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The flipped trinification, a framework for unifying the 3-3-1 and left-right symmetries, has recently
been proposed in order to solve profound questions, the weak parity violation and the number of
families, besides the implication for neutrino mass generation and dark matter stability. In this work, we
argue that this gauge completion naturally provides flavor-changing neutral currents in both quark and
lepton sectors. The quark flavor changing happens at the tree level due to the nonuniversal couplings of
Z0
L;R, while the lepton flavor changing l → l0γ starts from the one-loop level, which is significantly

contributed by the new charged currents of YL;R that couple ordinary leptons to exotic leptons. These
effects disappear in the minimal left-right model but are present in the framework characterizing a
flipped trinification symmetry.
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I. INTRODUCTION

The experiments of neutrino oscillations caused by non-
zero small neutrino masses and flavor mixing have provided
the most important evidence that proves the new physics
beyond the standard model [1]. The compelling way to
address the neutrino masses is to introduce right-handed
neutrinos into the standard model, by which the neutrino
mass generation is done by seesaw mechanisms [2]. The
pioneering model that recognizes the seesaw mechanisms is
the minimal left-right symmetric model [3], in which the
neutrino masses were predicted before the experimental
confirmations.
The minimal left-right symmetric model offers the

possibility to understand the origin of the parity violation
of weak interactions, but as the standard model, it neither
shows why there are only three fermion generations nor
addresses dark matter stability that accounts for more than
25% mass-energy density of the Universe [4]. Indeed, the
lightest right-handed neutrino may have a kilo-electron-volt
mass responsible for warm dark matter, but it would

overpopulate the Universe due to gauge interactions, which
require nonstandard dilution mechanisms [5]. On the other
hand, the cold dark matter scenario that adds a new field as
well as imposes a stabilizing symmetry is arbitrary, ad hoc
included [6].
It is well established that the 3-3-1 model [7] provides a

potential solution to the generation number and addresses
the issue of dark matter naturally [8]. Hence, we have
recently proposed a theoretical model that unifies both the
left-right and 3-3-1 symmetries, resulting in a SUð3ÞC ⊗
SUð3ÞL ⊗ SUð3ÞR ⊗ Uð1ÞX gauge group, called flipped
trinification [9] (for other interpretations, see Ref. [10]).
This model inherits all the nice features of both left-right
and 3-3-1 models. Particularly, dark matter naturally exists
and along with normal matter forms gauge multiplets by the
gauge symmetry, whereas the three generations emerge as a
result of anomaly cancellation. Moreover, the origin of the
matter parity and the dark matter stability are determined by
a residual gauge symmetry. The new physics predicted
occurs at tera-electron-volt scale, giving rise to interesting
signatures at current colliders.
An intriguing feature of the flipped trinification is that

flavor-violating interactions appear in both quark and
lepton sectors. As a trinification symmetry is flipped, both
left- and right-handed quark flavors transform differently
under SUð3ÞL;R. Consequently, they lead to tree-level
flavor-changing neutral currents (FCNCs) that couple to
Z0
L;R, and the relevant observables after integrating out Z

0
L;R
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depend on both left- and right-handed quark mixing
matrices. Further, the discovery of neutrino oscillations
suggests lepton flavor violation (LFV), but the charged
LFV has never been observed. As the minimal left-right
gauge symmetry is enlarged to trinification, the model
predicts new non-Hermitian gauge bosons YL;R that couple
charged leptons to new heavy leptons. This is the main
source for charged LFV processes l → l0γ that are mediated
by YL;R in one-loop corrections, since the new leptons mix.
Additionally, the contributions of WL;R due to the neutrino
mixing and of new Higgs bosons to such charged LFV
processes will be taken into account. Moreover, the
flipped trinification has scalar fields that couple both
charged leptons and flavor change. This leads to tree-level
charged LFV processes such as τ → 3μð3eÞ, μ → 3e, and
so forth.
Let us recall that, due to the left-right symmetry, themodel

requires a bitriplet φ, two triplets χL and χR, and two sextets
σL and σR, which provide the gauge symmetry breaking and
mass generation. Since χL and σL have small vacuum
expectation values (VEVs), their roles were ignored in the
previous study [9]. In this work, we will turn on their effects
when including the full scalar sector, which contributes to the
gauge symmetrybreakingpattern andmass spectra.We show
that the VEVs of χL and σL do not significantly affect the
gauge boson masses, but the neutrino and Higgs spectra are
modified.
The rest of this paper is organized as follows. In Sec. II,

we reconsider the model with the complete scalar content.
In Sec. III, we study the tree-level FCNCs and their
contributions to neutral meson mixings, which are mediated
by new gauge bosons Z0

L and Z0
R. In Sec. IV, we present

analytic expressions and numerical results for the specific
charged LFV processes. Finally, we conclude this work
in Sec. V.

II. REVIEW OF THE MODEL

This section necessarily imposes χL and σL due to the
left-right symmetry, which were omitted in the previous
study for mathematical simplicity [9].

A. Symmetry and field content

Left-right symmetrizing the 3-3-1 group [7], we obtain a
gauge symmetry,

SUð3ÞC ⊗ SUð3ÞL ⊗ SUð3ÞR ⊗ Uð1ÞX; ð1Þ

which matches a flipped trinification and preserves the
SUð3ÞL and SUð3ÞR interchange. The electric charge
operator is given by

Q ¼ T3L þ T3R þ βðT8L þ T8RÞ þ X; ð2Þ

where TiL;R (i ¼ 1; 2; 3;…; 8) and X are SUð3ÞL;R and
Uð1ÞX charges, respectively. The baryon minus lepton
number is identified as

1

2
ðB − LÞ ¼ βðT8L þ T8RÞ þ X; ð3Þ

which is noncommutative, in contrast to the usual (Abelian)
extensions. We further define a basic electric charge
as q ¼ −ð1þ ffiffiffi

3
p

βÞ=2.
Analogously, the fermion content is obtained from those

of the 3-3-1model by left-right symmetrization,which yields

ψaL ¼

0
B@

νaL

eaL
Nq

aL

1
CA ∼

�
1; 3; 1;

q − 1

3

�
;

ψaR ¼

0
B@

νaR

eaR
Nq

aR

1
CA ∼

�
1; 1; 3;

q − 1

3

�
; ð4Þ

QαL ¼

0
B@

dαL
−uαL

J
−q−1

3

αL

1
CA ∼

�
3; 3�; 1;−

q
3

�
;

QαR ¼

0
B@

dαR
−uαR

J
−q−1

3

αR

1
CA ∼

�
3; 1; 3�;−

q
3

�
; ð5Þ

Q3L ¼

0
B@

u3L
d3L

J
qþ2

3

3L

1
CA ∼

�
3; 3; 1;

qþ 1

3

�
;

Q3R ¼

0
B@

u3R
d3R

J
qþ2

3

3R

1
CA ∼

�
3; 1; 3;

qþ 1

3

�
; ð6Þ

where a ¼ 1, 2, 3 and α ¼ 1, 2 are generation indices. The
model predicts new fermions Na, Ja, besides the right-
handed neutrinos νaR. The fermion sector is more economi-
cal than that of the well-known trinification [11]. In contrast
to the trinification, the SUð3ÞL or SUð3ÞR anomaly cancel-
lation requires the number of generations to match that of
colors and the third quark generation to transform under
SUð3ÞL;R differently from the first two quark generations,
analogous to the 3-3-1 model [7].
To break the gauge symmetry and generate the masses

appropriately, the scalar multiplets are supplied as

DINH, HUONG, DUY, NHUAN, THIEN, and VAN DONG PHYS. REV. D 99, 055005 (2019)

055005-2



ϕ ¼

0
BB@

ϕ0
11 ϕþ

12 ϕ−q
13

ϕ−
21 ϕ0

22 ϕ−1−q
23

ϕq
31 ϕ1þq

32 ϕ0
33

1
CCA ∼ ð1; 3; 3�; 0Þ;

χL ¼

0
BB@

χ−q1

χ−q−12

χ03

1
CCA

L

∼
�
1; 3; 1;−

2qþ 1

3

�
;

χR ¼

0
BB@

χ−q1

χ−q−12

χ03

1
CCA

R

∼
�
1; 1; 3;−

2qþ 1

3

�
;

σL ¼

0
BBBBB@

σ011
σ−
12ffiffi
2

p σq
13ffiffi
2

p

σ−
12ffiffi
2

p σ−−22
σq−1
23ffiffi
2

p

σq
13ffiffi
2

p σq−1
23ffiffi
2

p σ2q33

1
CCCCCA

L

∼
�
1; 6; 1;

2ðq − 1Þ
3

�
;

σR ¼

0
BBBBB@

σ011
σ−
12ffiffi
2

p σq
13ffiffi
2

p

σ−
12ffiffi
2

p σ−−22
σq−1
23ffiffi
2

p

σq
13ffiffi
2

p σq−1
23ffiffi
2

p σ2q33

1
CCCCCA

R

∼
�
1; 1; 6;

