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We propose a unified setup for dark matter, inflation, and baryon asymmetry generation through the
neutrino mass seesaw mechanism. Our scenario emerges naturally from an extended gauge group
containing B-L as a noncommutative symmetry, broken by a singlet scalar that also drives inflation. Its
decays reheat the universe, producing the lightest right-handed neutrino. Automatic matter parity
conservation leads to the stability of an asymmetric dark matter candidate, directly linked to the
matter-antimatter asymmetry in the Universe.
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I. INTRODUCTION

The need to account for neutrino oscillations requires
new physics beyond the standard model. In addition, the
cosmological challenges of particle physics, such as the
need to account for dark matter, inflation, and reheating, as
well as the matter-antimatter asymmetry of the Universe, all
suggest the existence of new physics. Traditional proposals,
based upon supersymmetry, grand unification, or extra
dimensions, address only some of these issues separately. It
is therefore desirable to find a comprehensive theory that
can provide a common framework to address all of these
puzzles.

The seesaw mechanism [1–9] is the most popular way to
account for small neutrino masses. Here we assume that
neutrino masses arise through the exchange of heavy right-
handed neutrinos, hence suppressed by the right-handed
mass scale. This also provides an attractive way to under-
stand the observed baryon asymmetry of the Universe
through the so-called leptogenesis mechanism [10–12].
The latter can be triggered by the CP-violating and out-of-
thermal-equilibrium decays of the heavy right-handed
neutrinos. These decays are followed by sphaleron proc-
esses in the effective standard model.
Both the seesaw mechanism and leptogenesis suggest

having theB-L charge as a gauge symmetry. Indeed, a gauge
completion requires the presence of right-handed neutrinos
as basic fermions, due to B-L anomaly cancellation.
Moreover, B-L plays a key role in converting the lepton
to the baryon asymmetry during the sphaleron phase.
In addition, we also require a period of inflationary

expansion of the early universe, in order to make the
standard big bang picture fully consistent. This phenome-
non can be parametrized by the slow-roll time evolution of
a scalar field, called inflaton [13–15].
Last, but not least, the standard model lacks a stable

weakly interacting massive relic that can be thermally
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produced at early times [16,17]. Moreover, the fact that
dark matter searches have yielded null results, leaves the
origin of dark matter as a big challenge [18–21]. Here we
propose that, since dark matter and normal matter were
thermally connected to begin with, they should be man-
ifestly unified within gauge multiplets.
In this paper we show how a B-L gauge extension of the

standard model yields a viable dark matter candidate,
stabilized in a natural way by the residual matter parity
which results from the extended gauge symmetry. This also
fits nicely with the neutrino mass generation through the
seesaw mechanism.
The latter is manifestly unified with inflation, since the

inflaton S arises from the field responsible for B-L breaking.
This takes place at a scale Λ. Right-handed neutrinos are
produced via inflaton decays during reheating. As a result, in
our B-L gauge theory setup we have that neutrino mass
generation, inflation, and reheating as well as leptogenesis
are all mutually interconnected. In addition, our B-L theory
naturally possesses matter parity as a residual gauge sym-
metry. These features are in sharp contrast with the simplest
Abelian B-L extensions of the standard model [22–25].
In order to demonstrate all these points explicitly we start

in Sec. II by describing a gauge theory that manifestly
unifies the B-L and electroweak charges within a 3-3-1-1
scenario in a nontrivial way. In Sec. III we describe
neutrino mass generation, while in Sec. IV we examine
the novel cosmological implications of our scheme con-
cerning the issues of dark matter, inflation, and the baryon
asymmetry. We conclude in Sec. V.

II. NONCOMMUTATIVE B-L DYNAMICS

Without loss of generality, we consider only the simplest
scenario, based on the 3-3-1-1 extension of the Glashow-
Weinberg-Salam theory [26–32]. The noncommutativeB-L
gauge symmetry mechanism we propose is, however, more
general.
The SUð3ÞL symmetry is a direct extension from the

SUð2ÞL weak isospin. This extended electroweak gauge
symmetry is motivated by its ability to predict the number
of generations (as being equal to that of colors) as a result of
½SUð3ÞL�3 anomaly cancellation [33].
In addition, notice that, like the electric charge Q, the

B-L charge neither commutes nor closes algebraically
within SUð3ÞL. Hence, in order to get a consistent closed
gauge structure, two new Abelian Uð1ÞX and Uð1ÞN gauge
groups are required, where

Q ¼ T3 þ βT8 þ X; ð1Þ

B − L ¼ β0T8 þ N: ð2Þ

This way we are led to the SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX ⊗
Uð1ÞN (or 3-3-1-1) group structure. Here the Tiði ¼
1; 2; 3;…; 8Þ are the SUð3ÞL generators, while X, and N

are associated to Uð1ÞX, and Uð1ÞN , respectively. The
parameters β and β0 are embedding coefficients, arbitrary
on theoretical grounds, and independent of all anomalies.
The new feature is that, in contrast to the ordinary B-L
symmetry, our B-L is a noncommutative gauge symmetry,
analogous to Q, nontrivially unified with the weak forces.
The nontrivial commutations,

TABLE I. Field representation content of the model.

Multiplet SUð3ÞC SUð3ÞL Uð1ÞX Uð1ÞN

ψaL ≡
0
B@

νaL

eaL

NaL

1
CA

1 3 −1þq
3

−2þn
3

QαL ≡
0
B@

dαL

−uαL
jαL

1
CA

3 3� − q
3

− n
3

Q3L ≡
0
B@

u3L

d3L

j3L

1
CA

3 3 1þq
3

2þn
3

νaR 1 1 0 −1
eaR 1 1 −1 −1
NaR 1 1 q n
uaR 3 1 2

3
1
3

daR 3 1 − 1
3

1
3

jαR 3 1 − 1
3
− q − 2

3
− n

j3R 3 1 2
3
þ q 4

3
þ n

η≡
0
B@

η1

η2

η3

1
CA

1 3 q−1
3

nþ1
3

ρ≡
0
B@

ρ1

ρ2

ρ3

1
CA

1 3 qþ2
3

nþ1
3

χ ≡
0
B@

χ1

χ2

χ3

1
CA

1 3 − 2qþ1
3

− 2
3
ðnþ 1Þ

ϕ 1 1 0 2
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½Q; T1 � iT2� ¼ �ðT1 � iT2Þ; ð3Þ

½Q; T4 � iT5� ¼ ∓qðT4 � iT5Þ; ð4Þ

½Q; T6 � iT7� ¼ ∓ð1þ qÞðT6 � iT7Þ; ð5Þ

½B − L; T4 � iT5� ¼ ∓ð1þ nÞðT4 � iT5Þ; ð6Þ

½B − L; T6 � iT7� ¼ ∓ð1þ nÞðT6 � iT7Þ; ð7Þ

subsequently define the Q and B-L charges for the new
particles via the basic relations

q≡ −ð1þ
ffiffiffi
3

p
βÞ=2 and n≡ −ð2þ

ffiffiffi
3

p
β0Þ=2;

respectively.
The simplest fermion sector, free of all gauge anomalies,

is given as Table I. Notice that the scalar content is
necessary for realistic symmetry breaking and mass gen-
eration. Here, a ¼ 1, 2, 3 and α ¼ 1, 2 label the particle
families. Finally, ja and Na are new fermions, included in
order to complete the required representations. Table II
gives the Q, B-L charges of the component fields.
The electrically neutral scalars can develop vacuum

expectation values (vevs) given by

hηi ¼ 1ffiffiffi
2

p

0
B@

u

0

0

1
CA; hρi ¼ 1ffiffiffi

2
p

0
B@

0

v

0

1
CA; ð8Þ

h χi ¼ 1ffiffiffi
2

p

0
B@

0

0

w

1
CA; hϕi ¼ 1ffiffiffi

2
p Λ: ð9Þ

Here the vevs w, Λ break the 3-3-1-1 symmetry down to the
standard model times matter parity, WP ¼ ð−1Þ3ðB−LÞþ2s

(see below), providing masses to the new particles. On the
other hand the vevs u, v break the standard model
symmetry down to SUð3ÞC ⊗ Uð1ÞQ, producing the ordi-
nary particle masses.
For consistency, we impose

Λ ≫ w ≫ u; v; ð10Þ
where the first hierarchy states that the Uð1ÞN breaking
scale is much larger than the SUð3ÞL ⊗ Uð1ÞX breaking

scale, while the second hierarchy is similar to that of the
simplest 3-3-1 model [33], and allows for potentially
accessible new phenomena.

