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Abstract We present a detailed discussion of the triplet
anti-triplet symmetry in 3-3-1 models. The full set of condi-
tions to realize this symmetry is provided, which includes in
particular the requirement that the two vacuum expectation
values of the two scalar triplets responsible for making the
W and Z bosons massive must be interchanged. We apply
this new understanding to the calculation of processes that
have a Z − Z ′ mixing.

1 Introduction

Interesting extensions of the Standard Model (SM), based
on the local gauge group SU (3)C ⊗ SU (3)L ⊗U (1)X (3-3-
1), have been widely studied (see Ref. [1] and references
therein, see also Refs. [2–6] for similar models but with
lepton-number violation). Fermions are typically organized
into triplets and anti-triplets of SU (3)L in three generations.
We therefore have two possible choices, either to put leptons
in triplets or anti-triplets.

The 3-3-1 models can be classified using the parameter β

defined via the electric charge operator

Q = T3 + βT8 + X1, (1)

where T3, T8 are the diagonal SU (3) generators and X is a
new quantum charge of the group U (1)X .

For a given β �= 0, the model with the leptons in triplets is
different from the one where the leptons are in anti-triplets,
because the two models have different electric-charge spec-
tra. Also, for a given assignment of fermionic representation,
changing the sign of β will lead to a different electric-charge
spectrum. What happens if we switch both simultaneously?
We call this

β → −β and triplets ↔ anti-triplets, (2)
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triplet anti-triplet transformation for short. This transforma-
tion applies also to quarks, i.e. quark triplets → quark anti-
triplets and quark anti-triplets → quark triplets. In the spe-
cial case of β = 0 [7], this becomes truly a triplet anti-triplet
transformation literally.

Using Eq. (1) it is possible to show that the electric-charge
spectrum is invariant. Therefore, at first glance, we expect
that physics must be the same. This was noted e.g. in Ref.
[8] (see the sentence after Eq. (2.4) therein) and at the end of
Section II in Ref. [9]. We think that this is well recognized
in the 3-3-1 model community.

However, this understanding is put into question, at least
for us, after reading the paper of Buras, De Fazio and
Girrbach-Noe [10] (see also [11]) where there are indi-
cations that this symmetry is broken by Z − Z ′ mixing,
which depends on the sign of β but, apparently, not on the
fermionic representation at tree level. More specifically, the
Z − Z ′ mixing angle is given, in MZ � MZ ′ approximation,
by [10]

sin ξ = c2
W

3
√

1 − (1 + β2)s2
W

(
3β

s2
W

c2
W

+ √
3a

)
M2

Z

M2
Z ′

, (3)

where s2
W = sin2 θW , c2

W = 1− s2
W with θW being the weak-

mixing angle and

a = v2
1 − v2

2

v2
1 + v2

2

, (4)

where v1 and v2 (called vη and vρ in Ref. [10], respectively)
are the vacuum expectation values of the two Higgs triplets
responsible for making W± and Z bosons massive. From
Eq. (3), one can see that the absolute value of the mixing
angle changes under β → −β. The authors of Ref. [10]
further pointed out that sin ξ does not depend on whether the
leptons are assigned in triplets or anti-triplets. This seems
to indicate that the Z − Z ′ mixing breaks the triplet anti-
triplet symmetry, see the discussion around Eq. (2.16) of
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Ref. [10]. Many figures in Ref. [10] also seem to support this
conclusion.

We notice, however, one missing ingredient in the above
discussion. Namely, the parameter a defined in Eq. (4)
changes sign under the triplet anti-triplet transformation. The
authors of Ref. [10] did not see this because they chose a to be
an input parameter and kept it unchanged under the transfor-
mation. If we instead choose the charged gauge-boson masses
as independent input parameters and calculate a from them,
then we will see that the value of a changes sign. This is
the main point of this letter, which, to the best of our knowl-
edge, has not been noted in the literature. The choice of the
charged-gauge boson masses as input parameters is natural
as this is directly related to physical observables. Reference
[10] focused on the neutral gauge bosons and did not touch
the charged gauge-boson masses, hence this important point
was missed out. With this new piece of information, we will
see that sin ξ can only change sign under the triplet anti-triplet
transformation.

