electron—hole pairs) is the
density of pairs in the system. When there are more pairs, three-pair and higher multi-pair correlations lead to
three-exciton and higher multi-exciton interactions, whose scale is, respectively, R, (na; )? and corresponding
higher orders of na; multiplied by R,. When # is so small that na; is an infinitesimal quantity, one can consider
only the internal correlation inside pairs. A system of N pairs is represented in the exciton space by that of N
noninteracting excitons-bosons, which are the eigenstates of the exciton system’s Hamiltonian in the linear
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approximation. In the low-density limit, wherein nazis very small, naf < 1, but finite, one has to consider the
effect of two-pair correlations. To do this, in the exciton-boson approach the system of excitons-bosons is used
as an orthonormal basis for representing Coulomb-mediated two-pair correlations in the form of the effective
exciton—exciton interaction. Certainly, such an approach does not allow to describe both the exciton—exciton
interaction and their non-bosonic nature at the same time [34]. Therefore it is applicable only for the low-
density limit that is under consideration in this paper. Combined effects of the two consequences of two-pair
correlations, which are of the order of R, (1a)? as those of three-pair correlations, have to be taken into
consideration when 7., is not very small. However, that is beyond the scope of the paper.

Thus, using the bosonization approach of Hanamura, we map correlations among the constituents of two
zero-spin correlated electron—hole pairs, which can be in three possible spin combinations as structures marked
by light-blue ovals in figure 1, onto the exciton space to obtain the Hamiltonian

HP7P = Z EP(k)Plj—Pk + Z Ea(k) Z OA-Z,kOM,k
k k

M=-1,0,1

1
+ — > (U@ O+ g0 k- qO-11, 01k
2V ioq

1
+ [Ud(q) + EUex(kl -k, q)][P1:+qu+rqu2Pkl + O(Ikﬁqo(;fquoo’kz Ooykl

1
— EU""‘(kl — k3, QL0 +q0 1 10—q T O 1k1qOrk—q) Ook, Oox, + h.c.]

1
+ Uk~ ko QU0 190 14-g + Ot qOrie—q + Ok +08k,-o) Pie P

+ h.c]}, )

where E,(k) and E,(k) denote the paraexciton and orthoexciton energy, respectively, U%and U are energy
densities of the direct and exchange exciton—exciton interaction [28, 32], and h.c. stands for hermitian
conjugates. The last two terms in the curly brackets show that the exchange interaction can flip the spin of
interacting excitons. It either turns two longitudinal orthoexcitons (M = 0) to a pair of transverse ones with
opposite orientations of the angular momentum (M = 1, —1), or convert a paraexciton pair to a pair of
orthoexcitons, and vice versa. Here in this paper, the term orthoexcitons is used to refer exclusively to the ones
that go in pair with zero total angular momentum. As U > 0[28, 30], we see that the two-body interactionina
paraexciton system is generally repulsive except for the case of the spin-flip exchange interaction between two
orthoexcitons, which is attractive. Although the form of the attractive exchange exciton—exciton interaction is
different in different semiconductors depending on their particular symmetry, the common fact is the attraction
arises exclusively from exchange correlations between distinguished pairs. In the case under consideration, let us
pay attention to the three two-pair complexes with different spin combinations that constitute two correlated
paraexcitons. One can see that the complex depicted in figure 2(a) is unique in the sense that it does not contains
identical carriers-fermions, while the ones in figure 2(b) do. Being subject to the Pauli exclusion principle, the
two identical electrons and holes inside the complexes in figure 2(b) repel each other at distances, where their
wave functions overlap. This results in the repulsive exchange interaction between paraexcitons and longitudinal
orthoexcitons with each other as well as among themselves. Concerning the complex in figure 2(a), the principle
Pauli does not apply to its carriers. The four members are on equal footing, so they prefer to stay together in the
totally symmetric complex by an attractive interaction. In Cu,O with Oy, crystal symmetry, however, the
repulsion between the orthoexciton and paraexciton that arises from the internal exchange predominates.
Consequently, as we see from figure 2(a), the spin-flip exchange interaction of a pair of transverse orthoexcitons
into longitudinal orthoexcitons is attractive, while that into paraexcitons is repulsive.