2ðq − 1Þ
3

�
; ð7Þ

which reflect the left-right symmetry. The corresponding
VEVs are given by

hϕi ¼ 1ffiffiffi
2

p

0
B@

u 0 0

0 u0 0

0 0 w

1
CA; ð8Þ

hχLi ¼
1ffiffiffi
2

p

0
B@

0

0

wL

1
CA; hχRi ¼

1ffiffiffi
2

p

0
B@

0

0

wR

1
CA; ð9Þ

hσLi ¼
1ffiffiffi
2

p

0
B@

ΛL 0 0

0 0 0

0 0 0

1
CA;

hσRi ¼
1ffiffiffi
2

p

0
B@

ΛR 0 0

0 0 0

0 0 0

1
CA: ð10Þ

As shown in Ref. [9], the symmetry breaking proceeds
through several schemes, depending on the hierarchy
arrangements of the VEVs. All the schemes lead to the
existence of a residual discrete gauge symmetry that
conserves every VEV, called matter parity,

WP ¼ ð−1Þ3ðB−LÞþ2s ¼ ð−1Þ6½βðT8LþT8RÞþX�þ2s: ð11Þ

This parity ensures the stability of dark matter, which is
unified with normal matter in the gauge multiplets (see
Ref. [9] for details of the dark sector and dark matter
candidates). For consistency, we assume ΛR; wR; w ≫
u; u0 ≫ ΛL; wL, appropriate for the potential minimization.
(Indeed, the minimization conditions imply ΛL ≃ 0,
wL ≃ 0, where the small nonzero values come from
abnormal perturbative interactions, as seen in the next
section). This means that the flipped trinification is broken
down to the standard model and matter parity and then to
the remnant SUð3ÞC ⊗ Uð1ÞQ ⊗ WP, where the left-right
asymmetry is explicitly recognized at the electroweak
phase due to w ≠ 0, wR ≠ wL, and ΛR ≠ ΛL.

B. Fermion masses

First, we consider the physical states and masses of
fermions. They arise from the Yukawa interactions as

LYukawa ¼ xabðψ̄c
aRσ

†
RψbR þ ψ̄c

aLσ
†
LψbLÞ þ yabψ̄aLϕψbR þ zab

M
ψ̄aLχLχ

�
RψbR þ k33Q̄3LϕQ3R þ kαβQ̄αLϕ

�QβR

þ k033
M

Q̄3LχLχ
�
RQ3R þ k0αβ

M
Q̄αLχ

�
LχRQβR þ t3α

M
ðQ̄3Lϕχ

�
RQαR þ Q̄3Rϕ

�χ�LQαLÞ

þ tα3
M

ðQ̄αLϕ
�χRQ3R þ Q̄αRϕχLQ3LÞ þ H:c:; ð12Þ

where M is a new physics scale that defines the effective
interactions. The left-right symmetry demands that the
couplings y, z, k, and k0 are Hermitian, whereas x and t
are generic.
After the symmetry breaking, the Yukawa Lagrangian

yields fermion masses. The new leptons get a large mass at
the new physical scale as follows:

LN
mass ¼

�
yabffiffiffi
2

p wþ zab
2M

wLwR

�
N̄aLNbR þ H:c: ð13Þ

The ordinary charged leptons obtain a mass at the weak
scale,
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Ll
mass ¼

�
yabffiffiffi
2

p u0
�
l̄aLlbR þ H:c: ð14Þ

Note that the new leptons do not mix with the ordinary
leptons due to the matter parity conservation. If the
effective interactions are neglected, they have the same
mixing matrices.
The Lagrangian (12) allows neutrinos to have both kinds

of mass terms: Dirac and Majorana. In the basis ðνL; νcRÞ,
the neutrino mass matrix is given by

Mν ¼
�

ML
ν MD

ν

ðMD
ν ÞT MR

ν

�
; ð15Þ

where the explicit forms of MD
ν , ML

ν , and MR
ν are

ðMD
ν Þab ¼ −

yabffiffiffi
2

p u;

ðML
ν Þab ¼ −

ffiffiffi
2

p
xabΛL;

ðMR
ν Þab ¼ −

ffiffiffi
2

p
xabΛR: ð16Þ

Because of the condition ΛL ≪ u ≪ ΛR, the active neu-
trinos (∼νL) gain small masses via the seesaw mechanisms,

Mν ≃ −
ffiffiffi
2

p
xΛL þ 1

2
ffiffiffi
2

p yx−1yT
u2

ΛR
; ð17Þ

whereas the sterile neutrinos (∼νR) have large masses at the
ΛR scale, M0

ν ≃ −
ffiffiffi
2

p
xΛR.

The exotic quarks do not mix with ordinary quarks due to
the matter parity conservation and have the mass terms
given from (12) by

LJ
mass ¼

�
k33ffiffiffi
2

p wþ k033
2M

wLwR

�
J̄3LJ3R

þ
�
kαβffiffiffi
2

p wþ k0αβ
2M

wLwR

�
J̄αLJβR þ H:c:; ð18Þ

which are all at the new physics scale.
Denoting uL;R ¼ ðu1; u2; u2ÞTL;R and dL;R ¼ ðd1; d2;

d3ÞTL;R, the ordinary quarks achieve mass terms

Lu;d ¼ −ūLMuuR − d̄LMddR þ H:c:; ð19Þ

where

Mu ¼ −
1ffiffiffi
2

p

0
BBB@

k11u0 k12u0
−t13
M

ffiffi
2

p u0ðwL þ wRÞ
k21u0 k22u0

−t23
M

ffiffi
2

p u0ðwL þ wRÞ
t31

M
ffiffi
2

p uðwL þ wRÞ t32
M

ffiffi
2

p uðwL þ wRÞ k33u

1
CCCA;

Md ¼ −
1ffiffiffi
2

p

0
BBB@

k11u k12u
−t13
M

ffiffi
2

p uðwL þ wRÞ
k21u k22u

−t23
M

ffiffi
2

p uðwL þ wRÞ
t31

M
ffiffi
2

p u0ðwL þ wRÞ t32
M

ffiffi
2

p u0ðwL þ wRÞ k33u0

1
CCCA: ð20Þ

Applying biunitary transformations, the mass matrices can
be diagonalized as

Md ¼ V†
dLM

dVdR; Mu ¼ V†
uLM

uVuR; ð21Þ

where Mu and Md are diagonal matrices that consist of
respective physical quark masses at the weak scale, given
that M ∼ wR. Note that the mass eigenstates u0 ¼ ðu; c; tÞT
and d0 ¼ ðd; s; bÞT are related to the gauge states by uL;R ¼
VuL;Ru0L;R and dL;R ¼ VdL;Rd0L;R.

C. Gauge boson masses

The presence of the scalar multiplets σL and χL does not
significantly change the mass spectrum of the gauge bosons
that was derived in Ref. [9]. Hereafter, we summarize the
main results of the gauge sector. The gauge bosonsWL and
WR slightly mix, which yields eigenstates

W1 ¼ cξWL − sξWR; W2 ¼ sξWL þ cξWR; ð22Þ

where the mixing angle ξ is defined by
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t2ξ ¼
4tRuu0

2Λ2
L − 2Λ2

Rt
2
R − ðt2R − 1Þðu2 þ u02Þ ≃ −

2uu0

tRΛ2
R
≪ 1: ð23Þ

The W1;2 masses are given by

m2
W1

≃
g2L
4

�
u2 þ u02 þ 2Λ2

L −
4t2Ru

2u02

ðt2R − 1Þðu2 þ u02Þ þ 2t2RΛ2
R − 2Λ2

L

�
≃
g2L
4
ðu2 þ u02Þ; ð24Þ

m2
W2

≃
g2R
4

�
u2 þ u02 þ 2Λ2

R þ 4t2Ru
2u02

ðt2R − 1Þðu2 þ u02Þ þ 2t2RΛ2
R − 2Λ2

L

�
≃
g2R
2
Λ2
R; ð25Þ

where gL and gR are SUð3ÞL;R couplings, respectively, which match tR ≡ gR=gL ¼ 1 at the flipped trinification scale due to
the left-right symmetry. At the low energy, they may separate, tR ≠ 1, due to the different contributions to the running
couplings. W1 is identical to the standard model W boson, implying u2 þ u02 ¼ ð246 GeVÞ2, while W2 is new.
Besides, the model predicts new non-Hermitian gauge bosons X�q