III. NEUTRINO MASS GENERATION

The above noncommutative B-L dynamics provides a
natural seesaw mechanism as a result of gauge symmetry
breaking. We start with the implementation of the type-I
seesaw mechanism (the type-II seesaw alternative in 3-3-1
models has been considered in Ref. [34].).
To analyze this we first consider the gauge symmetry

breaking. This is governed by the Higgs potential, which can
be separated into V ¼ VðϕÞ þ Vðη; ρ; χÞ þ Vmix, where

VðϕÞ ¼ μ2ϕϕ
†ϕþ λðϕ†ϕÞ2;

Vðη;ρ; χÞ ¼ μ2ρρ
†ρþμ2χ χ

† χþ μ2ηη
†ηþðμηρχþH:c:Þ

þ λ1ðρ†ρÞ2þ λ2ðχ† χÞ2þ λ3ðη†ηÞ2
þ λ4ðρ†ρÞðχ† χÞþ λ5ðρ†ρÞðη†ηÞþ λ6ðχ† χÞðη†ηÞ
þ λ7ðρ† χÞðχ†ρÞþ λ8ðρ†ηÞðη†ρÞþ λ9ðχ†ηÞðη† χÞ;

Vmix ¼ λ10ðϕ†ϕÞðρ†ρÞþ λ11ðϕ†ϕÞðχ† χÞ
þ λ12ðϕ†ϕÞðη†ηÞ;

where the μ-type parameters have mass dimension, while λ’s
are dimensionless.
The field ϕ obtains a large vev, Λ2 ¼ −μ2ϕ=λ, implied by

VðϕÞ due to μ2ϕ < 0; λ > 0. Integrating ϕ out, one finds that
the effective potential coincides with Vðη; ρ; χÞ at the
leading order. This potential provides two weak scales
u2, v2 proportional to −μ2η;ρ > 0 and the scale w2 propor-
tional to −μ2χ > 0. This is totally analogous to the situation
in the 3 − 3 − 1model. The conditions for having the above
vevs amount to imposing jμϕj ≫ jμχ j ≫ jμη;ρj. Like the
3-3-1 model, a consistent Higgs boson mass spectrum can
be achieved when the soft-term μ is negative at the 3-3-1
scale, i.e., μ < 0; jμj ∼ jμχ j.1
The Yukawa Lagrangian responsible for neutrino mass

generation through the seesaw is given as

TABLE II. Q, B-L, and WP values for the model particles, where P� ≡ ð−1Þ�ð3nþ1Þ are nontrivial for n ≠ 2m−1
3
. When n ¼ 2m

3
, W

particles become odd, P� ¼ −1. The antiparticles have opposite Q and B-L, while WP is conjugated, ðP�Þ† ¼ P∓.

Particle νa ea ua da Gluon γ W Z Z0 Z00 η1 η2 ρ1 ρ2 χ3 ϕ Na jα j3 W0 W00 η3 ρ3 χ1 χ2

Q 0 −1 2
3

− 1
3

0 0 1 0 0 0 0 −1 1 0 0 0 q − 1
3
− q 2

3
þ q −q −1 − q q 1þ q −q −1 − q

B-L −1 −1 1
3

1
3

0 0 0 0 0 0 0 0 0 0 0 2 n − 2
3
− n 4

3
þ n −1 − n −1 − n 1þ n 1þ n −1 − n −1 − n

WP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Pþ P− Pþ P− P− Pþ Pþ P− P−

1The parameter μ can always be made real by redefining the
phases of η, ρ, χ [27].
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L ⊃ hνabψ̄aLηνbR þ 1

2
fνabν̄

c
aRνbRϕþ H:c: ð11Þ

Note that ϕ ¼ 1ffiffi
2

p ðΛþ Sþ iAÞwith a nonzero value for the
scale Λ. Since ϕ has N ¼ B − L ¼ 2 ≠ 0, its vev breaks
these charges, providing Majorana masses for νR as well as
for the Uð1ÞN gauge boson at the scale Λ. Since Λ must be
substantially larger than the weak scale, the Uð1Þ gauge
boson is too heavy for detection. After the electroweak
symmetry breaking, one generates the Dirac neutrino mass
term via η1 ¼ 1ffiffi

2
p ðuþ S1 þ iA1Þ.

The total neutrino mass generation Lagrangian is

L ⊃ −
1

2
ðν̄aLν̄caRÞ

�
0 mab

mba Mab

��
νcbL
νbR

�
þ H:c:; ð12Þ

where M ¼ −fνΛ=
ffiffiffi
2

p
and m ¼ −hνu=

ffiffiffi
2

p
. Since Λ ≫ u,

the seesaw mechanism yields the observed neutrino (∼νL)
masses in the usual manner as

mν ¼ −mM−1mT ¼ hνðfνÞ−1ðhνÞT u2ffiffiffi
2

p
Λ
: ð13Þ

The heavy neutrinos (∼νR) gain masses at the B-L breaking
scale Λ. In order to obtain mν ∼ 0.1 eV we assume
f=h2 ∼ 1014 GeV=Λ, since u ∼ 100 GeV. For instance, if
h; f ∼ 1 we have Λ ∼ 1014 GeV, as often assumed in the
literature. However, this model prefers a larger B-L break-
ing scale, Λ > 1014 GeV, consistent with the inflation
scales. In this case f, h are correspondingly adjusted, as
discussed in the next section.
Since B − L ¼ β0T8 þ N annihilates the nontrivial

vacua, ½B − L�hη; ρ; χi ¼ 0, for u, v, w ≠ 0, it follows that
the gauge group SUð3ÞL ⊗ Uð1ÞN contains a residual
conserved B-L charge, under which a generic field trans-
forms as

Φ → Φ0 ¼ UðωÞΦ; UðωÞ ¼ eiωðB−LÞ: ð14Þ

However, B-L is broken by hϕi since ½B − L�hϕi ¼ffiffiffi
2

p
Λ ≠ 0. The remnant of B-L preserves the vacuum,

UðωÞhϕi ¼ hϕi. We obtain eiω2 ¼ 1 or ω ¼ mπ for m
integer. The residual transformation is UðmπÞ ¼
eimπðB−LÞ ¼ ð−1ÞmðB−LÞ. Multiplying Uð3πÞ with spin par-
ity ð−1Þ2s due to Lorentz symmetry, yields a matter parity
WP ¼ ð−1Þ3ðB−LÞþ2s. While this is a commonly known
symmetry, in our case it originates as a residual gauge
symmetry,

WP ¼ ð−1Þ3ðβ0T8þNÞþ2s; ð15Þ

which transforms nontrivially the particles with “wrong”
B-L charges as seen in Table II (thus the label “W”). In
other words, since B-L is noncommutative, W parity

separates the gauge multiplets into two parts, including
normal particles (W even) and wrong particles (W odd),
respectively. (In supersymmetry, it separates supermultip-
lets, by contrast.) One can show that Pþ and P− particles
always appear in pairs in interactions. Indeed, assume that
an interaction has x Pþ fields and y P− fields. The
conservation of W parity implies ðPþÞxðP−Þy ¼ 1, which
happens only if x ¼ y, for arbitrary x, y integers. Thus, the
lightest W particle is stable and, if electrically and color
neutral, can be responsible for dark matter.
The colorless W-particles possess electric charges

�q;�ð1þ qÞ. Hence, we may have two dark matter
options, according to whether q ¼ 0 and q ¼ −1, or β ¼
−1=

ffiffiffi
3

p
and β ¼ 1=

ffiffiffi
3

p
, respectively.

The model with q ¼ 0 yields three potential dark matter
candidates, N, W0, and η3, whereas the model with q ¼ −1
yields two possible dark matter candidates, ρ3, andW00. The
former has a correspondence to the original 3-3-1 model
[33], while the latter does not. All of these candidates have
masses proportional to the w scale times the relevant
coupling constants.
In this work, we consider the simplest but nontrivial

case, where q ¼ 0 and n ¼ 0, hence β0 ¼ −2=
ffiffiffi
3

p
, which

has been extensively studied [26–32] under the assumption
that the relics of N, η3 (or ρ3) were thermally produced. In
such case the vectors, such as W0 or W00, cannot be viable
dark matter candidates, since they annihilate, before freeze-
out, into W bosons via gauge self-interactions. In the
present work we provide an alternative interpretation for
the dark matter abundance, called asymmetric dark matter
[35–37], where all possible dark matter types, including the
vector one, could be viable.

IV. COSMOLOGY IN THE 3-3-1-1 MODEL

In this section we examine how the noncommutativeB-L
dynamics provides a natural comprehensive scenario to
account for inflation, dark matter, and leptogenesis. This
provides a new realization of the idea that inflation and dark
matter have as common origin, the neutrino mass seesaw
mechanism, proposed in Ref. [38].
Indeed, in the present context, a new superheavy Higgs

scalar S which breaks Uð1ÞN is required, and can behave as
an inflaton field, driving the early accelerated expansion of
the Universe (see below). Inflaton decay only produces
superheavy dark matter relics at the very large Λ scale [29].
Fortunately, it also decays into right-handed neutrinos νR,
whose decays may yield CP-asymmetric final states con-
sisting of normal matter νR → η2e, as well as dark matter,
νR → η3N. The first mode yields the baryon asymmetry,
while the second mode may play the main role in explain-
ing the dark matter asymmetry, both arising from the
standard leptogenesis mechanism.
The asymmetric dark matter relics may be either η3 or N.