Thus, with the effective two-body interaction taken into consideration, a ‘paraexciton system’ theoretically
incorporates not only paraexcitons but also orthoexcitons that go in pairs. In this connection, neither the states
of paraexciton pairs nor those of orthoexciton pairs can form eigenstates of Hamiltonian (5). They form just
components, or substates of eigenstates, which have the form of two-exciton vectors with definite momentum

1 1
U, _,(K) = Wixd Z[wpp(S)PstrK/z P¥ ik + pro(s)(o(;,rﬁ»K/z O¢ _six/2

0% s1k/2 01 —gix/2 + Oiix/2 O+1,s+1</2)] [0), (6)

where 1), and 1, are envelope functions, respectively, of ‘bare’ paraexciton and orthoexciton pairs. The
Schrodinger equation H,_,W¥,_,(K) = E,_,(K)¥,_,(K)leads to asystem of equations for 1/,,, and ),
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Figure 2. Mechanism of the exchange exciton—exciton interaction. Grey (orange) balls denote the dark paraexciton (bright
orthoexcitons) with the angular momentum projection equal to the sum of those of the constituent electron and hole. (a) Left: on the
top is one of three complexes of two correlated electron—hole pairs that constitute two correlated paraexcitons. The complex includes
two different pairs, so all four particles are distinguished. Each correlated pair is represented in the exciton space by a linear
combination of a paraexciton and a longitudinal orthoexciton in accordance with equation (4). As a result, the whole complex is
represented by a combination of a correlated pair of paraexcitons and that of longitudinal orthoexcitons. Right: the two-pair complex
on the top is obtained from the one on the left by an exchange of partners between two pairs. It is represented in the exciton space by a
pair of correlated transverse orthoexcitons with opposite orientations of the angular momentum. Thus, the exchange correlations
between two distinguished electron—hole pairs are reproduced in the exciton space by the spin-flip mutual interaction of paraexcitons
and longitudinal orthoexcitons into a pair of transverse orthoexcitons; the former is repulsive, while the latter is attractive. Two-side

arrows allow to read the schema from right to left when it represents the reverse process. (b) The same description as in (a) for two
other complexes.
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where p, is assumed the same for both types of the exciton and E = kg T (kpis the Boltzmann constant, T—the
temperature)—paraexciton thermal energy. With the paraexciton scattering threshold chosen as the energy
zero, E is the relative energy of colliding paraexcitons at large distances, where their mutual interaction
disappears. Since E > 0, the interaction potential between paraexcitons forms the energetically open channel,
also called entrance or background channel. It is coupled by the exchange exciton—exciton interaction potential
to a channel formed by the interaction potential between orthoexcitons. Being situated higher than the
paraexciton scattering threshold by 2A , the latter is a closed channel for the paraexciton scattering at any energy
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E < 2A .With such energy, paraexcitons can exit in the open channel after their collision, but not in the closed
channel. Salient features of the paraexciton—paraexciton scattering can be drawn from equation (7) in the case
the coupling and interaction potentials are defined. These potentials incorporate the exchange exciton—exciton
interaction potential, whose description is a long-standing problematic issue of exciton physics. That is
connected with its nonlocality, which always presents in the case when real interactions in a many-particle
system are described in terms of an effective interaction between quasiparticles. The potential depends at any
point on the wave function everywhere in a surrounding region, whose range coincides with its range. Therefore,
coupled equation (7) form a system of integro-differential equations in the coordinate space, which cannot be
analyzed with usual methods of nonlinear dynamics. Thus we are forced to make approximations from the
outset. First, we limit ourselves to the s-wave paraexciton—paraexciton collision at such temperatures, that

E < 2A , which we refer to as low temperatures. In this case, the probability of the para-ortho up-conversion is
practically zero and the influence of the closed channel on the paraexciton scattering can be treated by
perturbation theory [26]. In the first approximation (the zeroth order in perturbation) the scattering is described
by two uncoupled channels obtained from equation (7) by leaving aside the coupling terms. Since the first order
correction is zero, the next approximation is of the second order in perturbation.