L;R and Y�ðqþ1Þ
L;R that couple to the charges T4 ∓ iT5 and

T6 ∓ iT7, respectively. The physical states are

X�q
1 ¼ cξ1X

�q
L − sξ1X

�q
R ; X�q

2 ¼ sξ1X
�q
L þ cξ1X

�q
R ; ð26Þ

Y�ð1þqÞ
1 ¼ cξ2Y

�ð1þqÞ
L − sξ2Y

�ð1þqÞ
R ; Y�ð1þqÞ

2 ¼ sξ2Y
�ð1þqÞ
L þ cξ2Y

�ð1þqÞ
R : ð27Þ

Here, the mixing angles ξ1 and ξ2 are obtained as

t2ξ1 ¼
4tRuw

u2 þ w2 þ w2
L þ 2Λ2

L − t2Rðu2 þ w2 þ w2
R þ 2Λ2

RÞ
∼
u
w
; ð28Þ

t2ξ2 ¼
4tRu0w

u02 þ w2 þ w2
L − t2Rðu02 þ w2

R þ w2Þ ∼
u0

w
: ð29Þ

And the gauge boson masses are given by

m2
X1

¼ g2L
4

�
u2 þ w2 þ w2

L þ 2Λ2
L þ 4t2Ru

2w2

u2 þ w2 þ w2
L þ 2Λ2

L − t2Rðu2 þ w2 þ w2
R þ 2Λ2

RÞ
�
≃
g2L
4
w2; ð30Þ

m2
X2

¼ g2R
4

�
u2 þ w2 þ w2

R þ 2Λ2
R −

4u2w2

u2 þ w2 þ w2
L þ 2Λ2

L − t2Rðu2 þ w2 þ w2
R þ 2Λ2

RÞ
�
≃
g2R
4
ðw2 þ w2

R þ 2Λ2
RÞ; ð31Þ

m2
Y1

¼ g2L
4

�
u02 þ w2 þ w2

L þ 4t2Ru
02w2

u02 þ w2 þ w2
L − t2Rðu02 þ w2 þ w2

RÞ
�
≃
g2L
4
w2; ð32Þ

m2
Y2

¼ g2R
4

�
u02 þ w2 þ w2

R −
4u02w2

u02 þ w2 þ w2
L − t2Rðu02 þ w2 þ w2

RÞ
�
≃
g2R
4
ðw2 þ w2

RÞ: ð33Þ

The neutral gauge bosons A3L;R, A8L;R, and B, which couple to the charges T3L;R, T8L;R, and X, respectively, mix via a
5 × 5 mass matrix, given in the Appendix. The photon field is

A ¼ sWA3L þ cW

�
tW
tR

A3R þ βtWA8L þ β
tW
tR

A8R þ tW
tX

B

�
; ð34Þ

which is massless, where tX ≡ gX=gL is Uð1ÞX=SUð3ÞL coupling ratio. The sine of the Weinberg angle is
sW ¼ tXtR=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2Xð1þ β2Þ þ t2Rð1þ t2Xð1þ β2ÞÞ

p
, obtained by matching the electromagnetic gauge coupling [12]. As usual,

the standard model Z boson is given orthogonally to A by

FLAVOR CHANGING IN THE FLIPPED TRINIFICATION PHYS. REV. D 99, 055005 (2019)

055005-5



ZL ¼ cWA3L − sW

�
tW
tR

A3R þ βtWA8L þ β
tW
tR

A8R þ tW
tX

B

�
:

ð35Þ

New neutral gauge bosons take the forms that are orthogo-
nal to both A and ZL, i.e., to the Uð1ÞY gauge field in
parentheses,

Z0
L ¼ ς1tXtWβA3R−

tW
ς1tXtR

A8Lþς1tXtWβ2A8Rþς1tRtWβB;

ð36Þ

ZR ¼ −
ς1
ς
A3R þ ςς1t2XβA8R þ ςς1tXtRB; ð37Þ

Z0
R ¼ ςðtRA8R − tXβBÞ; ð38Þ

where ς ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2R þ β2t2X

p
and ς1 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2R þ ð1þ β2Þt2X

p
.

In the new basis ðA; ZL; Z0
L; ZR; Z0

RÞ, A is decoupled,
while ZL infinitesimally mixes with ðZ0

L; ZR; Z0
RÞ where

the relevant mixing angles are suppressed by ðu; u0Þ2=
ðw;wR;ΛRÞ2 ≪ 1. Neglecting the mixing, ZL is a physical
field and decoupled as the photon.We are left with diagonal-
izing the mass matrix of ðZ0

L; ZR; Z0
RÞ, which yields the

eigenstates Z0
L, ZR, and Z0

R and corresponding masses as

Z0
L≃Z0

L; ZR≃cξ3ZR− sξ3Z
0
R; Z0

R≃ sξ3ZRþcξ3Z
0
R;

ð39Þ

m2
Z0

L
≃
g2L
3

ð1þ ς21t
2
Rt

2
Xβ

2Þ2t2Ww2

ς21t
2
Rt

2
X

; ð40Þ

m2
ZR

≃
g2L
3

3w2
R½t2Rþ t2Xð1þβ2Þ�2þw2½ ffiffiffi

3
p

t2Rþð ffiffiffi
3

p þβÞt2X�2
ς−21 ½4þð ffiffiffi

3
p þβÞ2ðt2X=t2RÞ�

;

ð41Þ

m2
Z0

R
≃
g2L
3
½4t2R þ t2Xð

ffiffiffi
3

p
þ βÞ2�Λ2

R; ð42Þ

provided thatΛR ≫ w,wR, where theZR − Z0
R mixing angle

is finite,

t2ξ3 ¼
2tR½

ffiffiffi
3

p
t2Rþβð3þ ffiffiffi

3
p

βÞt2X�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2Rþ t2Xð1þβ2Þ

p
2t4Rþ t2Rt

2
Xð

ffiffiffi
3

p
−βÞ2−β2ð ffiffiffi

3
p þβÞ2t4X

: ð43Þ

Analogously, we can diagonalize themassmatrix for the case
ΛR ≪ w,wR, whereZR is decoupled,whileZ0

L;R finitelymix.
For the case ΛR ∼ w, wR, all the gauge bosons Z0

L;R and ZR

finitely mix, which can be parametrized by the Euler angles.
Note that w and wR are always taken in the same order, since
they simultaneously breakSUð3ÞL ⊗ SUð3ÞR → SUð2ÞL ⊗
SUð2ÞR and correspondingly reduce the left-right symmetry.

D. Higgs masses

Let us rewrite the scalar potential that includes the full
scalar content. The full scalar potential takes the form,
V ¼ Vϕ þ Vχ þ Vσ þ Vmix, where

Vϕ ¼ μ2ϕTrðϕ†ϕÞ þ λ1½Trðϕ†ϕÞ�2 þ λ2Tr½ðϕ†ϕÞ2�;
Vχ ¼ μ2χ ½ðχ†LχL þ χ†RχR� þ κ1½ðχ†LχLÞ2 þ ðχ†RχRÞ2� þ κ2ðχ†LχLÞðχ†RχRÞ;
Vσ ¼ μ2σ½Trσ†LσL þ Trσ†RσR� þ ρ1f½Trðσ†LσLÞ�2 þ ½Trðσ†RσRÞ�2g þ ρ2fTr½ðσ†LσLÞ2� þ Tr½ðσ†RσRÞ2�g þ ρ3Tr½σ†LσL�Tr½σ†RσR�;

Vmix ¼ ζ1½χ†LχL þ χ†RχR�Trðϕ†ϕÞ þ ζ2½χ†LχLTrðσ†LσLÞ þ χ†RχRTrðσ†RσRÞ� þ ζ3½χ†LσLσ†LχL þ χ†RσRσ
†
RχR�

þ ζ4½χ†LχLTrðσ†RσRÞ þ χ†RχRTrðσ†LσLÞ� þ ζ5½χ†Lϕϕ†χL þ χ†Rϕ
†ϕχR� þ ζ6½Trðσ†LσLÞ þ Trðσ†RσRÞ�Trðϕ†ϕÞ

þ ζ7½Trðϕ†ϕσRσ
†
RÞ þ Trðϕϕ†σLσ

†
LÞ� þ ζ8½ϵijkϵαβγχLiϕα

jϕ
β
kχ

†γ
R þ H:c:�

þ ζ9½σLijϕ†i
α ϕ

†j
β σ

†αβ
R þ H:c:� þ ½f1ϵijkϵαβγϕα

i ϕ
β
jϕ

γ
k þ f2χ

†
LϕχR þ H:c:�: ð44Þ

Here, the interactions ζ8;9 and f1;2 are abnormal and subdominant since they can be removed by a global symmetry Uð1Þ
that nontrivially transforms any one of the fields.
Expanding the neutral scalar fields around their VEVs, we find minimization conditions, mass terms, and interactions. The

mass terms are divided as Vmass ¼ VS þ VA þ Vcharged, where VS and VA include those ofCP-even andCP-odd scalar fields,

respectively, whereasVcharged consists of those of the charged scalars. Considering qþ 1-charged scalars, four fields (ϕ�ðqþ1Þ
23 ,

ϕ�ðqþ1Þ
32 , χ�ðqþ1Þ

R , and χ�ðqþ1Þ
L ) mix via a 4 × 4 matrix, which by diagonalization provides two massless Goldstone bosons,