Here, η3 combines the scalar candidate, called H0, and the
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Goldstone of W0, called W0
L [27]. The present-day dark

matter and normal matter relics have as a common source
the right-handed νR mediating the seesaw mechanism. All
candidate types, fermion (N), scalar (H0), and vector ðW0

LÞ,
can contribute to the asymmetric dark matter (a detailed
evaluation is given below).

A. Inflation

In this subsection, we consider the inflationary scenario.
This is linked to the singlet scalar ϕ, which breaks the
Uð1ÞN symmetry. Chaotic inflation arises from a tree-level
scalar potential of the type

VðϕÞ ¼ μ2ϕϕ
†ϕþ λðϕ†ϕÞ2; ð16Þ

where the scalar ϕ couples to additional fields such as the
Uð1ÞN gauge boson (C), fermion fields (νaR), and scalar
fields (η, ρ, χ). Through quantum corrections, these coup-
lings modify the tree level inflationary potential. We denote
the inflaton asΦ ¼ ffiffiffi

2
p

ℜðϕÞ, since the imaginary part ℑðϕÞ
is an unphysical Golstone boson that is gauged away.2 After
including one-loop corrections one has [39]

VðΦÞ¼ λ

4
ðΦ2−Λ2Þ2þ a

64π2

�
Φ4

�
ln
Φ2

Λ2
−
1

2

�
þΛ4

2

�
; ð17Þ

where the renormalization scale has been fixed at hΦi ¼
Λ ¼ ð−μ2ϕ=λÞ1=2 satisfying the minimization condition
V 0ðΛÞ ¼ 0, and imposing that VðΛÞ ¼ 0 so as to determine
the free or vacuum energy at the origin as V0 ¼ Vð0Þ ¼
1
4
ðλþ a=32π2ÞΛ4 [40–42].3 In addition, the contributions

of the scalar fields to the log term are proportional to λ2’s,
hence highly suppressed if we impose λ; λ10;11;12 ≪
g2N; ðfνÞ2 as required in order to keep the flatness of the
inflationary potential (see later) [28]. Therefore, the gauge
and fermion contributions governing the Coleman-
Weinberg potential are obtained by

a ≃ −
1

2

X3
i¼1

ðfνiiÞ4 þ 48g4N; ð18Þ

where fν is taken to be flavor diagonal. Note that, with a
suitable choice of the parameters, say a=λ > −16π2, the
effective potential always has a consistent local minimum
responsible for the Uð1ÞN symmetry breaking. For com-
pleteness, the quantum gravity corrections to VðΦÞ were

properly analyzed. They are negligible, provided that
m2

Φ ¼ V 00ðΦÞ ≪ m2
P and VðΦÞ ≪ m4

P, where mP ¼
ð8πGNÞ−1=2 ≃ 2.4 × 1018 GeV is the (reduced) Planck
mass [43].
Notice that in Ref. [28] cosmic inflation was studied with

an inflationary potential similar to the one in Eq. (17), but
ignoring the role of the free energy V0. Hence, the predicted
results for the spectral index ns and tensor-to-scalar ratio r
and running index αwere not fully consistent with the latest
experimental results from WMAP9 and Planck [44–46]. In
Ref. [29], we interpreted V0 for multi- and single-field
inflationary scenarios in another setup when the 3-3-1
breaking scale was comparable to the Uð1ÞN scale. Here,
we reconsider the original inflationary scenario by includ-
ing the contribution of V0, consistent with the leptogenesis
scenario.
As mentioned, the spectral index ns, the tensor-to-scalar

ratio r, and the running index α are related to slow-roll
parameters, ϵ ¼ 1

2
m2

PðV 0=VÞ2, η ¼ m2
PV

00=V, and ζ2 ¼
m4

PV
0V 000=V2, as follows

ns ≃ 1− 6ϵþ 2η; r≃ 16ϵ; α≃ 16ϵη− 24ϵ2 − 2ζ2:

ð19Þ
Further, the curvature perturbation is

Δ2
R ¼ V

24π2m4
Pϵ

¼ 2.215 × 10−9; ð20Þ

at the pivot scale k0 ¼ 0.05 Mpc−1, and the number of
e-folds during inflation is

N ¼ 1ffiffiffi
2

p
mP

Z
Φ0

Φe

dΦffiffiffi
ϵ

p ; ð21Þ

where Φe and Φ0 denote the value of Φ at the end of
inflation due to the violation of slow-roll condition and at
the horizon exit according to k0, respectively [15]. The
value of N is around 50–60 depending on the size of the
inflation scale in the framework of the simplest cosmo-
logical evolution, but it may be significantly higher than
that range in other cosmology scenarios [47].
One of the couplings λ or a can be appropriately fixed

from theΔ2
R constraint. Hence, we are left with r; ns; α, and

N which are given as functions of Φ at a fixed physical
scale (say k0), for selected values of the remaining
parameters a=λ and Λ.
Depending on the a=λ and Λ values, inflation may occur

as the inflaton field slowly rolls towards the potential
minimum from the left (Φ < Λ) or the right (Φ > Λ). Of
course, inflation terminates inducing the Uð1ÞN breaking.4

2This is in contrast to the situation considered in Ref. [38].
3Note that all the quantities appearing in the resulting potential

have been renormalized at the scale Φ ¼ Λ, which should not be
confused with the outset. Further, the couplings, e.g., gN , fν
disappearing inside the logarithm are due to the renormalization
condition, 1

6
d4V
dΦ4 jΦ¼Λ ¼ λ, or simply they are absorbed by the

coupling-constant renormalization counterterm.

4However, in the first case Φ < Λ, if one omits V0, the
inflationary scenario seems to be excluded [28] because the
predicted values of Δ2

R and r are not in agreement with
the observations from WMAP9 [44] and Planck [45,46].
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Thus, the inflaton field can have small or large values
compared to the Planck scale during inflation correspond-
ing to the left or right regimes, respectively. In the second
case, for the large Φ field regime, the inflationary scenario
merely mimics chaotic inflation, see, e.g., Refs. [38,40–42].
The latter is disfavored by current data for a convex
potential like ours [46].5 In the first case, for the small
Φ field regime, the inflationary scenario follows from our
noncommutative B-L scenario due to the contribution of
the Coleman-Weinberg potential, which is physically more
attractive and unavoidable.

1. Small-field inflation

Here we investigate the inflationary scenario where the
inflaton field starts rolling from small values, namely,
Φ < Λ, described by the full potential in Eq. (17), which
sums over the leading tree-level and Coleman-Weinberg
contributions,

VðΦÞ ≃ V0 −
λ

2
Λ2Φ2 þ a

64π2
Φ4

�
ln
Φ2

Λ2
−
1

2

�
: ð22Þ

Denoting x≡Φ=Λ < 1 and a0 ≡ a=32π2λ > −0.5, the
inflationary parameters or observables can be expressed
as follows

ϵ ≃ 8

�
mP

Λ

�
2

x2
�
4a0x2 ln x − 1

a0 þ 1

�
2

;

η ≃ 4

�
mP

Λ

�
2 4a0x2ð3 ln xþ 1Þ − 1

a0 þ 1
;

ζ2 ≃ 32

�
mP

Λ

�
4

×
x2ð3þ 10a0 þ 12a0 ln xÞð4a0x2 ln x − 1Þ

ða0 þ 1Þ2 ;

λða0 þ 1Þ3 ≃ 1.67 × 10−5
�
mP

Λ

�
6

x2ð4a0x2 ln x − 1Þ2; ð23Þ

N ≃
1

4

�
Λ
mP

�
2

ða0 þ 1Þ
Z

x

xe

dt
tð4a0t2 ln t − 1Þ ; ð24Þ

where xe ≡Φe=Λ, and Eq. (23) comes from the Δ2
R

constraint. One sees from VðΦÞ that a0x2 ln x ∼ 1. Note
also that, since ϵ, η, and ζ have a large factor ðmP=ΛÞ2, field
values at the horizon exit can always be determined in the
regimeΦ0=Λ ≪ 1. The parameters obey ϵ ≪ jηj ∼ jζj, thus
ns ≃ 1þ 2η, α ≃ −2ζ2, while r ¼ 16ϵ is strongly sup-
pressed. Inflation ends when max(ϵ; jηj; jζjÞ ¼ 1, thus
η ¼ −1. This yields