In trying to solve this puzzle, we have realized that there
exists no detailed discussion of the triplet anti-triplet symme-
try in the literature apart from some brief remarks as above
noted. Since this is an important issue in 3-3-1 models, we
think it can be useful to show in detail how this symmetry
works. We have found that the actual implementation of this
symmetry in practice requires not only a careful attention to
the input parameter scheme as above noted but also possible
sign flips in many places in the Feynman rules and in book-
keeping parameters. We will also show that the full definition
of the triplet anti-triplet transformation is more complicated
than Eq. (2) and changing the sign of the parameter a. This is
easy to see because the full Lagrangian depends also on many
other parameters, which may also flip signs or interchange
under the transformation.

There is another issue related to the comparison with
Ref. [10]. Indeed, Ref. [10] provided results for two mod-
els called F1(β, a) and F2(−β, a), related by the transfor-
mation Eq. (2). For each model, results for different values
a = 0,±12/13 are also given. Numerical results of Ref.
[10], see Fig. 4 and Fig. 5 therein, show that F1(β, a) and
F2(−β,−a) are not the same. This is very surprising to us
because we expect them to be identical according to the triplet
anti-triplet symmetry. We have discussed this issue with the
authors of Ref. [10], but, unfortunately, no conclusive find-
ing has been reached. Our investigation has led us to the
conclusion that there seems to be an issue with the sign of
the couplings between the Z ′ and the leptons in the model
F2.

The paper is organized as follows. In Sect. 2, we discuss
the two models related by the transformation Eq. (2) and
provide the full set of conditions for them to be identical. In
Sect. 3, we make application to the processes with a Z − Z ′
mixing and perform some crosschecks with Ref. [10] and

other papers. Conclusions are given in Sect. 4. In Appendix A
we provide details on the calculation of the Z − Z ′ mixing
and of the couplings between the Z , Z ′ gauge bosons to the
leptons in the two models with a general sign convention for
the Z ′ field definition.

2 Two identical models

In this section we consider two 3-3-1 models denoted M1 and
M2, related by the triplet anti-triplet transformation defined
by Eq. (2). We note that Eq. (2) is not enough to make the two
models identical, because the physical results depend also on
the values of other input parameters such as masses, mixing
and coupling parameters. Since we impose here that the two
models are identical, there must be relations between the
parameters of the two models. These relations can be found
by comparing the two Lagrangians.

The parameter β will be denoted β1 and β2 for the two
models, respectively. We will use the indices m, n = 1, 2 to
distinguish the models.

The model M1 is defined as follows. Left-handed leptons
are assigned into anti-triplets and right-handed leptons are
singlets:

LaL =
⎛
⎝

ea
−νa
Ea

⎞
⎠

L

∼
(

3∗,−1

2
+ β1

2
√

3

)
, a = 1, 2, 3,

eaR ∼ (1,−1) , νaR ∼ (1, 0) ,

EaR ∼
(

1,−1

2
+

√
3β1

2

)
. (5)

The model includes three right-handed neutrinos νaR . This
is to make the lepton sector similar to the quark one, in par-
ticular the Yukawa Lagrangian. Discussions and results for
the leptons are then easier to be adopted for the quarks. For
the same reason, possible Majorana mass terms have been
neglected. The leptons Ea

L ,R can be new particles or charge-
conjugated states of the SM leptons. In the following, we will
assume, without loss of generality, Ea to be new leptons. The
numbers in the parentheses are to label the representations
of SU (3)L and U (1)X groups. Note that we have Q = X for
singlets.