G�ðqþ1Þ
YL

and G�ðqþ1Þ
YR

, and two massive Higgs fields, H�ðqþ1Þ
1 and H�ðqþ1Þ

2 . These states are related to the gauge states by

ðϕ�ðqþ1Þ
23 ϕ�ðqþ1Þ

32 χ�ðqþ1Þ
R χ�ðqþ1Þ

L ÞT ¼ PðG�ðqþ1Þ
YL

G�ðqþ1Þ
YR

H�ðqþ1Þ
1 H�ðqþ1Þ

2 ÞT; ð45Þ
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where

P ≃

0
BBBBBBBBBBBB@

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu02−w2Þ2þw2w2

R

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu02−w2Þ2þðw2þu02Þw2

R

p 0 u02wRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu02−w2Þ2þðw2þu02Þw2

R

p
w2−u02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u02−w2Þ2þw2w2
R

p u0wwRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððu02−w2Þ2þw2w2

RÞÞððu02−w2Þ2þðw2þu02Þw2
RÞ

p 0 wwRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu02−w2Þ2þðw2þwu02Þw2

R

p
wwRcξ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u02−w2Þ2þw2w2
R

p u0wRðu02−w2Þcξ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððu02−w2Þ2þw2w2

RÞÞððu02−w2Þ2þðw2þu02Þw2
RÞ

p −sξ4 − ðw2−u02Þcξ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu02−w2Þ2þðw2þwu02Þw2

R

p

− wwRsξ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02−w2Þ2þw2w2

R

p − u0wRðu02−w2Þsξ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððu02−w2Þ2þw2w2

RÞÞððu02−w2Þ2þðw2þu02Þw2
RÞ

p −cξ4
ðw2−u02Þsξ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu02−w2Þ2þðw2þwu02Þw2
R

p

1
CCCCCCCCCCCCA

;

where the mixing angle ξ4 is defined by

tan 2ξ4 ¼ t2ξ4 ≃ −
2ζ9u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4 þ u04 þ 2u02Λ2

R − 2u2ðu02 − Λ2
RÞ

p
ζ7Λ2

Ru
0 : ð46Þ

Concerning the singly charged scalars, the model contains two massless Goldstone bosons (G�
WL

and G�
WR

), which are
eaten by W�

L and W�
R , respectively, and two physical massive fields, H�

1 and H�
2 . They are related to the gauge states

through ðσ�12R;ϕ�
12;ϕ

�
21; σ

�
12LÞT ¼ KðG�

WL
; G�

WR
;H�

1 ; H
�
2 ÞT , where

K ≃

0
BBBBBBB@

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðu2þu02Þ

p
ΛRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu02−u2Þ2þ2Λ2
Rðu2þu02Þ

p − ðu02−u2Þsξ5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu02−u2Þ2þ2Λ2

Rðu2þu02Þ
p ðu02−u2Þcξ5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu02−u2Þ2þ2Λ2
Rðu2þu02Þ

p

u0ffiffiffiffiffiffiffiffiffiffi
u2þu02

p − uðu2−u02Þffiffiffiffiffiffiffiffiffiffi
u2þu02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu02−u2Þ2þ2Λ2

Rðu2þu02Þ
p −

ffiffi
2

p
uΛRsξ5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu02−u2Þ2þ2Λ2
Rðu2þu02Þ

p
ffiffi
2

p
uΛRcξ5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu02−u2Þ2þ2Λ2
Rðu2þu02Þ

p

− uffiffiffiffiffiffiffiffiffiffi
u2þu02

p u0ðu02−u2Þffiffiffiffiffiffiffiffiffiffi
u2þu02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu02−u2Þ2þ2Λ2

Rðu2þu02Þ
p −

ffiffi
2

p
u0ΛRsξ5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu02−u2Þ2þ2Λ2
Rðu2þu02Þ

p
ffiffi
2

p
u0ΛRcξ5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu02−u2Þ2þ2Λ2
Rðu2þu02Þ

p

0 0 cξ5 sξ5

1
CCCCCCCA
;

with the mixing angel ξ5 defined by

t2ξ5 ≃ −
2u0wwLwR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw2 þ w2

LÞðw2 þ w2
RÞ

p
ðw2

L þ w2
R þ 2ðw2 − u02ÞÞ

ðw2
L − w2

RÞðu04w2 þ u02w2
Lw

2
R − w2ðw2 þ w2

LÞðw2 þ w2
RÞÞ

: ð47Þ

The model also contains two heavy doubly charged scalars H��
1 and H��

2 , defined by

H��
1 ¼ cξ7σ

��
22R − sξ7σ

��
22L; H��

2 ¼ sξ7σ
��
22R þ cξ7σ

��
22L; ð48Þ

where t2ξ7 ¼ 2u02ζ9ΛLΛR

ðΛ2
L−Λ

2
RÞð−u2ζ9þ2ΛLΛRÞ. Because of the limit

ΛR ≫ ΛL, the mixing angle ξ7 ≃ 0; hence, σ22L and σ22R
are physical states by themselves.
For the neutral scalars, they split into two parts: CP odd

and CP even. The model contains only a light CP-even
neutral scalar that is identified as the standard model Higgs
boson, while the other CP-even states achieve large masses
at the new physical scale. Additionally, the CP-odd part
contains four massless Goldstone bosons—which are
correspondingly eaten by the four massive gauge bosons
Z, ZR, Z0

L, and Z0
R—and three heavy scalar states.

III. FCNC

As mentioned, the tree-level FCNCs arise due to the
discrimination of quark generations; i.e., the third gener-
ations of left- and right-handed quarks Q3L;R transform

differently from the first two QαL;R under SUð3ÞL;R ⊗
Uð1ÞX gauge symmetry, respectively. Hence, the neutral
currents will change ordinary quark flavors that nonun-
iversally couple to T8L;R, since X is related to T8L;R by the
electric charge operator and Q and T3L;R conserve every
flavor.
Indeed, with the aid of X ¼ Q − ðT3L þ T3RÞ−

βðT8L þ T8RÞ, the neutral currents of quarks take the form

LNC ¼ −Q̄L;Rγμ½gL;RðT3L;RA
μ
3L;R þ T8L;RA

μ
8L;RÞ

þ gXðQ − T3L;R − βT8L;RÞBμ�QL;R; ð49Þ

whereQL;R are summed over all the quarkmultiplets. All the
terms coupled to T3L;R and Q do not change flavor because
uL;R and dL;R are identical under such charges. Hence, the
FCNCs exist only for the terms that couple to T8L;R,
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LNC ⊃−
X3
a¼1

Q̄aL;RγμT8L;RQaL;RðgL;RAμ
8L;R−βgXBμÞ: ð50Þ

In the basis ðZ0
L; ZR; Z0

RÞ, the Lagrangian (50) is rewritten
as

LNC ⊃ −q̄0LγμðV†
qLT8qVqLÞq0L½g1Z0μ

L þ g2Z
μ
R þ g3Z

0μ
R �

− q̄0RγμðV†
qLT8qVqRÞq0Rg4Z0μ

R ; ð51Þ
wherewe denote q0 as either u0 or d0, T8q¼ 1

2
ffiffi
3

p diagð1;1;−1Þ,
g1 ¼ gLtRtX cot θWς1, g2 ¼ gLβtRt2Xςς1, g3 ¼ −gLt2Xβ2ς,
and g4 ¼ − gL

ς .
Taking, for instance, the limit ΛR > w, wR and changing

to the mass basis, we obtain

LNC ⊃ −q̄0LγμðV†
qLT8qVqLÞq0L½g1Z0μ

L þ ðg2cξ3 − g3sξ3ÞZμ
R

þ ðg2sξ3 þ g3cξ3ÞZ0μ
R �

− q̄0RγμðV†
qLT8qVqRÞq0Rg4ð−sξ3Zμ

R þ cξ3Z
0μ
R Þ: ð52Þ

It is noted that since gRA8R − βgXB ∼ Z0
R and due to the

large mixing Z0
R − ZR, both Z0

R and ZR contribute to the
right current, whereas the left current composes Z0

L and
these fields (Z0R and ZR), as gLA8L − βgXB is not
orthogonal to Z0

R. Consequently, the three fields Z0
L, ZR,

and Z0
R dominantly couple to the tree-level FCNCs,

LFCNC¼
1ffiffiffi
3

p q̄0iLγμq0jLðV�
qLÞ3iðVqLÞ3j½g1Z0μ

L

þðg2cξ3 −g3sξ3ÞZμ
Rþðg2sξ3 þg3cξ3ÞZ0μ

R �

þ 1ffiffiffi
3

p q̄0iLγμq0jLðV�
qRÞ3iðVqRÞ3jg4ð−sξ3Zμ

Rþcξ3Z
0μ
R Þ;

ð53Þ
for i ≠ j. The new observation is that ZR changes flavor due
to the large mixing with Z0

R, in contrast to the minimal left-
right symmetric model.
Integrating the heavy gauge bosons ZR, Z0