4x2eð3 ln xe þ 1Þ ≃ 1

a0
−

Λ2

4m2
P
≃ −

Λ2

4m2
P
; ð25Þ

where we note that a0 ∼ 1=x2 ln x ≫ ðmP=ΛÞ2 is respon-
sible for the small-field inflation and slow-roll condition;
hence, Λ=mP governs the end of inflation.
The relation ns ≃ 1þ 2η implies

a0 ≃
1

4x2ð3 ln xþ 1Þ − ðns − 1ÞΛ2=ð8m2
PÞ

: ð26Þ

Taking mP=Λ ¼ 10, 100, 1000, and 10 000, from Eq. (25)
we obtain the corresponding values of xe as collected in
Table III. Substituting a0 and xe into Eq. (24), we can draw
contours of N as a function of ns and x for the correspond-
ing values of mP=Λ. This is shown in various panels
in Fig. 1.
That said, ns and N would constrain a0, Λ, while Δ2

R
fixes λ as determined by Eq. (23). One sees from the figure
that the measured ns constrains the number of e-folds to be
N ≥ 69.9; 70.24; 70.78, and 71.8 for Λ ¼ 2.4 × 1014,
2.4 × 1015, 2.4 × 1016, and 2.4 × 1017 GeV, respectively.
This does not fit well with the (upper limit) value N ∼ 60
required for explaining the horizon problem for the case of
standard cosmological evolution [47]. Indeed, N depends
logarithmically on the inflation scale and the reheating
temperature,

N ≃ 61 − ln
1016 GeV

V1=4
0

−
1

3
ln
V1=4
0

ρ1=4R

; ð27Þ

where we have used VðΦeÞ ≃ VðΦ0Þ ≃ V0 and the energy
density at the reheating ρR ≃ ðπ2g�=30ÞT4

R ≲ V0, which are

TABLE III. Typical values of the parameters Λ; a0 (thus xe, x) consistent with a smallest N in the allowed ns region; the resulting
coupling λ (thus a) from Δ2

R, and the predicted observables r, α.

mP=Λ xe x a0 N λ a r α

10 6.6748 × 10−3 6.139 × 10−4 5.82 × 104 71.8 8.68 × 10−20 1.595 × 10−12 3.87 × 10−12 −0.000538
102 5.38136 × 10−4 5.26 × 10−5 5.708 × 106 70.78 6.54 × 10−22 1.178 × 10−12 2.86 × 10−16 −0.000544
103 4.64804 × 10−5 4.682 × 10−6 5.644 × 108 70.24 5.26 × 10−24 0.937 × 10−12 2.27 × 10−20 −0.000548
104 4.15673 × 10−6 4.264 × 10−7 5.603 × 1010 69.9 4.4 × 10−26 0.779 × 10−12 1.89 × 10−24 −0.00055

5Concerning this case, in the first version of the present work,
arXiv:1805.08251v1 [hep-ph],wehave shown that the newphysics
regime associated with the Uð1ÞN symmetry lying at or above the
Planck scale, is required in order to fit all the inflationary
observables [46,48,49]. However, such a regime may be subject
to quantum gravity effects (cf. Ref. [43] for details).
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all ensured (details shown below). Hence, N is strictly
constrained, implying that this simplest scenario of small-
field inflation is ruled out.
However, this tension can be avoided by invoking new

contributions. For example these can come from brane
world scenarios embedded in a higher dimensional space-
time [40]. Alternatively, a fermion condensate as well as a
nonminimal coupling to gravity have been suggested to
avoid the problem [51,52]. Note also that the largeN can be
reduced by introducing a second scalar field (χ or extra
sextet) for the 3-3-1-1 symmetry breaking. Its unstable

vacuum brings inflation quickly to an end, before breaking
the slow-roll condition, as also noted in Ref. [29]. Such
issues are beyond the scope of this work. Another issue that
can be raised is that such approaches would change
standard cosmology after inflation and right-handed neu-
trino production, which subsequently alters the asymmetric
matter generation in the next section. Indeed, the mentioned
brane world adds up to N with a term 1

2
lnð1þ V0=2ΛBÞ,

where ΛB is the brane tension. Fitting the inflationary
observables prefers a low regime V1=4

0 ∼ 10 TeV assuming
that Λ1=4

B > 10 MeV, but this does not exclude the large
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FIG. 1. Number of e-fold contours as a function of ns and x ¼ Φ=Λ. The various panels correspond to mP=Λ ¼ 10, 100, 1000,
and 10 000. The most recent measurement ns ¼ 0.9649� 0.0042 at 68% C.L. is also shown [50].
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regime V1=4
0 ∼ 1013 GeV, given that Λ1=4

B ∼ 1010 GeV. The
latter may be viable for the leptogenesis. A large inflation
scale and reheating temperature can emerge in the men-
tioned condensate scenario, since the inflaton couples both
right-handed neutrinos and 3-3-1 model scalars. One type
of the couplings governs the fermion condensates increas-
ing N, while the other coupling type sets the reheating
process, as usual.
Here we simply provide the relevant values of the

parameters x, a0 according to the respective smallest values
of N for ns ¼ 0.9607, as listed in Table III. The table gives
λ from Eq. (23), then a ¼ 32π2a0λ, and r, α from Eq. (19),
corresponding to mP=Λ ¼ 10; 100; 1000; 10 000, respec-
tively. The effective coupling is typically a ∼ 10−12 in the
whole range of Λ. The Higgs coupling is tiny, λ∼
10−19�10−26, in order to reproduce the data after combin-
ing with the Coleman-Weinberg contributions. Otherwise,
when λ is large this case cannot explain inflation for
Λ < mP. The predictions of the tensor-to-scalar ratio r ∼
10−12�10−24 and the running index α ∼ −0.0005 agree
with the previous experimental results [44–46,48,49] and
new update [50], say r < 0.064 at 95% C.L. and α ¼
−0.0045� 0.0067 at 68% C.L. Strictly speaking, the result
of r implies that the signals of tensor perturbations are
extremely small, below the detectability limit [53]. The
bounds on α (as well as a, N) are almost independent of the
new physics scale, making our scenario testable.
Hereafter, the benchmark values of the parameters are

taken as Λ ¼ 2.4 × 1017 GeV, a ≃ 1.595 × 10−12, and
λ ≃ 0.868 × 10−19, see the first row of Table III.6 We see
that the value of the inflaton field varies in the range
1014–1015 GeV, clearly below Λ. Moreover, the inter-
actions of Φ, which induce a negative contribution to
the effective potential, i.e., a lnðΦ=ΛÞ < 0 or a > 0, nicely
fit the inflationary data (the sign of a would be negative
for the scenario of large-field inflation, previously men-
tioned), and the corresponding a0 value satisfies the
minimum condition for the full potential (17). From
Eq. (18) we obtain

−
X
i

ðfνii=
ffiffiffi
2

p
Þ4 þ 3

2
ð2gNÞ4 ∼ 10−12: ð28Þ

Given that mνR ¼ −fνhΦi= ffiffiffi
2

p
and mC ¼ 2gNhΦi, and

choosing reasonable values for gN and fνii ∼ 10−3, one
can assume the heaviest of νiR to be slightly heavier than
the Uð1ÞN gauge boson.
The vev ofΦ arises from minimizing the scalar potential,

V 0 ¼ 0, leading to hΦi ¼ Λ. The inflaton mass and vacuum
energy are estimated, respectively, as

mΦ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00ðΛÞ

p
≃

1

2π

ffiffiffi
a
2

r
Λ ≃ 3.4 × 1010 GeV; ð29Þ

V0 ¼ Vð0Þ ≃ a
128π2

Λ4 ≃ ð4.5 × 1013 GeVÞ4; ð30Þ

which satisfy the mentioned suppression conditions of the
gravitational contribution.
Notice that the inflaton mass is much smaller than the

masses of Uð1ÞN gauge boson and heaviest right-handed
neutrinos, since

ffiffiffi
a

p
≪ gN; fνii for fixing i ¼ 2, 3. To make

the leptogenesis mechanism viable, one assumes hierar-
chical Yukawa couplings

fν11 ∼
ffiffiffi
a

p
≪ fν22 ∼ fν33 ∼ gN: ð31Þ

Correspondingly, it follows that

mΦ ∼mν1R ≪ mν2;3R ∼mC: ð32Þ

The inflaton cannot decay to Uð1ÞN gauge bosons nor the
heavy right-handed neutrinos ν2;3R. After inflation, the
inflaton decays to scalars ðρ; η; χÞ or to the lightest right-
handed neutrinos ν1R, which reheats the Universe, by
thermalizing with the 3-3-1 model particles.
The decay rates associated to Φ → ρ†ρ; η†η; χ† χ, and

Φ → ν1Rν1R are given, respectively, by

Γρ;η; χ ¼
λ210;12;11hΦi2
16πmΦ

; Γν1R ¼ ðfν11Þ2mΦ

32π
: ð33Þ

Successful leptogenesis (see the next section) is viable for
both cases, if Φ dominantly decays into a pair of scalars,
while ν1R is thermally produced, or vice versa. In the
first case, we must impose jλ10;11;12j ≫ 1

4π jfν11j
ffiffiffi
a

p
∼ 10−13.