Anomaly cancellation requires that the number of triplets
and anti-triplets must be equal. Since quarks come in three
colors, this means that one family of quarks must be in anti-
triplet and the other two families are in triplets or vice versa.
This implies two choices, the leptons are either put in triplets
or in anti-triplets. Because Feynman rules for the quarks are
similar to those for the leptons, we will ignore the quarks and
focus on the leptons in the following.
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For M2, the left-handed leptons are put in triplets as

LaL =
⎛
⎝

νa
ea
Ea

⎞
⎠

L

∼
(

3 ,−1

2
− β2

2
√

3

)
, a = 1, 2, 3,

eaR ∼ (1 ,−1) , νaR ∼ ( 1 , 0) ,

EaR ∼
(

1 ,−1

2
−

√
3β2

2

)
. (6)

Note that the positions of νaL and eaL have been interchanged
to make the Feynman rules for the SM particles the same as
those in the SM. Requiring that the electric charges of Ea in
both models are the same leads to

β1 = −β2. (7)

We use the same convention for the Lagrangian of both
models as

Llepton = L̄aL iγ
μDμLaL + ēaRiγ

μDμeaR

+ ν̄aRiγ
μDμνaR, (8)

Lkinetic
scalar = (Dμ	i )

†(Dμ	i ), (9)

L1,Yukawa = −Y e
1,abLaL	∗

1ebR

− Y ν
1,abLaL	∗

2νbR − Y E
1,abLaL	∗

3EbR + h.c.,
(10)

L2,Yukawa = −Y e
2,abLaL	∗

2ebR − Y ν
2,abLaL	∗

1νbR

− Y E
2,abLaL	∗

3EbR + h.c., (11)

where i = 1, 2, 3 to denote the three scalar multiplets. To give
mass to the new particles, to all the SM leptons, and to the
up- and down-type quarks at tree level, we need at least three
scalar multiplets and use two of them to break the SU (2)L ⊗
U (1)Y symmetry, with Y being the usual hypercharge. Other
reduced scalar sector choices such as using two scalar (anti-
)triplets, apart from possible problems with giving mass to
the quarks, may force the scalar potential to be in a particular
form which can be strongly distorted by radiative corrections.
This may lead to difficulties in the renormalization step. The
Yukawa Lagrangians are written for both models explicitly.
The Yukawa couplings are the same for both models, namely

Y l
1,ab = Y l

2,ab, l = e, ν, E . (12)

The covariant derivative reads

Dtriplet
μ ≡ ∂μ − igTsW

s
μ − igX XT9Xμ,

Danti-triplet
μ ≡ ∂μ + ig(Ts)

T Ws
μ − igX XT9Xμ,

Dsinglet
μ ≡ ∂μ − igX XT9Xμ, (13)

where Ts = λs/2 with s = 1, . . . , 8 and λs being Gell-Mann
matrices, T9 = 1/

√
6, g and gX are coupling constants corre-

sponding to the two groups SU (3)L andU (1)X , respectively.
Their values are the same in both models. We further define

W triplet
μ ≡ Ws

μTs

= 1

2

⎛
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W 3
μ + 1√

3
W 8

μ

√
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μ

√
2W−

μ −W 3
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3
W 8

μ

√
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μ

√
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μ

√
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μ

⎞
⎟⎟⎟⎠ ,

Wanti-triplet
μ ≡ −Ws

μ(Ts)
T = −(W triplet

μ )T , (14)

where m = 1, 2 and we have defined the mass eigenstates of
the charged gauge bosons as

W±
μ = 1√

2

(
W 1

μ ∓ iW 2
μ

)
,

Y±Am
μ = 1√

2

(
W 4

μ ∓ iW 5
μ

)
,

V±Bm
μ = 1√

2

(
W 6

μ ∓ iW 7
μ

)
. (15)

The electric charges of the gauge bosons are calculated as

Am = 1

2
+ βm

√
3

2
, Bm = −1

2
+ βm

√
3

2
. (16)

We see clearly that β2 = −β1 is equivalent to Bm = −An

with m �= n.
Equations (10) and (11) require that 	i are triplets in M1

and anti-triplets in M2. This is just a matter of convention
and we can e.g. change 	i to be triplets in M2 by removing
the complex conjugation in Eq. (11). For M1 we have
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And for M2
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	1 =
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⎞
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(
3∗ ,