Approximate interaction potentials and solutions for bare channels

We need to define interaction and coupling potentials for the case of the s-type envelope functions in bare
channels. All we have is a presentation of the direct and exchange interaction density U and U™ in the form of
averages of the screened Coulomb potential Uy (p) o< €2/ e p? (eis the elementary charge and e—the dielectric
constant) over the states of two excitons before and after the interaction. Generally, we can obtain an integral
presentation for the direct and exchange interaction potentials from U?and U™ by retransforming U.(q) and
the exciton wave function , which depends parametrically on mass ratios fand @ = 1 — (3, to the position
space [35]. For the yellow-series 1s exciton in Cu,O with its effective radius ,, comparable to the lattice constant
a;, central cell corrections [36] cause complexity. By producing a momentum dependence of € and of the exciton
effective mass involving that of 3, these corrections make the inverse Fourier transformation difficult. Especially,
thatis impracticable for function f because the dependence of 3 on momentum, which is connected yet with
nonparabolicity of the I'} valence band [37], is hard to establish. We have to resort to approximations to capture
essential features of the exciton—exciton interaction potential. We note that, the first momentum-correction to e
adds to the direct and exchange interaction potentials a respective extra potential thatis more than two orders of
magnitude weaker (thatis (¢ /d)(a,/a;)* = 10> with d ~ 0.18 [36]). Therefore in dealing with U%and U we
can neglect the momentum correction and treat € as a constant as well as put the Coulomb prefactor e?/ ¢ equal
to 2Ey ay, Ej is the exciton experimental binding energy. In that case, to a set of values of the key exciton
parameters Ej, 4, and i, there corresponds an averaged value of Saccording to relations 1, /i, = (1 — 3)3
and /2%/2p, = Eya?. With the constant 3, the direct part of interaction potentials in bare channels is calculated
in a closed analytical form showing that it matters only at distances r < . [35]. Concerning the exchange part,
the formula for U™ (see supplementary information (SI) available online at stacks.iop.org/NJP/21,/013035/
mmedia) shows, that the degree of its nonlocality decreases with the decrease of the smaller mass ratio,
disappearing in the limit the ratio approaches zero, when it equals the exchange energy in Heitler—London
theory of the hydrogen molecule [38, 39]. This suggests, that the expansion of U™ into a series of powers of 3, the
smaller mass ratio in Cu,O, might provide a useful approximation to the exchange interaction potential

%Zq: U(2s, (s + @ = f explisr]d®r

X[ Ao(r) + B Al(T)i + 32 Az(r)d—2 + 3 A3(T)d—3 + .. |o(r) = f exp[ist]d’rVe(r) ¢(r) (¥
dr dr? dr? ’

ifappropriately truncated. Here ¢ is any of s-wave functions of bare channels in real space, and functions

Ao (r), A(r),...depend parametrically on ( falling off exponentially at large distances. Let us take the value

B ~ 0.28 , which fits to commonly accepted values ,, = 0.7 nm, E;, = 150 meV and p, = 2.6m (1, is the free
electron mass) of the key exciton parameters. For it we can truncate expansion (8) at the third term, and as a
result, equations for the y-function (x = r ¢ /47) of the background s-wave scattering and possible biexciton
read

2(8 — DPE X} + [UNx) + Folx) — Elxg + B R X} + B2 (X)X} + 8 Bx)xy =0, )
2(8 — DBEyx; + [Ux) — Fo(x) + 24 — Eolx, — B R(0)x;, — 82 ,(x)x, — 8° B(x)x, =0, (10)

with E, the biexciton energy, x = r/a,, and functions Fy, F, F,, F; expressed in terms of functions

Ay, Ay, Ay, As (see SI). A change in deciding on a particular value for a key parameter entails quantitative
changes in solutions for bare channels as well as their coupling, but the qualitative picture of the paraexciton
scattering remains the same as presented below for 3 = 0.28.
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Figure 3. Approximate local equivalents of interaction potentials in bare channels. V;,, is presented for E = 0 and V—for E = E,,.
The biexciton is depicted by the black line in the potential well of V; with a grey strip around showing the resonance width.