R, and Z
0
L out,

we determine the effective Lagrangian that describes the
meson mixings,

Leff
FCNC ¼ −ϒij

Lðq̄0iLγμq0jLÞ2 −ϒij
Rðq̄0iRγμq0jRÞ2; ð54Þ

where

ϒij
L ¼ 1

3
½ðV�

qLÞ3iðVqLÞ3j�2
�
g21
m2

Z0
L

þ ðg2cξ3 − g3sξ3Þ2
m2

ZR

þ ðg2sξ3 þ g3cξ3Þ2
m2

Z0
R

�
; ð55Þ

ϒij
R ¼ 1

3
½ðV�

qRÞ3iðVqRÞ3j�2
�
g24s

2
ξ3

m2
ZR

þ g24c
2
ξ3

m2
Z0

R

�
: ð56Þ

Generally, the fields ZL, ZR, and Z0
R mix via a 3 × 3mass

matrix, as given in Appendix. In this case, the mass
eigenstates, V ≡ ðZ1;Z2;Z3Þ, are related to V ≡
ðZ0

L; ZR; Z0
RÞ by V ¼ UZV. Therefore, the couplings given

in Eq. (56) are generalized by

ϒ0ij
L ¼ 1

3
½ðV�

qLÞ3iðVqLÞ3j�2
�ðg1UZ

11 þ g2UZ
21 þ g3UZ

31Þ2
m2

Z1

þ ðg1UZ
12 þ g2UZ

22 þ g3UZ
32Þ2

m2
Z2

þ ðg1UZ
13 þ g2UZ

23 þ g3UZ
33Þ2

m2
Z3

�
; ð57Þ

ϒ0ij
R ¼1

3
½ðV�

qRÞ3iðVqRÞ3j�2
�ðg4UZ

31Þ2
m2

Z1

þðg4UZ
32Þ2

m2
Z2

þðg4UZ
33Þ2

m2
Z3

�
:

ð58Þ

This effective Lagrangian contributes to mass splittings
ΔmM between neutral mesons M0 − M̄0, where M denotes
Bd;s or K. With the help of the mass matrix elements in
Ref. [13], the mass differences computed from (57) and
(58) are

ΔmK ¼ 2

3
ℜfϒ012

L þϒ012
R gmKf2K; ð59Þ

ΔmBd
¼ 2

3
ℜfϒ013

L þϒ013
R gmBd

f2Bd
; ð60Þ

ΔmBs
¼ 2

3
ℜfϒ023

L þϒ023
R gmBs

f2Bs
: ð61Þ

The total mass differences can be decomposed as

ðΔmMÞtot ¼ ðΔmMÞSM þ ΔmM; ð62Þ
where the first term comes from the standard model con-
tribution given in Ref. [14] and the second term is the new
physics contribution as derived in (59)–(61). These predic-
tions are compared to the experimental values [14]. Here, for
the neutral kaon mixing, we assume that the theory predicts
the mass difference within 30% since the potential long-
range uncertainties are large. In contrast, the intrinsic
theoretical uncertainties for Bs;d mass differences are small,
assumed to be within 5%. In other words, the meson mass
differences obey

0.37044 × 10−2=ps < ðΔmKÞtot < 0.68796 × 10−2=ps;

ð63Þ
0.480225=ps < ðΔmBd

Þtot < 0.530775=ps; ð64Þ

16.8692=ps < ðΔmBs
Þtot < 18.6449=ps: ð65Þ

For a numerical investigation, we take w ¼ wR, gL ¼ gR
(i.e., tR ¼ 1), VuL ¼ VuR ¼ I, andΛR andw are beyond the
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weak scale and free to float. We have VdL ¼ VdR ¼ VCKM
(i.e., the misalignment in VCKM tight to the down-quark
sector), where the left and right values equal due to the left-
right symmetry. With the input parameters VCKM, mK;Bs;d

,
and fK;Bs;d

given in Ref. [15] and the new neutral gauge
boson masses derived by numerical diagonalization of the
M3×3 matrix in Appendix, we make contours of the mass
differences, ΔmK and ΔmBd;s

in the w − ΛR plane as in
Fig. 1. The viable regime (gray) for the kaon mass differ-
ence is almost the whole frame. The red and olive regimes
are viable for the mass differences ΔmBs

and ΔmBd
,

respectively. Combining all the bounds, we obtain w >
85 TeV and ΛR > 54 TeV for the model with β ¼ − 1ffiffi

3
p ,

whereasw > 99 TeV andΛR > 66 TeV for the model with
β ¼ 1ffiffi

3
p . Here, the β values chosen correspond to the dark

matter versions [9].

IV. CHARGED LFV

One of the strongest bounds on the charged LFV is the
decay μ → eγ. Hence, in this work, we study that channel in
detail and discuss other charged LFV processes which are
potentially troublesome.

A. μ → eγ decay rate

We are going to derive an expression for the branching
decay ratio of μ → eγ in the flipped trinification, based
upon SUð3ÞC ⊗ SUð3ÞL ⊗ SUð3ÞR ⊗ Uð1ÞX gauge sym-
metry, completed by a left-right symmetry of SUð3ÞL and
SUð3ÞR interchange. Similarly to the standard model, the
decay μ → eγ in the present model cannot occur at tree
level, but happens through one-loop diagrams, which are
contributed by new Higgs scalars, new gauge bosons, and
new leptons.
Suppose that the gauge states and the mass eigenstates of

the new (N) and ordinary charged (l) leptons are related as

NaL ¼ ðUN
L ÞakN0

kL; NaR ¼ ðUN
R ÞakN0

kR;

eaL ¼ ðUl
LÞake0kL; eaR ¼ ðUl

RÞake0kR; ð66Þ

where UN
L;R and Ul

L;R are basis-changing (mixing) matrices
and unitary. If the left-right symmetry is not imposed, i.e.,
wL ¼ 0 as in the previous study [9], UN

L;R and Ul
L;R are not

independent because the mass matrices of N and l are
solely generated by the same Yukawa coupling yab
[cf. Eqs. (13) and (14)]. It is easily realized that the one-
loop diagrams with the mediation of charged gauge Y�ðqþ1Þ

or Higgs H�ðqþ1Þ bosons that couple to l and N do not
contribute to the decay μ → eγ, since the new leptons do
not mix in the basis of charged lepton eigenstates due to the
mentioned ml, mN ∼ y. Alternatively, when the left-right
symmetry is included, the mass matrices of l and N
generally differ due to the zab coupling contribution, in
which one should note that 0 ≠ wL ≪ w;wR ∼M recog-
nize a left-right asymmetry at the low energy. In this case,
the new fields Y�ðqþ1Þ=H�ðqþ1Þ and N significantly con-
tribute. That said, the two cases must be taken into account
when we parametrize the mixing matrices for numerical
investigation, in the following section.
The neutrino mixing matrix is denoted as Uν, which is a

6 × 6 unitary matrix, relating the gauge state XL ≡
ðνL; ðνRÞcÞT to the mass eigenstate X0

L, such as
XL ¼ UνX0

L. We write Uν in terms of

Uν ¼
�
UL UA

UB UR

�
¼

�
Uν

L

Uν
R

�
: ð67Þ

Hence, the Yukawa coupling x can be easily written in
terms of diagonal light (called mL) and heavy (called mR)
mass matrices and the mixing matrices UL;R;A;B,

x¼−
ðU�

LmLU
†
LþU�

AmRU
†
AÞffiffiffi

2
p

ΛL

¼−
ðU�

RmRU
†
RþU�

BmLU
†
BÞffiffiffi

2
p

ΛR

:

ð68Þ

FIG. 1. Contours of ΔmK , ΔmBs
, and ΔmBd

as a function of ðw;ΛRÞ according to β ¼ − 1ffiffi
3

p (left panel) and β ¼ 1ffiffi
3

p (right panel).
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Similarly, the Yukawa coupling y can be expressed in terms
of the diagonal matrices ml and mN that include respective
charged and new lepton masses and the mixing matrices
Ul;N

L;R,

y ¼ −
ffiffiffi
2

p
Ul

LmlðUl
RÞ†

u0
¼ −

ffiffiffi
2

p
UN

LmNðUN
R Þ†

w
− z

wLwRffiffiffi
2

p
Mw

:

ð69Þ

To derive the decay rate μ → eγ at one-loop approxi-
mation, we necessarily calculate the form factors of the
relevant one-loop diagrams that contribute to the process.
We list in Table I the vertices that are present in the current
model and involved in the phenomenon of interest. In the
table, we denote i ¼ 1 (2) according to either cξ or sξ out
(in) the brackets, respectively. The previous works have
calculated the form factors for the process μ → eγ by
taking into account the contributions of singly charged
gauge bosons (W boson), doubly charged Higgs scalars
[16–21], and singly charged Higgs scalars, where the last
contribution was considered for the first time in Ref. [22].
In this paper, we present the results for the form factors of
one-loop diagrams with the exchange of virtual general
charged Higgs scalars and gauge bosons. To our best
knowledge, this has not been done so far.
The effective Lagrangian derived from calculations of

the form factors of one-loop diagrams for μ → eγ with the
participation of virtual scalars and gauge bosons in the
considering model can be simply expressed as