1

2
+ β2

2
√

3

)
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The scalar fields develop vacuum expectation values (VEV)
defined as

〈	3〉 = 1√
2

⎛
⎝

0
0

vm,3

⎞
⎠ ,

〈	2〉 = 1√
2

⎛
⎜⎝

0

vm,2

0

⎞
⎟⎠ , 〈	1〉 = 1√

2

⎛
⎜⎝

vm,1

0
0

⎞
⎟⎠ . (19)

We now discuss gauge boson masses. From Eq. (9) we get
for charged gauge bosons

m2
W = g2

4
(v2

m,1 + v2
m,2),

m2
Y±Am = g2

4
(v2

m,3 + v2
m,1),

m2
V±Bm = g2

4
(v2

m,3 + v2
m,2). (20)

As noticed, under the transformation β2 = −β1 we have
Am = −Bn with m �= n, hence these equations lead to

v1,3 = v2,3, vm,1 = vn,2, (21)

which come from the condition that both models must have
the same charged gauge bosons (i.e. same electric charges
and same masses). It is straight forward to see that the neu-
tral gauge bosons have the same masses in both models, see
“Appendix A”. It is convenient to introduce the following
parameter

am = v2
m,1 − v2

m,2

v2
m,1 + v2

m,2

, (22)

which was defined in Ref. [10] and was mentioned in the
introduction. Because of Eq. (21), we have

a1 = −a2. (23)

We now consider the scalar potentials, which read

Vm = μ2
m,1	

†
1	1 + μ2

m,2	
†
2	2 + μ2

m,3	
†
3	3

+ λm,1(	
†
1	1)

2

+ λm,2(	
†
2	2)

2 + λm,3(	
†
3	3)

2

+ λm,12(	
†
1	1)(	

†
2	2) + λm,13(	

†
1	1)(	

†
3	3)

+ λm,23(	
†
2	2)(	

†
3	3)

+ λ̃m,12(	
†
1	2)(	

†
2	1)

+ λ̃m,13(	
†
1	3)(	

†
3	1) + λ̃m,23(	

†
2	3)(	

†
3	2)

+√
2 fm(εi jk	

i
1	

j
2	

k
3 + h.c.), m = 1, 2. (24)

In order to have the relations in Eq. (21) we must have, with
m �= n,

μ2
m,1 = μ2

n,2, μ2
1,3 = μ2

2,3, λm,1 = λn,2, λ1,3 = λ2,3,

λ1,12 = λ2,12, λm,13 = λn,23, λ̃1,12 = λ̃2,12,

λ̃m,13 = λ̃n,23, f1 = f2. (25)

With these relations it is straight forward to see that the Higgs
mass spectra of the two models are identical and the vertices
of pure scalar, scalar-fermion, scalar gauge boson interac-
tions are the same.

In summary, the two models M1, where the leptons are
organized in anti-triplets, and M2, where the leptons are in
triplets, are equivalent if, besides identical gauge couplings,
the relations Eqs. (7), (12), and (25) are satisfied. The impor-
tant relation Eq. (23) is a consequence of Eq. (25). We there-
fore remark that the conditions in Eq. (2) are necessary but
not sufficient to realize the triplet anti-triplet symmetry.

3 Application to neutral-current processes

For the following discussion, it is useful to define the models
as follows

M1 = M(3∗, β1, a1), M2 = M(3, β2, a2), (26)

where the first argument specifies the representation for the
leptons. Of course, those three arguments are not enough to
define a model, but they will be enough for our purpose in
this section, assuming that the gauge and Yukawa couplings
are the same, and the parameter a represents the param-
eters of the scalar potential. With these assumptions, we
have

M(3∗, β, a) = M(3,−β,−a), (27)

as a simplified way of expressing the triplet anti-triplet sym-
metry.