On the normalization of scattering functions ¢, by the k scale, x,, has the asymptotic form x, ~ x — ay, /a.
[40]. By a numerical solution of equation (9) for E = 0 we find the background scatteringlength a;, ~ 1.45a,,
which is considerably smaller than our rough hard-core estimate [35] and that computed by quantum Monte
Carlo simulations for 3 = a/[41]. The parameter determines solely the background phase shift §,, of slow
paraexcitons [26]. Condition for paraexcitons to be slow depends on the range of paraexciton—paraexciton
interaction potential Vj,, = U + V=, which in its turn is defined by functions F(x),...,Fs(x). We get the
range about 3,,, thus paraexcitons having k < (3a,)"! ~ 0.48 nm™ " are slow. To be specific, we set the point
T = 1.2 K corresponding to k ~ 0.06 nm ™ the upper bound of the slow paraexcitons range, but loosely,
paraexcitons at temperatures of order of 2 K with k < 0.1 nm ™' can still be considered to be slow.

As to equation (10), we find by the customary variational procedure, that it has one bound state—the
biexciton with binding energy & = 2A — E; ~ 13 meV and the corresponding wave function

Xp (%) = 1.026 61x'%° exp { —0.712 54 exp[—1.89 exp(x — 0.952)]} {exp[—1.89(x — 0.952)]}°21254,  (11)

The obtained value for &, is much larger than the result of Brinkman et al [42] and coincides with that of Huang
[43]. Comparison is, however, inappropriate because in those works the exchange exciton—exciton interaction
and central cell corrections have been neglected.

To have an idea of the shape of interaction potentials V;, and V = U4 — V**, we perform localization
procedures to obtain their approximate local equivalents [44]. Neglecting for simplicity small 3°-terms in
equations (9) and (10), we turn them into usual Schrodinger equations by transformations x(x) = Tg(x) Pg(x)
and x, (x) = T;(x) Py (x), respectively. The acquired energy-dependent local equivalent potentials Vjgand Vg
are shown in figure 3. Their shape resembles that of the interaction potential between hydrogen atoms,
respectively, in their singlet and triplet molecular states [26]. For actual interexciton distances the interaction
between paraexcitons in the background channel is repulsive, whereas that between orthoexcitons in the closed
channel is attractive. Being shifted upward by 2A , the closed channel involves the biexciton energy
Eq = 2A — & (theblackline inside the potential well) to be embedded in the paraexciton scattering
continuum.

Effects of biexciton as a Feshbach resonance

As a perturbation, when being ‘turned on’ the coupling of two channels induces transitions between the
biexciton and paraexciton’s incoming and outgoing scattering states, which make the biexciton an intermediate
state [26] for the paraexciton scattering. The biexciton is no longer a bound state, but just a scattering resonance
[45], or a quasistationary state having complex energy Ey — il /2 with I the resonance width [26], also called
the coupling strength. Consequently, the quasibiexciton has a finite lifetime 7 = 7/T. parameterizing its
exponential decay with time. This explains the fact why the biexciton has not been detected in Cu,O. Resonance
scattering of paraexcitons on the quasibiexciton, which is schematically depicted in figure 4, happens when their
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Figure 4. Resonance scattering of paraexcitons on the quasibiexciton. Two paraexcitons collide and form temporarily the
quasibiexciton, which decays after some time into two paraexcitons. Two-side arrows allow one to read the schema in two directions
showing that the formation and decay of the quasibiexciton take place repeatedly.