Since λ10;11;12 ≪ g2N; ðfν22;33Þ2 ∼ 10−6, we assume λ10;11;12∼
10−10. The reheating temperature is obtained by Γ ¼ Γρ þ
Γη þ Γ χ as follows

TR ¼
�

90

π2g�

�
1=4 ffiffiffiffiffiffiffiffiffi

mPΓ
p

≃ 1.72 × 1010
�

λmix

10−10

��
10Λ
mP

�
1=2

�
10−12

a

�
1=4

GeV;

where λmix ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ210 þ λ211 þ λ212

p
, and g� ¼ 106.75 is the

effective number of degrees of freedom. The predicted
reheating temperature is TR ∼ 1.72 × 1010 GeV, for the
typical values of the parameters. Thus, our model provides
an alternative to grand unification, in which the proton is
automatically stable as a result of the gauge symmetry and
W parity. Since supersymmetry is not invoked, we avoid
the stringent bounds on the reheating temperature [54].
The lightest right-handed neutrino ν1R can be thermally

generated during reheating, even though its mass is larger
6Note that this new physics scale is 2 orders below the Planck

energy, sufficient to avoid effects of quantum gravity.
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than the reheating temperature. Indeed, radiation only
dominates the universe when the temperature falls below
the reheating temperature. However, the inflaton decay
products ρ, η, χ can rapidly thermalize, forming a plasma
with a background temperature much higher than the
reheating temperature, e.g., 103TR. As a result ν1R can
be created by scattering of light states, or by thermalizing of
the heavier C; ν2;3R [55,56].
For the second case, we assume that jλ10;11;12j ≪

1
4π jfν11j

ffiffiffi
a

p
∼ 10−13. The inflaton mainly decays to two

ν1R. The reheating temperature can be computed, yielding
TR ∼ 1.94 × 107 GeV, given that fν11 ∼

ffiffiffi
a

p
∼ 10−6. One has

a nonthermal leptogenesis mechanism as ν1R are directly
produced from inflaton decays.
In the small-field inflation, the perturbative decays of the

inflaton that reheat the universe may come after the
preheating processes, due to the tachyonic amplification
and oscillation of inflaton fluctuations, since m2

Φ ¼
V 00ðΦÞ < 0 for Φ varying from Φe to the inflection point
Φi < Λ, where V 00ðΦiÞ ¼ 0 [57]. Preheating may be
proceeded by effects of parametric resonance inflaton
decays, as the inflaton field couples to other scalars ρ, η,
χ and is highly inhomogeneous for Φ > Φi.

2. Large-field inflation

In this case, the inflaton field rolls towards the potential
minimum from large values, Φ > Λ. The full potential7 is
approximated as

VðΦÞ ≃ 1

4

�
λþ a

8π2
ln
Φ
Λ

�
Φ4 ≡ 1

4
λ̄Φ4; ð34Þ

where λ̄ ¼ λþ ða=8π2Þ lnðΦ=ΛÞ is nearly insensitive to
Φ=Λ, which reflects a scale symmetry. Such scale invari-
ance also prevents the quadratic term 1

2
μ2ϕΦ2 and the free

energy V0 from turning on. Recall that even without scale
symmetry this case cannot fit the inflation data for Λ below
mP. However, it does so if Λ is at or above mP with
inclusion of V0, which is theoretically disfavored. Indeed,
since in the Planck regime the effect of quantum gravity
may become important, the standard QFT computations
dealing with pointlike particles are ill defined due to the
nonrenormalizability of gravity. Hence, we safely impose
Λ < mP, as in the previous case.
For the large field inflation, we can make use of the

effective field theory (validated later). Ignoring gravity, we
have the Coleman-Weinberg effective potential where the
renormalization scale is fixed as Λ below the Planck scale
which, as stated, approximately conserves scale symmetry.
Including gravity, the Lagrangian has a nonminimal cou-
pling of the inflaton to gravity, L ⊃ 1

2
ðm2

P þ ξΦ2ÞR, where

R is the scalar curvature, and ξ satisfies 1 ≪ ξ ≪ ðmP=ΛÞ2
in order to maintain the chaotic inflation and keep con-
sistent Higgs physics from induced gravity. Generalizing
the results in Refs. [58,59], we achieve (i) conformally
transforming to the Einstein frame ĝμν ¼ Ω2gμν with
Ω2 ¼ 1þ ξΦ2=m2

P. The effective potential induced by
gravity takes the form,

UðΦ̂Þ ¼ V
Ω4

≃
λ̄m4

P

4ξ2
ð1 − e−

ffiffi
2
3

p
Φ̂
mPÞ2 ð35Þ

at the leading order, where Φ̂ is the canonically normalized
inflaton field, related to the original field by Φ̂≃ffiffiffiffiffiffiffiffi
3=2

p
mP lnΩ2. (ii) This potential is flat for large field

values, Φ̂ ≫ mP (or Φ ≫ mP=
ffiffiffi
ξ

p
), which successfully fits

inflationary observables, i.e., ns ¼ 0.967, r ¼ 0.003, and
α ¼ −5 × 10−4, given that N ¼ 62 and ξ=

ffiffiffī
λ

p
≃ 4.9 × 104,

where the last one is fixed by the curvature perturbation.
The ξ condition translates to 4.16 × 10−10 ≪ λ̄ ≪

0.0416ðmP=100ΛÞ4 ¼ 4.16 × 10−6, 4.16 × 10−2, accord-
ing to mP=Λ ¼ 10, 100, respectively. Taking Λ ¼ 2.4 ×
1017 GeV as in the previous section,8 one gets roundly
λ̄ ≃ λ ∼ 10−8, assuming a ≲ λ to keep both the flatness of
the inflationary potential and the insensitivity of λ̄ when the
nonminimal coupling contributes. The last condition leads
to gN , fνii ≲ 10−2. Since ρ, η, χ potentially contribute to a
[28], we further require

ffiffiffi
λ

p
10;11;12 ≲ gN; fνii. Let us stress

that the Coleman-Weinberg contributions to the nonmini-
mal scalar coupling are suppressed by large mP and ξ (see,
for instance, Ref. [59]). That said, the nonminimal coupling
improves the result of the chaotic inflation, which does not
require too small λ, a couplings as in the previous section.
When ξ ≃ 1, the corrections of order m2

P=ξΦ2 are not
negligible, which will not be considered in this work. When
ξ ≪ 1, the gravitational effect on inflation is negligible.
Last but not least, the effect of quantum gravity that
contributes to the inflationary potential is proportional to
UðΦ̂Þ=m4

P ∼ λ̄=ξ2 ∼ 10−10, which is strongly suppressed,
justifying the effective theory of large field inflation [43,58].
After inflation, the inflaton oscillates near the single

minimum and violates the scale symmetry. This is gov-
erned by the vacuum energy V0 and the soft μϕ term plus a
quadratic term present when expandingUðΦ̂Þ, which yields

UðΦ̂Þ ¼ 1

2
m2

Φ̂ðΦ̂ − Λ̂Þ2 þOðΦ̂3Þ; ð36Þ

where we have used V0 ≃ ðλ̄=4ÞΛ4, μ2ϕ ≃ −λ̄Λ2 and

Λ̂≡ ξ
ffiffiffiffiffiffiffiffi
3=2

p
Λ2=mP. The inflaton mass is fixed at

mΦ̂ ¼
ffiffiffiffiffiffiffi
λ̄=3

p
mP=ξ ≃ 2.8 × 1013 GeV. The higher-order

7Note that its parameters are not restricted by the previous
constraints. 8In this case, the ξ regime is narrow but viable, e.g., ξ ∼ 10.
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corrections proportional to m2
Φ̂m

2
PO½ðΦ̂=mPÞ3� will be

quickly negligible after the end of inflation. It is noteworthy
that the inflaton does not couple to the standard model
gauge bosons and fermions, which yields a novel scenario
for (p)reheating, in contrast to the standard scenario [59].
Let us see.
Appropriate to the leptogenesis scenario, we assume

fν11 ∼
ffiffiffi
λ

p
10;11;12 ≪ fν22;33 ∼ gN ≲ 10−2. In the Einstein

frame, we have as a result that mν1R ∼mρ;η; χ ≪
mν2;3R ∼mC ≲ 10−2ð ffiffiffiffiffiffiffiffi