Leff ¼ −4
eGFffiffiffi

2
p mμðARēσμνPRμþ ALēσμνPLμÞFμν þ H:c:

ð70Þ

Here, AL;R are the form factors,

AR ¼ −
X
HQ;k

1

192
ffiffiffi
2

p
π2GFM2

H

�
ðYL

HÞμkðYL
HÞ�ek × FðQÞ þmk

mμ
ðYR

HÞμkðYL
HÞ�ek × 3 × Fðr; sk; QÞ

�

þ
X
AQ
μ ;k

1

32π2
M2

w

M2
Aμ

�
ðUL

Aμ
Þ
μk
ðUL

Aμ
Þ�
ek
GQ

γ ðλkÞ − ðUR
Aμ
Þ
μk
ðUL

Aμ
Þ�
ek

mk

mμ
RQ
γ ðλkÞ

�
; ð71Þ

AL ¼ −
X
HQ;k

1

192
ffiffiffi
2

p
π2GFM2

H

�
ðYR

HÞμkðYR
HÞ�ek × FðQÞ þ mk

mμ
ðYL

HÞμkðYR
HÞ�ek × 3 × Fðr; sk; QÞ

�

þ
X
AQ
μ ;k

1

32π2
M2

w

M2
Aμ

g2R
g2L

�
ðUR

Aμ
Þ
μk
ðUR

Aμ
Þ�
ek
GQ

γ ðxÞ − ðUL
Aμ
Þ
μk
ðUR

Aμ
Þ�
ek

mk

mμ
RQ
γ ðλkÞ

�
; ð72Þ

whereHQ ¼ Hþ
i ,H

þþ
i ,Hþðqþ1Þ

i ,AQ
μ ¼ Wþ

iμ, Y
þðqþ1Þ
iμ (i ¼ 1, 2), andmk are themasses of associated fermions that, alongwith

eitherHQ orAQ
μ , form loops. The functionsFðQÞ,Fðr; sk;QÞ,GQ

γ ðxÞ, andRQ
γ ðxÞ appearing inEqs. (71) and (72) are defined as

FðQÞ ¼ 3

4
Q −

1

2
; ð73Þ

Fðr; sk; QÞ ¼ Q −
1

2
− ðQ − 1Þ ×

�
4sk
r

þ logðskÞ þ
�
1 −

2sk
r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4sk

r

r
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ 4sk

p þ ffiffiffi
r

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ 4sk

p
−

ffiffiffi
r

p
��

; ð74Þ

GQ
γ ðxÞ ¼ ð9Qþ 2Þx2 − ð12Q − 5Þxþ 3Q − 1

4ðx − 1Þ3 −
3

2

x2ðQx −Qþ 1Þ
ðx − 1Þ4 logðxÞ; ð75Þ

TABLE I. Vertices that contribute to the decay rates l → l0γ.

Vertex Coupling

ē0LX
0c
LH

−
i YL

H−
i
¼ −iðUl

LÞ†ðxyÞðUνÞ�cξ5ðsξ5Þ
ē0RX

0
LH

−
i YR

H−
i
¼ −iðUl

RÞ†ðyxÞUνsξ5ðcξ5Þ
ē0LN

0
RH

−ðqþ1Þ
i

YL
H−ðqþ1Þ

i

¼ −iðUl
LÞ†yUN

Rcξ4ðsξ4Þ
ē0RN

0
LH

−ðqþ1Þ
i

YR
H−ðqþ1Þ

i

¼ −iðUl
RÞ†yUN

Lsξ4ðcξ4Þ
ðē0Lγμν0LÞW−

iμ −igLffiffi
2

p U
W−

iμ

L ¼ −igLffiffi
2

p ðUl†
L U

ν
LÞcξðsξÞ

ðē0Rγμν0RÞW−
iμ −igRffiffi

2
p U

W−
iμ

R ¼ −igRffiffi
2

p ðUl†
RU

ν
RÞsξðcξÞ

ðē0LγμN0
LÞY−ðqþ1Þ

iμ −igLffiffi
2

p U
Y−ðqþ1Þ
iμ

L ¼ −igLffiffi
2

p ðUl†
L U

N
L Þcξ2ðsξ2Þ

ðē0RγμN0
RÞY−ðqþ1Þ

iμ −igRffiffi
2

p U
Y−ðqþ1Þ
iμ

R ¼ −igRffiffi
2

p ðUl†
RU

N
R Þsξ2ðcξ2Þ

ē0Le
0c
LH

−−
i YL

H−−
i

¼ −iðUl
LÞ†xðUl

LÞ�cξ6ðsξ6Þ
ē0Re

0c
RH

−−
i YR

H−−
i

¼ −iðUl
RÞ†xðUl

RÞ�sξ6ðcξ6Þ
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RQ
γ ðxÞ ¼ −

ð2Q − 1Þx2 þ ð2Q − 1Þx − 4ðQþ 1Þ
2ðx − 1Þ2

þ 3xðQx −Q − 1Þ
ðx − 1Þ3 logðxÞ; ð76Þ

where we have defined λk ¼ m2
k=M

2
AQ
μ
, sk ¼ m2

k=M
2
HQ ,

r ¼ −q2=M2
HQ , and that q ¼ p2 − p1 is transferred

momentum.
The branching ratio of μ → eþ γ decay is obtained as

[17,18]

Brðμ → eþ γÞ ¼ 384π2ð4παemÞðjARj2 þ jALj2Þ; ð77Þ

where αem ¼ 1=128 is the fine-structure constant.

B. Numerical analysis/discussion: wL = 0

Before performing numerical calculations using the
branching decay formula obtained in the previous section,
let us estimate the magnitudes of relevant VEVs. Among
the VEVs introduced, the smallest one could be ΛL, which
is at electron-volt scale responsible for the neutrino masses,
much smaller than the weak scales u and u0 satisfying the
constraint u2 þ u02 ¼ ð246 GeVÞ2. Hence, we safely
neglect the contributions of ΛL. The quark FCNC con-
straints imply w, wR, ΛR ≳Oð50–100Þ TeV, appropriate
for the collision bounds [9], in which such VEVs break the
flipped trinification to the standard model, significantly
greater than the weak scales. Finally, ΛR can take a value,
such that (i) ΛR ≫ w, wR, (ii) ΛR ∼ w, wR, or (iii) ΛR ≪ w,
wR, depending on the symmetry breaking scheme. The
viable dark mater scenarios [9,23] prefer cases i and ii,
which will be taken into account.
Because of the condition ΛR; w; wR ≫ u; u0 ≫ wL;ΛL,

the masses of the gauge bosons relevant to the process are

approximated asm2
W1

≃g2

4
ðu2þu02Þ,m2

W2
≃g2

2
Λ2
R,m

2
Y1
≃g2

4
w2,

and m2
Y2

≃ g2

4
ðw2 þ w2

RÞ, where we have used gL ¼ gR ¼ g.
Note that W1 has the mass identical to the standard model,
while mW2

and mY1;2
are large, at tera-electron-volt scale or

higher. The masses of relevant new Higgs bosonsH�,H��,
and H�ðqþ1Þ depend on unknown parameters present in the
scalar potential, which cannot be estimated precisely.
However, theirmasses are all proportional to the new physics
scalesΛR,w, andwR, which shouldbe large enough to escape
detection [15]. That said, it is reasonable to choose the new
Higgs masses from hundreds of giga-electron-volts to a few
tera-electron-volts. Particularly, in hierarchical cases, the
largest masses can be chosen up to hundreds of tera-
electron-volts.
Let us parametrize the Yukawa couplings and mixing

matrices, involved in the branching ratio μ → eγ in (77), in
forms convenient for numerical investigation using the
current data. Without lost of generality, we work in the

basis of charged lepton mass eigenstates, i.e.,ml ¼ yu0=
ffiffiffi
2

p
is diagonal, implying Ul

L;R ¼ I, in the same criteria used in
the standard model. Besides, the new lepton masses are
generated by the same Yukawa matrix y, with the relation
between both kinds of masses given in (69), where wL ¼ 0.
Hence, the choice of Ul