¥

energy matches the interval of width I'. around E; (see figure 3). Such a phenomenon is long known in nuclear
physics as a Feshbach resonance [46]. They have lately become an important experimental tool for controlling
properties of cold atomic gases [47]. A distinctive feature of the quasibiexciton is that, it is a decaying state by
itselfhaving a width I'j;, connected with all damping mechanisms—partly a consequence of the fact, that the
system under consideration is not quite closed, but coupled to surroundings. In these conditions, the
paraexciton scattering is an elastic collision in the presence of inelastic processes that lead to the decay of the
quasibiexciton as a complex of electronic excitations. Effects of such a decaying resonance on the paraexciton
scattering follow straightforwardly from nonrelativistic Breit~-Wigner formulas [26]. In particular, the S-matrix
of the s-wave paraexciton scattering has the form

L

Sy = exp[2iby, ]| 1 + i >
S B TRy

(12)

where D is the detuning of the scattering energy from the resonance, D = 2A — &, — E (see figure 3). From
here we have the total s-wave scattering cross section g; = 27 (1 — Re Sy) /k?,

LTt + Ip)

DI,
+
D? + (I./2 + T /2)°

D2 + (I/2 + Ip/2)?

o = % 4sin® by, cos(206p) + 2 sin 25bg]. (13)

As seen, the coupling to the quasibiexciton causes a resonance scattering superimposed on the paraexciton
background scattering. It is described by the two last terms in brackets presenting, respectively, the resonance
scattering and its interference with the background scattering. They include two quasibiexciton effects. First, a
paraexciton loss described by the inelastic cross section g, = (1 — |Sy[?) /k?, whose rate is

2 I, L, V|
Amvo—ar/ | & Loty (L Te ) (14)
e\ n E 2D 2D 2D 2D

where v = /6E/ 1, is the mean thermal velocity of the scattering particle with mass 11,,/2. We would like to
note, that no quasibound state affect higher waves, so the paraexciton loss at any temperature T < 2A /kg is
connected entirely with the s-wave quasibiexciton. Characterizing the decaying resonance, the loss rate depends
on [}, /2D, along with I /2D determining the scale of Feshbach resonance effects. Let us assume, that 'y is
about two times the paraexciton decay width, I}, ~ 2I),. Besides a negligibly small population relaxation rate,
I';, comprises homogeneous broadening due to the exciton—exciton and exciton—phonon scattering, I, and
'y, and inhomogeneous broadening I';,,,, due to fluctuations of the sample structure and applied fields. We see,
that I',;, makes the paraexciton loss persistent at low densities as reported in [7, 18] and [20], and I',, is a source
of uncertainty contributing to the divergence of experimental estimates of the loss rate [12, 14]. Further, the loss
rate of trapped paraexcitons depends on an external factor in the form of stress S, which reduces the ortho-para
splitting, A = 12 — ¢S + 6S%(¢; ~ 2.03 meV kbar™', ¢, &~ 0.14 meV kbar?) [20, 48]. Leaving aside a stress
dependence of I, we expect roughly from equation (14) that A first increases with S reaching its largest value at
the true resonance D = 0, then decreases. In fact,at T = 2 Kwhere D = 0 under S ~ 3.4 kbar, the increase of
the rate was observed for discrete stress values from 1.5 to 3.5 kbar [16].
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Table 1. Denotations and abbreviations.