2=3
p

mPΦ̂=ξÞ1=2, where mC ¼ 2gN ×

ð ffiffiffiffiffiffiffiffi
2=3

p
mPΦ̂=ξÞ1=2, mνiR ¼ −fνiiðmPΦ̂=

ffiffiffi
6

p
ξÞ1=2, and

mρ; χ;η ¼
ffiffiffi
λ

p
10;11;12ðmPΦ̂=

ffiffiffi
6

p
ξÞ1=2, respectively. Here,

Φ̂ ¼ Φ̂ðtÞ ≃ ðmP=mΦtÞ sinðmΦtÞ þ Λ̂ is the approximate
solution of the Klein-Gordon equation for the inflaton
field, rolling within the range Φ̂e > Φ̂ > Λ̂. Note that
the inflation ends at ϵðΦ̂eÞ ¼ 1 implying Φ̂e ≃ 0.4mP,
and the vev of Φ̂ is Λ̂ ≃ 0.06mP. Thus, the inflaton
needs about 10 semi-oscillations after inflation to
reach the potential minimum. The perturbative decays
are allowed for mΦ > 2mνiR ; 2mC; 2mρ;η; χ, leading to

Φ̂<ð1=4Þ
ffiffiffiffiffiffiffi
λ̄=2

p
mΦ=h2∼ð4.2×10−3=hÞ2mΦ for a common

coupling h ¼ −fνii=
ffiffiffi
2

p
, 2gN , or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ10;11;12=2

p
, respectively.

Comparing the upper limit with Φ̂e, it follows that the
inflaton field immediately decays (just after the inflation),
since h < 2.26 × 10−5. Let the couplings arrange as
fν11;

ffiffiffi
λ

p
10;11;12< 2.26×10−5≪ fν22;33;gN ≲10−2. The via-

ble channels are Φ̂ → ν1Rν1R; η†η; ρ†ρ; χ† χ. The inflaton
cannot decay perturbatively to ν2;3R and C after the ten
semi-oscillations and after approaching Φ̂ → Λ̂, since these
are kinematically forbidden. As in the previous section, the
reheating temperature is evaluated to be TR ∼ 6 × 108 GeV
(5.5 × 109 GeV), corresponding to the products ρ, η, χ

(ν1R) with the choice
ffiffiffi
λ

p
10;11;12 ∼ 10−5 (fν11 ∼ 10−5),

respectively.
Moreover, the Hubble rate can be estimated as

H ¼ 1ffiffi
3

p
mP

ffiffiffi
ρ

p
Φ̂ ≃ 0.13mΦ̂j

−1, where j≡mΦ̂t=π is the

number of inflaton semi-oscillations after inflation.
Comparing to the typical decay rate, H ∼ Γ≃
ðh2=16πÞmΦ̂, the inflaton needs 2j ∼ 1011 oscillations in
order for their decay products to thermalize, which is
common in inflation models. In this stage of preheating,
although the perturbative decay Φ̂ → CC is prevented, the
quantum fields C may be generated by a broad parametric
resonance due to the gauge interaction 2g2NC

2Φ̂2, charac-
terized by the parameter qb ≡ g2N jΦ̂j2=m2

Φ̂ ∼ 104–102 when

the inflaton oscillation amplitude jΦ̂j ¼ mP=πj varies
from the end of inflation until 10 semi-oscillations; see
Refs. [60–62]. And, when the number of oscillations is
large enough, the narrow parametric resonance qn ≡
16g2N jΦ̂jΛ̂=m2

Φ̂ ≲ 1 with jΦ̂j ≪ Λ̂ may happen for

Φ̂ → CC. All those lead to the exponential growth of
generated C’s, but the products are correspondingly diluted
due to the Hubble expansion, the decay of C’s to the right-
handed neutrinos and the 3-3-1 model particles (including
ordinary quarks and leptons), as well as the back reaction of
C’s into inflatons. Such a preheating process can alter the
perturbative decays and significantly raise the reheating
temperature. Note that the nonperturbative parametric
resonance effects cannot happen for the fermion products,
Φ̂ → νiRνiR, due to the Pauli exclusion principle. Moreover,
the processes Φ̂ → ρ†ρ; η†η; χ† χ may also arise nonpertur-
batively by narrow parametric resonances. In short, the
preheating phases of the present and previous sections are
quite rich and worth exploring, a task to be taken up
elsewhere.
In what follows we will take both small- and large-field

parameter regimes into account, but the results obtained are
general. Note that, after the large-field inflation, Ω2 → 1,
the scale parameters and fields approximate the usual ones
in the Jordan frame, used hereafter. To close this section, it
is useful to summarize the benchmark values adopted for
the various parameters, including masses and couplings, as
Table IV. For convenience, this table also collects those in
other sections.

B. Leptogenesis: Normal vs dark matters

One of the most attractive features of the current model
lies in the lepton sector. The right-handed neutrinos are
singlets under SUð3ÞL ⊗ Uð1ÞX, but transform nontrivially
underUð1ÞN. Since they carry one unit of B-L, they acquire
Majorana mass (two units of lepton number) due to Uð1ÞN
breaking. This constitutes a source for lepton and dark
matter asymmetries in the model.
The relevant Lagrangian is given by

L ⊃ −ēaLðmeÞabebR − N̄aLðmNÞabNbR −
1

2
ν̄caRMabνbR

þ hνabðēaLη−2 þ N̄aLη
0
3ÞνbR þ H:c:; ð37Þ

where the mass matrices, me ¼ −hev=
ffiffiffi
2

p
and mN ¼

−hNw=
ffiffiffi
2

p
, arise from the Yukawa interactions,

heabψ̄aLρebR þ hNabψ̄aL χNbR, respectively [31], while the
other terms come from the above seesaw mechanism.
The gauge states ðaÞ are related to the mass eigen-
states ðiÞ by mixing matrices, eaL;R ¼ ðVeL;RÞaieiL;R,
NaL;R ¼ ðVNL;RÞaiNiL;R, and νaR ¼ ðVνRÞaiνiR, which so
that V†

eLmeVeR ¼ diagðme;mμ; mτÞ, V†
NLmNVNR ¼

diagðmN1
; mN2

; mN3
Þ, and VT

νRMVνR¼ diagðM1;M2;M3Þ,
respectively, leading to

L ⊃ � � � − 1

2
Miν̄

c
iRνiR þ xijēiLη−2 νjR þ yijN̄iLη

0
3νjR þ H:c:

ð38Þ
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The couplings x ¼ V†
eLh

νVνR and y ¼ V†
NLh

νVνR are gen-
erally distinct and complex, and hence sources of CP
violation. In addition, we have x ¼ V 0y and x†x ¼ y†y,
where V 0 ¼ V†

eLVNL plays a role similar to the ordinary
lepton and quark mixing matrices.
Notice that the right-handed neutrinos can decay (out of

thermal equilibrium) simultaneously into
(a) normal matter: νkR → η2ei,
(b) dark matter: νkR → η3Ni,
which subsequently, due to the W-parity conservation,
generate two different and unrelated CP asymmetries,
ϵiSM and ϵiDM, given, respectively, as

ϵiSM ¼ ΓðνkR → η2eiÞ − ΓðνkR → η̄2ēiÞ
ΓνkR

; ð39Þ

ϵiDM ¼ ΓðνkR → η3NiÞ − ΓðνkR → η̄3N̄iÞ
ΓνkR

; ð40Þ

via the Feynman diagrams as depicted in Fig. 2, where ΓνkR
is the total width of νkR, with assuming that Mk < Mj for
all j ≠ k (for a fixed k, and often chosen k ¼ 1 as in the
previous section). The dark matter production ðη3NÞ is a
new observation of this work. Furthermore, it is checked
that all other new particles including W00 negligibly
contribute to the CP asymmetries, which contrast with
Ref. [28]. We thus obtain

ϵiSM ¼ 1

16πðx†xÞkk
X
j≠k

ℑ½ðx†xÞjkx�ijxik�gðξjkÞ; ð41Þ

ϵiDM ¼ 1

16πðy†yÞkk
X
j≠k

ℑ½ðy†yÞjky�ijyik�gðξjkÞ; ð42Þ

where ξjk ¼ M2
j=M

2
k, and

gðξÞ ¼
ffiffiffi
ξ

p �
2

1 − ξ
þ 1 − ð1þ ξÞ ln 1þ ξ

ξ

�
: ð43Þ

We stress that the ordinary leptons (ei) each carry a
distinct flavor number, LiðeiÞ ¼ 1, and the CP asymmetries

ϵiSM are often thought to depend on flavor [63], i.e., each of
them creating a separate contribution to the baryon asym-
metry, ηiSM, via the electroweak sphaleron. However, this
flavor effect does not hold here for the case of large-field
inflation since the largest interaction rate corresponding to
the tau flavor is Γτ ≃ 5 × 10−3ðhτÞ2T, is still slower than the
cosmological expansion rate (H) for T ¼ Mk ∼ 1012 GeV,
which is justmν1R as listed in Table IV [64]. In this case, the
lepton asymmetry has no knowledge of flavor and the net
contribution is simply summed as follows

ϵSM ¼
X
i

ϵiSM

¼ 1

16πðhν†hνÞkk
X
j≠k

ℑ½ðhν†hνÞ2jk�gðξjkÞ; ð44Þ

where it is sufficient for us, for simplicity, to take VνR ¼ 1.