L;R leads to UN
L;R ¼ I. Without

depending of basis, the ratio mi
l=m

i
N (i ¼ 1, 2, 3) is

universal for any generation,

mi
l

mi
N
¼ u0

w
; ð78Þ

which implies mi
N ≳ 50 MeV, 10 GeV, and 170 GeV for

i ¼ 1, 2, 3, respectively, given that w=u0 ≳ 100. We are
interested in the two dark matter versions according to
β ¼ �1=

ffiffiffi
3

p
, where we note that N is a standard model

singlet for β ¼ −1=
ffiffiffi
3

p
, whereas it has an electric charge

q ¼ −1 for β ¼ 1=
ffiffiffi
3

p
. The former is always viable,

similarly to the case of a light sterile neutrino. However,
the latter should be ruled out due to the electroweak
precision test, unless the new physics scale is unexpectedly
raised, w=u0 ≳ 105, so that the lightest new lepton is heavy
enough to suppress the dangerous processes, e.g.,
Z → NN.
Note that at one-loop approximations the diagrams with

virtual neutral Higgs scalars do not contribute to LFV
processes, including μ → eγ decay, because the interacting
vertices of two leptons with such a neutral scalar do not
change flavor (i.e., conserving flavor). The vertex couplings
are governed by the magnitudes of diagonal elements of the
Yukawa matrix y as well as a mixing factor among neutral
scalars. These vertices are also constrained by the current
experiments through the channels of the standardmodel–like
Higgs decay into two leptons h → ll̄0. According to
Ref. [15],h → ττ̄ has been observed at a quite high precision,
while h → μμ̄ is likely observed, but at large uncertainty, and
the branching decay h → eē can only be set by an upper
limit, Brðh → eēÞ < 1.9 × 10−3. All these agree with the
strengths ofhll interactions, set by the corresponding lepton
masses.Because of themixing,h can decay into lightN’s, but
the rate is highly suppressed by ðu; u0Þ2=ðw;wR;ΛRÞ2 ≪ 1.
The light N’s are undetectable due to weak interaction
strengths. However, since no constraint has been placed
on their masses, they can take any values consistent with the
scenario of interest.
Our study is interested in a model in which the new

physics scale is not too high, thus presenting rich physical
phenomena at the current and future experiments. Let us fix
the benchmark values for u0 and w, based upon the relation
(78) and the others. Close to the standard model, we choose
u0 near its maximum, u0 ≃ 246 GeV. Another advantage of
this choice leads to the smallness of u, thus having a
significant reduction of ΛR satisfying the required con-
dition for the seesaw mechanism, u2=ΛR ∼ eV. Choosing
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the lower bound for the heaviest new lepton to be 50, 200,
or 500 GeV, one has w ≥ 7; 28, or 70 TeV, respectively. In
the seesaw mechanism, note that UL and UR diagonalize
the mass matrixMν andMR, respectively. Thus,UL andUR
generally differ. The observed neutrino masses imply the
sizes of ML and MT

DM
−1
R MD in electron-volts. The small-

ness of ML is ensured by small ΛL, say ΛL ∼ 1 eV, while
the magnitude of MT

DM
−1
R MD depends on the correlation

between y, u, and MR. Since y has been fixed before
diagðyÞ ¼ ð3 × 10−6; 6 × 10−4; 10−2Þ, the lower bound set
for the right-handed neutrino masses MR is 10 and
1000 TeV according to u ¼ 0.1 and 1 GeV, respectively.
Summarizing all, the parmetrization for numerical inves-

tigation is now performed. First of all, UL coincides with
the Pontecorvo-Maki-Nakagawa-Sakata matrix UPMNS,
determined with a high accuracy by the oscillation experi-
ments, except for the Dirac CP-violation phase (where the
Majorana CP-violation phases are neither determined nor
contributing to the process). The 3 × 3 unitary matrix UR is
parametrized in the same way as UPMNS, but its angles and
phase are freely chosen in the calculation. Last, MR can be
calculated using the relation MR ¼ U�

RM
diag
R U†

R, where
Mdiag

R has a diagonal form of the heavy neutrino masses.
The Yukawa matrix x is derived from MR as x ¼
−U�

RM
diag
R U†

R=ð
ffiffiffi
2

p
ΛRÞ. In the following, we will present

the results of numerical calculations for the case in which
the involved parameters are chosen as u¼0.1GeV,
w¼10TeV, wR¼20TeV, diagðMdiag

R Þ¼ð10;20;30ÞTeV,
and URðθ012; θ013; θ023; δ0Þ ¼ URðπ=4; π=4; 0; 0Þ. Note that
the choice u ¼ 0.1 GeV is in order to conserve the
condition u0 ≃ 246 GeV, the important implications of
which have been discussed before. The other quantities
such as ΛL, wL, and light neutrino masses are neglected due
to the small effects for the process.
Although Yi andHi are listed in Table I, it is realized that

their vertices do not contribute to the μ → eγ branching
ratio at the one-loop level, as mentioned. The reason is
similar to the case of vertices of neutral Higgs scalars,
which conserve lepton flavors. Indeed, all of the matrices
relevant to them, such as Ul

R;L, U
N
R;L, and y, are diagonal.

In Figs. 2–5, we respectively show the dependence of the
branching ratio Brðμ → eγÞ on the relevant parameters in
this kind of model. To produce the results, we have
separately considered the contributions to the decay rate
corresponding to the exchanges of the virtual gauge
boson and charged Higgs scalar. As has been introduced
above and expressed in detail from Eq. (70)–(77), in the
model under consideration, the μ → eγ branching ratio
depends complicatedly on many parameters, most of which
are unknown. Moreover, the variation of a parameter might
change the contribution of the involving channel to few
orders, e.g., the mixing angles between the left and right
sectors ξ; see the figures for details. Therefore, presenting
individual contributions would provide more information

and better understanding about the phenomenon. We also
suppose that heavy Higgs H�

i and H��
i (i ¼ 1, 2) possess

equivalent masses, commonly calledMH. Additionally, the
mixing angles between H�

1 and H�
2 as well as between

H��
1 and H��

2 are equally taken and denoted as ξH.
Figure 2 describes the dependence of μ → eγ upon the

diagrams that exchange virtual gauge bosonsWi (i ¼ 1, 2),

FIG. 2. The branching ratio Brðμ → eγÞ governed by inter-
mediateW�

1;2 gauge bosons, which is given as a function ofΛR for
the selected values of their mixing angle ξw. The upper and lower
blue lines correspond to the MEG current bound and near-future
sensitivity limit.

FIG. 3. The branching ratio Brðμ → eγÞ governed by inter-
mediate Higgs bosonsH�

1;2 andH
��
1;2 , which is given as a function

of ΛR for the selected values of the mixing angle ξH . Here, we
have set MH ¼ 10 TeV as a common mass for all H�

1;2 and H��
1;2

and supposed that the pairsH�
1 -H

�
2 andH��

1 -H��
2 have the same

mixing angle (ξH).
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given as a function of ΛR. The choice of diagðMdiag
R Þ ¼

ð10; 20; 30Þ TeV and UL;R has canceled out the depend-
ence of Umix on ΛR. Moreover, W1 is the standard model
W boson of which the mass is fixed as MW1

¼ 80 GeV.
Therefore, the branching ratio lines shown in Fig. 2 are
depicted as a function of the new boson mass MW2

∼ ΛR

and mixing angle ξw. For each value of ξw, the branching
ratio goes down due to the dominant contribution ofW2 to a
constant value, as increasing ΛR. The constant line is
preserved by a constant contribution of W1. Using the Mu
to E Gamma experiment (MEG) current bound on the

μ → eγ decay, one roughly estimates the lower boundΛR ≥
12 and 10 TeV for ξw ¼ 10−3 and ξw ≤ 10−4, respectively.
The strong dependence of the branching ratio on the mixing
angle ξw, which separates about two orders between two
successive lines for the range of large ΛR, suggests the
domination of the interference terms in AL;R [cf. Eqs. (71)
and (72)]. Indeed, the interference terms are proportional to
mk
mμ

sin ξw cos ξw ≈ mk
mμ

ξw. Thus, the branching ratio is propor-

tional to
m2

k

m2
μ
ξ2w ∼ ξ2w, which is consistent with the observa-

tion from the figure, whereas the other terms are either
proportional to cos ξ2w ≃ 1 or suppressed by a factor ξ2w. It is
figured out that the dominant interference terms are
provided by the factor mk

mμ
∼ 105, for instance, for the case

of heavy neutrino mass mk ∼ 104 GeV. Similarly, we have
the same domination of the interference terms in Figs. 3–5.
The branching ratio in Fig. 3 is a monotonically

decreasing function of ΛR, which enters the decay rate
through the interaction vertices, which have strengths
depending on the elements of the Yukawa coupling matrix
x ∼ 1=ΛR. The behavior of the branching ratio is consid-
ered for different values of the mixing angle ξH. The
figure implies that, consistent with the current MEG upper
bound, Brðμ → eγÞ < 4.2 × 10−13, the lower limits are
ΛR ≥ 1100, 105, 13, 10.2 TeV according to ξH ¼ 10−1,
10−2, 10−3, 10−4, respectively. Besides the sensitivity of the
future MEG are possible to probe μ → eγ signal, provided
that ΛR ≤ 1300, 120, 15.5, 13 TeV for ξH ¼ 10−1, 10−2,
10−3, 10−4, respectively.
In the next two figures, we demonstrate the dependence

of the branching ratio as a single variable function of the
new Higgs massMH, where ΛR is fixed as 100 TeV. As we
see from Figs. 4 and 5, the smaller the mixing angle ξH is,

FIG. 4. The branching ratio Brðμ → eγÞ governed by either virtual singly charged scalars (left panel) or virtual doubly charged scalars
(right panel), all given as a function of the Higgs common massMH (all the Higgs bosons presumably have the same mass) for different
values of their mixing angle ξH with fixed ΛR ¼ 100 TeV.