Exciton binding energy E,

Exciton effective radius ax

Exciton total mass and reduced mass pxand i,
Ortho-para splitting energy A

Direct exciton—exciton interaction potential ut
Approximate exchange exciton—exciton interaction potential P

Interaction potential between paraexcitons Ut + ye
Interaction potential between orthoexcitons Ut — ye
Paraexciton scattering energy E=kgT
Paraexciton background scattering length Apg
Quasibiexciton binding energy &
Quasibiexciton energy Ey=2A - &
Quasibiexciton resonance width (coupling strength) I,
Quasibiexciton own width |
Paraexciton energy detuning from resonance D=Ey—E

Diminution of a;, caused by resonance scattering
Paraexciton (total) scattering length

Ores

a = Apg + Gres

Paraexciton elastic cross section 0, = 4ma®
Paraexciton inelastic cross section o,

Mean thermal velocity of the scattering particle v = (6kgT /)2
Paraexciton loss (inelastic collision) rate A = vo,
Paraexciton elastic collision rate K = vo,
Paraexciton broadening by exciton—exciton interaction Ii.x=/mEK+ A
Paraexciton broadening by exciton—phonon interaction Ton
Inhomogeneous broadening Tinh

Paraexciton decay width
Applied stress
Critical stress, under which a turns its sign

Fp = Fxfx + th + 1—‘inh
S
So

The other quasibiexciton effect is characteristic of Feshbach resonances. It is a change introduced to the
paraexciton—paraexciton interaction described by the elastic cross section g, = 0; — o;. Clearly, the terms other
than 4 sin® g and o, in equation (13) together present an additional interaction joining up with the background
repulsive interaction between paraexcitons. Rich physics of resonance effects, whose scale is defined by the ratio
between the quasibiexciton total width and detuning, is beyond the scope of this paper. In the following we
confine our analysis to slow paraexcitons under moderate stress relevant to recent experiments [10—13] and also
to a part of an earlier experiment by Denev and Snoke [16]. Their elastic cross section has the form

~1) 2

1T L LY
el ka1 == AT Apg — Eﬁ 1+ (ﬁ Ep) > (15)

which shows the emergence of a resonance term a,.; x —1I;./2D in the paraexciton scattering length
a = ayg + ar presenting an extra attractive interaction.

Quantitative estimates and interpretation of experimental results

To estimate quasibiexciton effects, we have to evaluate I'.and I',.. Stress moves the quasibiexciton position,
which is already quite close to the scattering threshold in an unstressed crystal, further downwards (see figure 3).
A resonance that is close to the scattering threshold has an energy-dependent width, I}, = 2,k withy,a
constant [26, 40, 47]. The quantity is derived from the second-order correction to the discrete energy level
caused by the coupling potential as a perturbation, [ = 23 [{(¢,| V3V ¢, 16 (E; — E)[26,40]. Using
functions o, xpand V* obtained in the previous subsection for computing the transition matrix element, we
getyo ~ 7.05nm meV. Asto 'y, weput I, ~ I}, + I}, neglectinginhomogeneity of the strain field (see
table 1). It is known, that at such low temperatures that the paraexciton energy is less than 4, u?/2, where

u = 4.5 x 10° cm s~ is the velocity of the longitudinal acoustic phonon, the paraexciton—phonon scattering is
exponentially restrained [20, 49]. Asaresult,at T < 2K I, is extremely small. In fact, at low densities 'y,
amounts to the paraexciton decay width I', that has been reported to be 80 neV at T = 1.2 K[50]. In strain-
induced traps, I', depends on stress through I, = /m(K + A) (K = 4ma?v—the elastic collision rate), but
our estimates show that for moderate stress its highest value is just of order of microelectronvolts. Under
conditions of recent experiments on trapped paraexcitons in Cu,O (T < 2K, S < 2 kbar), we have detuning
D > 3 meV, hence (I}, /D)? is negligible and equations (14) and (15) give, respectively,

9
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Figure 5. Stress dependence of the paraexciton scattering length.

271 r 271
PR p—— 1+(7Lk) CA~arg e 1+(7Lk) . (16)
D D DD D

One can see that the paraexciton scattering length depends on stress through the energy detuning D. It is
obvious from figure 5, where a is shown as a function of stress for two values of the temperature, that a depends
little on T, but monotonically decreases with stress turning its sign at a value Sy in a low stress range. The critical
stress value is almost temperature-independent being about 1.07 kbarat 7' = 0.8 Kand 1.08 kbarat T = 0.1 K.
BEC of a trapped Bose gas witha < 01is possible [51-53], but unstable leading to the condensate’s collapse
[54-56]. This happens when the number of condensate particles exceeds a critical number N, ~ 0.46ay, /|a|
(ano—the mean harmonic oscillator length). For the trap with ap,, ~ 0.615 pm under S=1.4kbarat T = 0.8 K
from [10], we get N, &~ 1200. It seems that this number was exceeded, so the formed condensate collapsed and
subsequently exploded.