TABLE IV. Benchmark parameter values used or determined throughout the text, where we note that the model can work for a much
smaller Λ and a larger w (see the text in detail).

Q,B-L embedding β ¼ − 1ffiffi
3

p ð 1ffiffi
3

p Þ q ¼ 0ð−1Þ β0 ¼ − 2ffiffi
3

p n ¼ 0

Breaking scales (vev) u ∼ 100 GeV v ∼ 100 GeV w ∼ 5 TeV Λ ≃ 2.4 × 1017 GeV
Small-field inflation gN ∼ fν22;33 ∼ 10−3 fν11 ∼ 10−6 λ ≃ 0.868 × 10−19 λ10;11;12 ∼ 10−10 (≪10−13)

mΦ ≃ 3.4 × 1010 GeV mν1R ∼ 1010 GeV mν2;3R ∼ 1014 GeV mC ∼ 1014 GeV
Large-field inflation gN ∼ fν22;33 ≲ 10−2 fν11 ∼ 10−5 λ ∼ 10−8 λ10;11;12 ∼ 10−10

mΦ ≃ 2.8 × 1013 GeV mν1R ∼ 1012 GeV mν2;3R ≲ 1015 GeV mC ≲ 1015 GeV
Neutrino and DM masses mν ∼ 0.1 eV mN ∼ 1 GeV mH0 ∼ 1 GeV mW 0

L
∼ 2.5 TeV

FIG. 2. CP-asymmetric decays of νR into dark matter (Nη3) and
normal matter (eη2), respectively, where the Feynman rules and
flavor indices can be extracted from Eq. (38).
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However, the wrong particles Ni have hNi as Yukawa
couplings to the new Higgs χ, and we assume hNi ≫ hτ

for some i. Thus, the interaction rate of Ni, ΓNi
≃

5 × 10−3ðhNiÞ2T, is much faster than the Hubble rate during
the time of the Ni asymmetry production, T ¼ Mk∼
1012 GeV. In other words, flavor effects should be taken into

account for the Ni asymmetric relic. Considering the number
of active flavorsnf ¼ 2, i.e.hN1;2 ∼ hτ ≪ hN3 , the darkmatter
asymmetry is given by ϵDM ¼ ϵ3DM þ ϵ2

0
DM, where the flavor

washout factors approach unit for the large hν couplings, and
20 is some flavor combination of i ¼ 1, 2 orthogonal to 3.
Taking 20 ¼ 2, we get, without loss of generality,

ϵDM ¼ 1

16πðhν†hνÞkk
X
i¼2;3

X
j≠k

X
l;l0¼1;2;3

ℑ½ðhν†hνÞjkhν�lj hνl0kV�
l0iVli�gðξjkÞ

¼ 2ϵSM þ 1

16πðhν†hνÞkk
X
i¼2;3

X
j≠k

X
l≠l0

ℑ½ðhν†hνÞjkhν�lj hνl0kV�
l0iVli�gðξjkÞ; ð45Þ

for fixed k and V ≡ VNL. It is clear that the dark matter
asymmetry recovers the unflavored standard model values for
l ¼ l0, and the l ≠ l0 terms are also of the same order. We
conclude that ϵDM ∼ ϵSM, i.e., the flavor effect only separates
the normal and dark matter asymmetries. Remark: When the
flavor effects are neglected, i.e., hNi ≲ hτ for all i, the dark
matter asymmetry is thus summed over several favors,
ϵDM ¼ P

i¼1;2;3ϵ
i
DM ¼ ϵSM, which is the same as the lepton

asymmetry. This case also applies for the η3 production when
it is the lightest W particle.
However, the wrong particles Ni and η3 are singlets

under the standard model symmetry. Thus, the CP asym-
metries ϵiDM are not affected by the electroweak sphaleron
nor do they contribute to the baryon asymmetry, as ensured
byW-parity conservation. The Boltzmann equations can be
split into two, one given by the conventional computation
for the lepton asymmetry ϵSM ¼ P

i¼1;2;3ϵ
i
SM responsible

for the baryon asymmetry while the other, given as
ϵDM ¼ P

i¼2;3ϵ
i
DM, is responsible for the dark matter

asymmetry (ηDM). (Here one assumes Ni to be lighter than
η3, the inverse case is briefly discussed below).
Therefore, the total matter asymmetry of the universe

originating from leptogenesis contains several asym-
metries as

ηM ¼ ηB þ ηDM; ð46Þ

where

ηB ¼ −
8

15

X
ηSM: ð47Þ

As analyzed, the sphaleron converts only ordinary leptons
to ordinary baryons, and this does not work for dark matter,
since LðNÞ ¼ 0. The latter also holds for either LðNÞ ≠ 0
(i.e., n ≠ 0) or η3 is the lightest W particle, because in this
case heavier W particles such as exotic quarks (ji) or new
gauge and scalar fields (W00, χ2, ρ3) may be created-
converted from the N or η3 asymmetries via SUð3ÞL

sphaleron processes that preserve W parity. However, they
will decay back to the dark matter, since there is no way to
keep them stable, in contrast to the case of ordinary
baryons. The total contribution of the two decay modes
allows us to explain successfully the baryon and dark
matter relics through thermal leptogenesis, as shown below.
As explicitly pointed out in the Appendix, the numerical

investigation for ηSM vs ηDM given in Eqs. (44) and (45) for
various choices of Vli in the region 5 × 10−11 < ηB <
10−10 always yields that the asymmetries in the two decay
channels end up of the same order, ηSM ∼ ηDM. On the
other hand, the asymmetries are required to reproduce
the observed baryon and dark matter abundance. The ratio
of the dark matter and baryon density ΩDM=ΩB is pro-
portional to that of the asymmetries, ΩDM=ΩB ¼
ηDMmDM=ðηBmpÞ [65,66]. Since ηDM ∼ ηB, the dark matter
mass is mDM ∼mp (the proton mass), so as to fit the
observed ratio ΩDM ∼ 5ΩB.
For the case of small-field inflation, the lepton and dark

matter asymmetries can all depend on flavor, because
the temperature at asymmetric production T ¼ Mk∼
1010 GeV (just mν1R in Table IV) is low. In this case, both
Γτ and ΓN3

(even ΓN1;2
if included) are faster than the

Hubble rate, i.e., the Yukawa interactions of τ and N3 are in
thermal equilibrium. Similarly to the previous case, we
obtain the same conclusion ηSM ∼ ηDM, i.e., mDM ∼mp,
because all the asymmetries are proportional to the unfla-
vored contribution (44).
There may be a case when νkR is produced directly from

the inflaton decayΦ → νkRνkR, with the matter asymmetries
followed by a nonthermal leptogenesis. The total CP
asymmetry is simply the sum over all flavor CP asymme-
tries, ϵSM ¼ P

i¼1;2;3ϵ
i
SM and ϵDM ¼ P

i¼1;2;3ϵ
i
DM, which

yields ϵSM ¼ ϵDM. The lepton and dark matter asymmetries
are related to the CP asymmetries by ηL;DM ¼ 3

2
ϵSM;DM×

BrðΦ → νkRνkRÞ × TR
mΦ
, respectively, which leads to

ηL ¼ ηDM. In order to fit 5 ≃ΩDM=ΩB ¼ mDMηDM=
ðmpηBÞ ∼mDM=mp one finds that the dark matter relic in
the nonthermal case is also light, as above.
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Two remarks are in order:
(1) IfN is an asymmetric dark matter, its mass is close to

mp, yet it can avoid restrictions from electroweak
precision tests as well as direct searches because, in
contrast to Refs. [26,27,30], it is a standard model
singlet, and has only interaction with Z0, Z00.