In Ref. [10], two models are discussed F1(a) = M(3∗,
β, a) and F2(a) = M(3,−β, a). Ref. [10] introduced also
the parameter tan β̄ = vm,2/vm,1, which can be related to a
via

a = 1 − tan2 β̄

1 + tan2 β̄
. (28)

The transformation a → −a is therefore equivalent to
tan β̄ → 1/ tan β̄.

From the above discussion, we can now see clearly that
F1(a) and F2(a) are not equivalent, leading (unsurprisingly)
to the fact that the results for F1(a) and for F2(a) are not the
same if a �= 0.

However, the results of model F2(−a) are also provided
in Ref. [10] and they are not the same as those of F1(a).
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This is unexpected because the triplet anti-triplet symmetry
suggests that they should be the identical. The calculation of
Ref. [10] involves two neutral currents mediated by Z1 and
Z2 particles. These mass eigenstates are related to the Z and
Z ′ states as

Zμ
1 = cos ξ Zμ + sin ξ Z ′μ, Zμ

2 = − sin ξ Zμ + cos ξ Z ′μ.

(29)

More details are provided in “Appendix A”. The amplitude
squared therefore depends on the sign of the f f Z and f f Z ′
couplings and also on the sign of tan ξ , because of the Z −
Z ′ interference terms. Since the convention of cos ξ > 0 is
usually chosen, we thus have to pay attention to the sign of
the couplings and of sin ξ .

We have made an investigation into Ref. [10] and come
to the conclusion that there seems to be a sign issue in
the ll Z ′ couplings of F2. We have performed the following
checks.

• For model F1, we agree with Table 1 of Ref. [10].
• For model F2, we agree with Ref. [12].
• For model F2, we agree with Ref. [10] on sin ξ and can

reproduce the Table 2 of Ref. [10] if a minus sign is added
to the ll Z ′ couplings.1 However, if the correct sign is
used, the results change because of the Z−Z ′ interference
terms.

Note that the sign of sin ξ in Ref. [12] agrees with Ref.
[10] and also with this paper. The ll Z , ll Z ′ couplings of Ref.
[12] are the same as in Ref. [13] and agree with this paper.
Ref. [10] and Ref. [12] did not mention whether they agree
on the ll Z , ll Z ′ couplings.

To facilitate comparisons, our results for the ll Z , ll Z ′
couplings and for sin ξ are provided in Appendix A. All
these findings have been communicated to the authors of
Ref. [10].

4 Conclusions

In this work we have pointed out that the recognized triplet
anti-triplet symmetry in 3-3-1 models should include a sign
change in the parameter a = (v2

1 − v2
2)/(v2

1 + v2
2), besides

the well-known sign change in the parameter β and chang-
ing from triplets to anti-triplets and vice versa. We have
shown that the full transformation is more complicated than
that and attention has to be paid to the input parameter

1 Additionally, in Ref. [10], there seems to be sign typos at the Rμμ
V

result for β = 2/
√

3 and tan β̄ = 5 in Table 1, and at the Wμμ
A result

for β = −2/
√

3 and tan β̄ = 5 in Table 2.

scheme and also to the parameters of the scalar poten-
tial. The transformations of those parameters have been
provided.

We have applied the new understanding to the processes
with a Z − Z ′ mixing and in particular to the calculations
of Ref. [10]. We have found a possible sign issue with the
couplings between the Z ′ and the leptons in the model where
the leptons are put in the triplet representation.

Acknowledgements We would like to thank Andrzej Buras and Fulvia
De Fazio for discussions. We are grateful to Julien Baglio for his careful
reading of the manuscript and for his helpful comments. LTH acknowl-
edges the financial support of the International Centre of Physics at the
Institute of Physics, Vietnam Academy of Science and Technology. This
research is funded by the Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under Grant number 103.01-
2017.78. LDN acknowledges the support from DAAD to perform the
final part of this work at the University of Tübingen under a scholarship.
He thanks the members of the Institut für Theoretische Physik for their
hospitality.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
work which does not generate any data sets.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: Z − Z′ mixing

We consider here the neutral gauge bosons. For both models
defined in Sect. 2, we will introduce intermediate fields of Zμ

and Z ′
μ and the final physical fields will be Aμ (the photon),

Zμ
1 and Zμ

2 . We will see that the masses of these physical
states are the same in both models.