Concerning thelossrate A oc I},/D?,its stress dependence is connected with that of both I, and D. Among
two terms of Iy, I, _; depends on stress via A (see table 1), while I'y,, is stress-independent. As a matter of fact, at
low temperatures the interaction of paraexcitons with phonons consists of their interaction with longitudinal
acoustic phonons, which does not depend on stress, and that with transverse acoustic phonons, which is
negligibly weak [57]. For T = 1.2 K, where I';;, = 80 neV, we compute I',_, and A by iterations in the stress
range from 0.2 kbar to 2 kbar for the density reported in [10—13]. The result is shown in figures 6(a) and (b),
respectively, for I', and A. Including a term proportional to K o a?, both parameters have their minimum at So,
where a = 0, then begin to rise gaining steep increase when stress approaches the point 2 kbar, which is on the
way to the resonance area of D = 0 atS ~ 3.5 kbar. As mentioned earlier, the increase of A with stress under
moderate and higher stress has actually been observed at T' = 2 K[16]. Furthermore, it is important to note, that
for stress S < S, the decrease of I', with increasing stress, which is connected with that of K (see figure 6(a)),
balances the decrease of D? resulting in almost stress-independent loss rate in the low stress range up to
1.1 kilobar, as seen from figure 6(b). The rate in the whole stress range remains very low, just of order of
107*° cm® ns™". Even if the inhomogeneous broadening raises the value by an order, it is still below the critical
value 5 x 107"’ cm’ ns™" above which no BEC is possible [19]. The stress independence of the paraexciton loss
rate and its low value in the low stress range have been reported in [ 16] and mentioned again in [17]. Concerning
the relationship between the elastic and inelastic collision rates, we notice, that apart from the close vicinity of S,
where K < A (see figure 6(b), the inset), the former absolutely dominates with ratio K/A about 50. The factor is
favorable for evaporative cooling of thermal paraexciton clouds [58]. As to the relationship between two terms of
the paraexciton decay width, we see from the inset in figure 6(a) that near S, I',_, ~ 0,50,y is the main
term of I, whereas far from the point I',_, ~ /nK predominates. Under stress about 1.5 kbar and higher,

I}, ~ I_, so A decreases with temperature as v o T'/2. Then from the value A ~ 5 x 107!° cm’ ns™*
stress 1.5 kbarat T = 1.2 K drawn from figure 6(b) one can infer that A isabout 4 x 10~ cm’ ns ! at
T =0.8Kand2 x 107 cm’ ns™ at T = 0.2 K. These values are an order of magnitude lower than those ones
reported in [12] and [13], respectively. The applied stress used in experiments of [ 13] is reported to be lower,
than that used in experiments of [12], so the value of A must be less still. To our knowledge, so far [12] and [13]
are the only works reporting values of A measured in the subkelvin temperature range. Moreover, it seems to us

under
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Figure 6. Stress dependence of the decay and loss parameters of slow paraexcitons (a) of the decay width and its two components, and
(b) of the loss rate on the background of the fiftyfold reduced elastic collision rate.

that in experiments of [13] Stolz and his coworkers were close to the stress range that is appropriate for BEC,
where a > 0 and the paraexciton loss is inefficient to have any effect.