(2) If η3 is an asymmetric dark matter, we write it in the
physical basis as η3 ¼ ðwH0 − uW0

LÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ u2

p
,

where W0
L ≡G�

X [27]. The interaction of η3 with
the leptons (37) yields

wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ w2

p hνabN̄aLνbRH0

−
uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ w2
p hνabN̄aLνbRW0

L:

Since u ≪ w, the first term generates a light asym-
metric dark matter candidate H0 which again, thanks
to its standard model singlet nature, can avoid
all experimental bounds. However, the second is
also consistent with W0

L, the Goldstone of W0,
as a dark matter candidate. In this case it implies
ϵDM ∼ ðu=wÞ2ϵSM, leading to mW0

L
∼ ðw=uÞ2mp∼

2.5 TeV, provided that u ∼ 100 GeV and
w ∼ 5 TeV. This result agrees with Ref. [66].

We conclude that in our scenario the asymmetric dark
matter may be a light fermion or scalar state (mN;H0 ∼ GeV)
transforming as a standard model singlet, or a heavy vector
state (mW0

L
∼ 2.5 TeV) transforming as a standard model

doublet. The dark matter is produced by the standard
thermal or nonthermal leptogenesis mechanism. We
emphasize that our dark matter phenomenology would
then significantly differ from the previous ones discussed in
the literature [67–69].

V. CONCLUSION

We have pointed out that the seesaw scenario with
noncommuting B-L dynamics can successfully address
several of the leading cosmological challenges of the
standard model. Our proposal provides a common theo-
retical setup for the generation of neutrino mass, dark
matter, inflation, and baryon asymmetry, from first princi-
ples. The seesaw mechanism is based on the noncommu-
tative B-L gauge symmetry present in a 3-3-1-1 standard
model extension. The latter implies a conserved matter

parity that stabilizes dark matter, which is manifestly
unified with normal matter. Inflation is driven by the
B-L breaking field, with appropriate Λ scale and gN
coupling. On the other hand, leptogenesis consistently
generates not only the present-day baryon asymmetry,
but also the dark matter.
The model can harbor three asymmetric dark matter

candidates: a scalar (H0) and a fermion (N), both with mass
similar to the proton mass, and a vector (W0) with mass at
the TeV scale. Although strange a priori, we note that the
restrictions coming from electroweak precision studies as
well as those arising from collider and direct dark matter
searches can be avoided in the former case, while TeV
masses do indeed match the model parameters expected in
the second case.
Note also that our scenario may be potentially viable in

other gauge groups containing noncommutative B-L, such
as SUð3ÞC ⊗ SUðPÞL ⊗ Uð1ÞX ⊗ Uð1ÞN for P ≥ 3, and
SUð3ÞC ⊗ SUðNÞL ⊗ SUðMÞR ⊗ Uð1ÞX for ðN;MÞ ¼
ð2; 3Þ; ð3; 2Þ; ð3; 3Þ; � � �. Here, the first model class yields
a consistent inflation scenario due to the small gN , whereas
the latter ones provide successful inflation schemes only if
the inflaton, which breaksB-Lwith a large strength, couples
nonminimally to gravity. Likewise, the procedure should
hold also for SOð10Þ and trinification models.
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APPENDIX: THE ηDM=ηB RATIO

We first diagonalize the light neutrino mass matrix as
obtained from the seesaw mechanism, VT

νmνVν ¼
diagðm1; m2; m3Þ [8,9]. The lepton mixing matrix is
defined by V ¼ V†

eLVν, which can generally be parame-
trized by three mixing angles (θij) and three CP-violation
phases (δ, σ, ρ),

V ¼

0
BB@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CCAP; ðA1Þ
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where sij ¼ sinθij, cij¼ cosθij, and P¼ diagð1;eiσ=2;eiρ=2Þ
follows the PDG description, where the two Majorana
phases are placed as a diagonal matrix, while δ is the Dirac
phase. We use the experimental numbers

s212 ¼ 0.307� 0.013; s223 ¼ 0.417þ0.025
−0.028 ; ðA2Þ

s213 ¼ ð2.12� 0.08Þ × 10−2; ðA3Þ

Δm2
21 ¼ m2

2 −m2
1 ¼ ð7.53� 0.18Þ × 10−5 eV2; ðA4Þ

Δm2
32 ¼ m2

3 −m2
2 ¼ ð2.51� 0.05Þ × 10−3 eV2: ðA5Þ

Without loss of generality, we suppose the ordinary charged
leptons to be flavor diagonal, i.e., VeL ¼ I, thus Vν ¼ V.
As in the text, we assume fν ¼ diagðfν11; fν22; fν33Þ, then

M¼ diagðmν1R ;mν2R ;mν3RÞ≡diagðM1;M2;M3Þ. Following
Ref. [70], the general coupling matrix is given by

hν ¼
ffiffiffi
2

p

u
diag

� ffiffiffiffiffiffiffi
M1

p
;

ffiffiffiffiffiffiffi
M2

p
;

ffiffiffiffiffiffiffi
M3

p �
R

× diag
� ffiffiffiffiffiffi

m1

p
;

ffiffiffiffiffiffi
m2

p
;

ffiffiffiffiffiffi
m3

p �
V†
ν; ðA6Þ

where R is an orthogonal matrix, parametrized in terms of
arbitrary complex angles, θ̂1; θ̂2; θ̂3,

R ¼

0
BB@

ĉ2ĉ3 −ĉ1ŝ3 − ŝ1ŝ2ĉ3 ŝ1ŝ3 − ĉ1ŝ2ĉ3
ĉ2ŝ3 ĉ1ĉ3 − ŝ1ŝ2ŝ3 −ŝ1ĉ3 − ĉ1ŝ2ŝ3
ŝ2 ŝ1ĉ2 ĉ1ĉ2

1
CCA; ðA7Þ

where ĉi ¼ cos θ̂i and ŝi ¼ sin θ̂i for i ¼ 1, 2, 3.
The mixing matrix of fermion dark matter can be

parametrized similarly to the lepton mixing matrix as
follows:

VNR
¼ I; VNL

¼

0
BB@

c012c
0
13 s012c

0
13 s013e

−iδ0

−s012c023 − c012s
0
23s

0
13e

iδ0 c012c
0
23 − s012s

0
23s

0
13e

iδ0 s023c
0
13

s012s
0
23 − c012c

0
23s

0
13e

iδ0 −c012s023 − s012c
0
23s

0
13e

iδ0 c023c
0
13

1
CCA; ðA8Þ

where c0ij ¼ cos θ0ij; s
0
ij ¼ sin θ0ij.

FIG. 4. The ratio ηDM=ηB varies as function of mν1R when changing the remaining parameters.

FIG. 3. The ratio ηDM=ηB varies as function of θ when changing
the parameter θ̂.
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When the generation of normal and dark matter is flavor
independent, we have ϵDM ¼ ϵSM (thus ηDM ∼ ηB). Hence,
the normal and dark matter asymmetries are only separated
due to flavor effects, which depend on themν1R and Yukawa
couplings. Without loss of generality, we can study the
magnitude of the asymmetry separation for a fixed, e.g.,
mν1R ¼ 1012 GeV, where the dependence on the two
flavors happens. For this purpose, we plot ηDM=ηB in
the measured region of 5 × 10−11 < ηB < 10−10, provided
that mν2R ¼ mν3R ¼ 102mν1R , θ̂1 ¼ θ̂2 ¼ θ̂3 ≡ θ̂ with −5 ≤
Im½θ̂� ≤ 5;−20 ≤ Re½θ̂� ≤ 20, −π ≤ θ012 ¼ θ013 ¼ θ023 ≡
θ ≤ π, δ0 ¼ 0. The ratio ηDM

ηSM
varies as function of θ for

changing the remaining parameter θ̂, as presented in Fig. 3.
Finally, one can perform a numerical study when

changing the lightest right-handed neutrino mass in the
range 1010 GeV < mν1R < 1012 GeV, which again implies
that the normal and dark matter asymmetries are still viable

and satisfy ηDM ∼ ηB. Indeed, we continue investigating the
region 5×10−11< ηB < 10−10 with assumption mν2R ¼
mν3R ¼ 102mν1R , for 1010 GeV ≤ mνR1

≤ 1012 GeV, θ̂1 ¼
θ̂2 ¼ θ̂3 ≡ θ̂ with −π ≤ Im½θ̂� ≤ π;Re½θ̂� ¼ −15, −π ≤
θ012 ¼ θ013 ¼ θ023 ≡ θ ≤ π, δ0 ¼ 0. The ratio ηDM=ηB as
a function of the lightest right-handed neutrino mass is
shown in panels in Fig. 4. It is difficult to generate the dark
matter and normal matter asymmetries ifmν1R < 1010 GeV.
Let us remind the reader that ηB;DM generally depend on

the CP phases δ; σ; ρ; δ0 and the complex angles θ̂1;2;3.
However, these asymmetries are not very sensitive to the
CP phases (thus set as 0) or pure real θ̂1;2;3 (thus fixed for
the second case), while they change significantly as
functions of pure imaginary θ̂1;2;3. The thermal leptogenesis
requires the reheating temperature to be adequately large
TR ∼mν1R , but for the nonthermal leptogenesis TR may be
much lower than mν1R .
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