The symmetry breaking pattern is

SU (3)L⊗U (1)X
vm,3−−→ SU (2)L⊗U (1)Y

vm,1,vm,2−−−−−→ U (1)Q .

(A1)

The basis of the neutral gauge bosons transforms correspond-
ingly as

Xμ, W 8
μ, W 3

μ

θm,331−−−→ Z ′
μ, B ′

μ, W 3
μ

θW−→ Z ′
μ, Zμ, Aμ.

(A2)

We have

Aμ = sWW 3
μ + cW (sm,331Xμ + cm,331W

8
μ), (A3)

Zμ = cWW 3
μ − sW (sm,331Xμ + cm,331W

8
μ), (A4)

Z ′
μ = hm(−sm,331W

8
μ + cm,331Xμ), (A5)
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with hm = ±1 being a sign convention for Z ′
μ, and

sm,331 = sin θm,331 = g√
Xg

,

cm,331 = cos θm,331 = gXβm√
6Xg

,

Xg = g2 + g2
Xβ2

m

6
, (A6)

sW = sin θW = g1√
g2 + g2

1

,

cW = cos θW = g√
g2 + g2

1

, g1 = ggX√
6Xg

, (A7)

g2
X = 6g2s2

W

1 − (1 + β2
m)s2

W

. (A8)

If we choose h1 = +1 for model M1, as in Ref. [14], then we
agree with Ref. [10]. For M2, we agree with Ref. [12] where
the convention h2 = +1 is used.

The mass matrix in the basis of (Aμ, Zμ, Z ′
μ) for both

models is

M2
AZ Z ′ =

⎛
⎜⎝

0 0 0

0 m2
22 m2

23

0 m2
23 m2

33

⎞
⎟⎠ , (A9)

with

m2
22 = m2

W

c2
W

, m2
23 = −hmgXm2

W

3
√

2gsW
(am + √

3βmt
2
W ),

m2
33 = Xgv

2
m,3

3

+ g2
Xm

2
W

18g2t2
W

(1 + 3t4
Wβ2

m + 2
√

3t2
Wβmam), (A10)

where

am = v2
m,1 − v2

m,2

v2
m,1 + v2

m,2

. (A11)

Because of Eq. (21), we have

a1 = −a2, (A12)

confirming what we wrote in the Sect. 1.
The two eigenvalues read

m2
Z1

= m2
22 + m2

33 − √
�

2
,

m2
Z2

= m2
22 + m2

33 + √
�

2
,

� = (m2
22 − m2

33)
2 + 4m4

23. (A13)

We now introduce the Z − Z ′ mixing discussed in the Sect. 1
(
Zμ

1

Zμ
2

)
=

(
cm,ξ sm,ξ

−sm,ξ cm,ξ

) (
Zμ

Z ′μ

)
, (A14)

with

sm,ξ = − m2
23√

(m2
Z2

− m2
22)

2 + m4
23

,

cm,ξ = m2
Z2

− m2
22√

(m2
Z2

− m2
22)

2 + m4
23

. (A15)

We note here that the sign of tan ξm = sm,ξ /cm,ξ is com-
pletely determined from the matrix in Eq. (A9), but not the
sign of sm,ξ or cm,ξ . Here we choose the cm,ξ > 0 convention,
so that the Z1 couplings become identical to the Z couplings
in the limit ξ → 0. In this convention, the sign of sm,ξ is
determined as in Eq. (A15).

Comparing M1 against M2 we see that m2
22 and m2

33 are
identical but m2

23 can be different in sign depending on the
convention of hm . The physical masses m2

Zi
are therefore the

same in both models. For the mixing angles we have

s1,331 = s2,331, c1,331 = −c2,331, c1,ξ = c2,ξ , (A16)

while s1,ξ = ±s2,ξ depending on the sign convention of hm .
cW and sW are chosen to be the same in both models.