Discussion

Itis the analogy of excitons with atoms that has motivated the search for BEC in Cu,O. However, the
distinguishing feature is that excitons are composite entities made from charge-carriers—fermions, whose
Coulomb-mediated correlations are ruled by the Pauli exclusion principle. The internal structure of excitons
produces the spin-dependent exciton—exciton interaction that governs their BEC. In the case of yellow-series 1s
excitons in Cu,0, it results in the interconversion between a pair of paraexcitons with mutual repulsive
interaction and that of orthoexcitons, which attract each other, leading to the two-channel character of the
paraexciton—paraexciton scattering. We have described the scattering at low temperatures by means of
perturbation theory. By an approximate way of calculating the nonlocal exchange exciton—exciton interaction
potential, we have been able to estimate the paraexciton background scattering length a,, and the binding energy
&p of the biexciton supported by the closed channel as well as the corresponding envelope functions. Together
with the approximate exchange exciton—exciton interaction potential, these functions have enabled us to assess
the coupling strength I of the biexciton and paraexciton scattering states. The coupling makes the biexciton a
Feshbach resonance with its two characteristic effects—a loss of particles in the open channels and a diminution
of their background scattering length, which give us clues about the mechanism of obstacles to achieving
paraexciton BEC. First, the loss of paraexcitons observed in numerous experiments is elucidated, which turns
out to be connected with continuing transitions of paraexciton’s incoming and outgoing scattering states to the
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quasibiexciton as an intermediate state. Reflecting the paraexciton’s decaying nature characteristic of
semiconductor electronic excitations, the loss rate is proportional to the paraexciton decay width I',, which
comprises of the exciton—exciton and exciton—phonon scattering widths and also the inhomogeneous
broadening. The multiparameter dependence of I, explains the wide divergence of experimental reports on the
magnitude and temperature dependence of the paraexciton loss rate. At relatively high temperatures, when
exciton—phonon scattering is effective, the rate can be high being likely the main cause of the paraexciton
saturation in an unstressed crystal. However, of our interest in this paper are strain-confined paraexcitons at low
temperatures. By shifting paraexciton and orthoexciton energies in different ways, stress reduces the ortho-para
splitting A bringing the quasibiexciton closer in energy to paraexciton scattering states. This factor in general
enhances quasibiexciton effects. Consequently, at some stress value Sy, the background scattering length is
balanced by the diminution induced by the quasibiexciton, so a = 0, then it turns negative for S > Sy. As BEC of
trapped bosons with a < 0is unstable leading to the condensate’s collapse, one has to use stress S < Sy to create
BEC of trapped paraexcitons. This stress range is appropriate for BEC still by the fact, that here the paraexciton
loss rate is almost stress-independent with its value determined mainly by that of the paraexciton-phonon
interaction. Therefore one can reduce the loss rate to such small values that it has no effect on BEC by lowering
the temperature to the range near one Kelvin and below, where the paraexciton-phonon interaction is
exponentially inhibited.

Our numerical analysis that has been done with the averaged value of the mass ratio 5 = 0.28 gives Sy in the
range just above one kilobar. This leads to a thought that the ‘explosion’ seen by Gonokami’s group under stress
of 1.4 kbar is connected with attractive interaction between trapped paraexcitons. The value of the critical stress
is, however, just tentative. The calculation of Sy has been relied on three parameters a;,, & and I'.computed by
using approximate interaction and coupling potentials. The mass ratio, which the shape of the potentials
depends on, is uncertain because of central cell corrections. The used averaged value for Fhas been derived from
aset of accepted values of the key exciton parameters as a result of an approximation. The last leads to errors of
order of one percent in the calculated potentials, which make the values obtained for &, and I'. to be not exact
ones. Particularly about I, we would like to note, that the resonance width has been obtained from the second-
order correction to the quasibiexciton energy produced by the coupling potential as a perturbation. That was a
rough approximation because the exchange exciton—exciton interaction potential is not weak. The perturbation
caused by this potential to quasistates of bare channels seems more complicated. Clearly, further work is needed
on this question. In this context, our treatment gives just general qualitative features of collisional properties of
cold paraexcitons leaving much room for quantitative reexamination by experiments as well as by other
theoretical approaches.
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