In the case ofvm,3 � vm,1, vm,2 we havem33 � m22,m23

and

sm,ξ ≈ −m2
23

m2
33

= hmc2
W

3
√

1 − (1 + β2
m)s2

W

(3βmt
2
W + √

3am)
m2

22

m2
33

. (A17)

This result agrees with Refs. [10,12] if we choose h1 = h2 =
+1.

To calculate neutral currents couplings to the leptons we
need the diagonal entries of the covariant derivative. Writing
Ddiag

μ = ∂μ + D̂μ, in the original basis (Xμ,W 8
μ,W 3

μ) we
have

D̂lepton,L
m,μ = −idiag

(
gsm

2
W 3

μ + gsm

2
√

3
W 8

μ

+ gX√
6

(
−1

2
− βmsm

2
√

3

)
Xμ ,

−gsm
2

W 3
μ + gsm

2
√

3
W 8

μ + gX√
6

(
−1

2
− βmsm

2
√

3

)
Xμ ,

−gsm√
3
W 8

μ + gX√
6

(
−1

2
− βmsm

2
√

3

)
Xμ

)
, sm = (−1)m,

m = 1, 2, (A18)
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Table 1 Couplings between the
Z , Z ′ gauge bosons and the
left-, right-handed Standard
Model’s leptons in the models
M1 and M2

Model Lepton �L (Z) �R(Z) �L (Z ′) �R(Z ′)

M1 ν
g

2cW
0 h1g

2cW

1−(1+√
3β1)s2

W√
3
√

1−(1+β2
1 )s2

W

0

M2 ν
g

2cW
0 − h2g

2cW

1−(1−√
3β2)s2

W√
3
√

1−(1+β2
2 )s2

W

0

M1 e g
2cW

(2s2
W − 1)

g
cW

s2
W

h1g
2cW

1−(1+√
3β1)s2

W√
3
√

1−(1+β2
1 )s2

W

h1g
cW

−β1s2
W√

1−(1+β2
1 )s2

W

M2 e g
2cW

(2s2
W − 1)

g
cW

s2
W − h2g

2cW

1−(1−√
3β2)s2

W√
3
√

1−(1+β2
2 )s2

W

− h2g
cW

β2s2
W√

1−(1+β2
2 )s2

W

and we have used Xm = −1/2 − βmsm/(2
√

3) for left-
handed lepton multiplets.

As in Ref. [10], we define the couplings between the Z1

and Z2 bosons to the fermions as follows

�
f f
m,k(Z1) = cm,ξ�

f f
m,k(Z) + sm,ξ�

f f
m,k(Z

′),

�
f f
m,k(Z2) = −sm,ξ�

f f
m,k(Z) + cm,ξ�

f f
m,k(Z

′), (A19)

where k = L , R, A, V with �V = �L + �R , �A = �R −
�L , with the following convention

L f (Z , Z ′) = f̄ γ μ[� f f
L (Z)PL + �

f f
R (Z)PR] f Zμ

+ f̄ γ μ[� f f
L (Z ′)PL + �

f f
R (Z ′)PR] f Z ′

μ.

(A20)

Results for these couplings are given in Table 1 for the
case of the SM leptons. With the convention h2 = +1 as in
Refs. [12,13], those ll Z and ll Z ′ couplings agree with Refs.
[12,13].

In comparison with Ref. [10] we have to choose h1 =
h2 = +1 to get the same sign for sm,ξ . We agree with them
for model M1. For model M2, which they call F2, we can
only agree if a minus sign is added to the ll Z ′ couplings.

It is important to note that the physical results such as
the e+e− → μ+μ− cross section are independent of hm
because it occurs both in the �ll

k (Z ′) couplings and in sm,ξ .

The Z − Z ′ interference terms are independent of hm . Using
the convention h1 = −h2, the above results show that the ll Z ,
ll Z ′ couplings, sm,ξ , and cm,ξ are the same in both models.
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