FIG. 5. Dependence of the branching ratio Brðμ → eγÞ as
governed by the exchanges of virtual singly and doubly charged
scalars, given as a function of the Higgs common mass MH for
different cases of the mixing angle ξH , where ΛR ¼ 100 TeV
is fixed.
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the smaller the lower bound is set for the heavy Higgs
masses. If the contributions to the diagrams include only
the virtual singly charged scalar (Fig. 4, left panel), the
lower bound for the scalar masses reduces from MH ¼
53 TeV at ξ ¼ 10−1 down to MH < 10 TeV at ξ ¼ 10−4.
We get almost the same limits for the case with doubly
charged scalar exchanges (Fig. 4, right panel).

C. Numerical analysis/discussion: wL ≠ 0

The flipped trinification discriminates from the minimal
left-right symmetricmodel especially in the extendedparticle
sectors, governed by the new gauge symmetry. Part of them
produces the interesting quark FCNCs, as studied above. In
this section, we argue that the presence of other part of them
gives novel contributions to the charged LFV. It is stressed
that such LFV processes, e.g., μ → eγ, can be altered in the
case of nonvanishing wL. Although wL is constrained to be
much smaller thanM,ΛR,wR, andw aswell as notmodifying
the results discussed in the previous section related toHi and
Wi, the nonvanishing wL causes the mass matrices of
ordinary charged and new leptons to be not simultaneously
diagonalized. This provides the new sources of the LFV,
which involve the (qþ 1)-charged Higgs and gauge bosons
(H1;2, Y1;2) as well as the new leptons (N) in the loops for
μ → eγ, which is a new feature of the model.
In the basis of ordinary charged lepton mass eigenstates,

the mentioned, new lepton mass matrix can be expressed as

MN ¼ M0
N þ ΔMN; ð79Þ

where

M0
N ¼ −

yabffiffiffi
2

p w ¼

0
BB@

m0
N1 0 0

0 m0
N2 0

0 0 m0
N3

1
CCA; ð80Þ

ΔMN ¼ −
zab
2M

wLwR ¼

0
BB@

a1 b1 b2
B1 a2 b3
B2 B3 a3

1
CCA: ð81Þ

Here, kyk ∼ kMlk=u0 ∼ 10−3–10−2 is constrained by the
ordinary charged lepton masses and small. The coupling
matrix z is generic and maybe sizable, but it generally
obeys kzk ∼ 1 ≪ kykðw=wLÞ, provided that w=wL ≳ 103.
For instance, if w ¼ 10 TeV, one takes wL ≲ 10 GeV. This
leads to kΔMNk ≪ kM0

Nk, which is also expected due to
the contribution of the effective interactions. To find the
mixing matrix, we pertubatively dialgonalize the squared
mass matrix, MM†, while taking into account ΔMN as
a subdominant contribution compared to M0

N . The final
result is

U≈

0
BBBBB@

1
b�
1
m0

N1
þB1m0

N2

ðm0
N2
Þ2−ðm0

N1
Þ2

b�
2
m0

N1
þB2m0

N3

ðm0
N3
Þ2−ðm0

1
Þ2

− b1m0
N1
þB�

1
m0

N2

ðm0
N2
Þ2−ðm0

N1
Þ2 1

b�
3
m0

N2
þB3m0

N3

ðm0
N3
Þ2−ðm0

2
Þ2

−b2m0
N1
þB�

2
m0

N3

ðm0
N3
Þ2−ðm0

1
Þ2 −b3m0

N2
þB�

3
m0

N3

ðm0
N3
Þ2−ðm0

2
Þ2 1

1
CCCCCA
: ð82Þ

For brevity, in numerical calculation, we assume zab as a
real symmetric matrix with z12 ¼ z13 ¼ z23 ¼ 1, which
means that the new lepton mass matrix is invariant under
the charge-conjugation and parity transformations. This
choice leads to an approximation, UE

L ≃UE
R ≃ U. We fix

M ¼ 100 TeV, w ¼ 30 TeV, and wL appropriately ranging
from an infinitesimal value to a few giga-electron-volts. All
the remaining parameters take the same values as in the
previous subsection.
In Fig. 6, we depict the dependence of the branching

ratio Brðμ → eγÞ, contributed by the exchanges of virtual

Y�ðqþ1Þ
1;2 gauge bosons, in terms of wL for several values of

the mixing angle ξY . With the set of the parameters used in
the numerical calculation, the branching ratio of μ → eγ is
within the sensitivities of the current and near-future
experiments. The upper bounds wL ¼ 0.35, 3.53 GeV
are set for ξY ¼ 10−1, 10−2, respectively. While the next
MEG upgrade might probe the decay signal if wL ≥ 0.13,
1.34 GeV corresponding to ξY ¼ 10−1, 10−2, respectively.
The contributions to the decay μ → eγ by virtual charged

HiggsH�ðqþ1Þ
1;2 exchanges are extremely small, compared to

those by Y�ðqþ1Þ
1;2 gauge bosons, if one uses the same values

of the model’s parameters involved in the process. The
branching ratios shown in Fig. 7 are smaller than the gauge

FIG. 6. Dependence of the branching ratio Brðμ → eγÞ, gov-
erned by the virtual Y�ðqþ1Þ

1;2 gauge boson exchanges, on wL for
different values of the mixing angle ξY . The upper and lower lines
correspond to the MEG current bound and the near-future
sensitivity limit.
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ones by 14 orders of magnitude, which are about 13 orders
of magnitude below the future MEG sensitivity. It is not
hard to see that the branching ratios are strongly suppressed
by the ordinary charged-lepton Yukawa couplings y4,
where the biggest element is only y3 ∼ 10−2, which are
much smaller than the gauge contribution.

D. Other charged LFV processes

In this model, the charged LFV processes such as μ →
3e and τ → 3μð3eÞ can exist at the tree level, exchanged by
the charged Higgs H��

1;2 . The μ → 3e branching ratio in the
present scheme with a low scale of new physics of order
10–100 TeV is expected to be in the sensitive ranges of the
current and near-future experiments. The present upper
bounds on branching ratios of τ → 3μð3eÞ are in the order
of 10−8 [15], which are four orders bigger than those of
μ → 3e decay at 10−12 [15]. Moreover, the μ → 3e experi-
ment at Paul Scherrer Institute (PSI) is expected to
determine the signal of Brðμ → 3eÞ ≥ 10−15, and its
upgrade is sensitive to the μ → 3e branching ratio not
smaller than 10−16 [24]. Therefore, we need to consider
only the process of μ → 3e decay in which we are
concerned with this search.
It is easily verified that, in contrast to the previously

mentioned processes, the charged-LFV neutral-Higgs
decays, e.g., h → μτ, receive only one-loop contributions.
On the theoretical side, they are strictly suppressed by the
heavy particle masses and the loop factor 1=16π2. It is
easily proved that such processes satisfy all the current
bounds with the chosen parameter regime, since such
experimental bounds are less tight [15].

Using the relevant LFV vertices given in Table I, while
keeping in mind that the doubly charged Higgs bosons that
dominantly contribute to the μ → 3e decay have the
transferred momenta much smaller than their masses,
one can write down the effective Lagrangian as

Leffðμ → 3eÞ ¼ gLLLS ðecLμLÞðecLeLÞ þ gRRRS ðecRμRÞðecReRÞ
þ gLRLS ðecLμLÞðecReRÞ þ gRLRS ðecRμRÞðecLeLÞ:

ð83Þ

Here, we denote MHi
(i ¼ 1, 2) to be the masses of doubly

charged Higgs bosons and

gLLLS ¼ −
X2
i¼1

2

ðMHi
Þ2 ðy

L
Hi
Þ
eμ
ðyLHi

Þ
ee
;

gRRRS ¼ −
X2
i¼1

2

ðMHi
Þ2 ðy

R
Hi
Þ
eμ
ðyRHi

Þ
ee
; ð84Þ

gLRLS ¼ −
X2
i¼1

1

ðMHi
Þ2 ðy

L
Hi
Þ
eμ
ðyRHi

Þ
ee
;

gRLRS ¼ −
X2
i¼1

1

ðMHi
Þ2 ðy

R
Hi
Þ
eμ
ðyLHi

Þ
ee
: ð85Þ

The branching ratio is straightforwardly obtained as [25]

Brðμ → 3eÞ ¼ 1

32G2
F
ðjgLLLS j2 þ jgRRRS j2 þ jgLRLS j2 þ jgRLRS j2Þ;

ð86Þ

where GF ¼ 1.166 × 10−5 GeV2 is the Fermi coupling
constant.
For numerical evaluation, without loss of generality, we

assume that both of the doubly charged Higgs bosons have
the same mass; thus, MHi

¼ MH (i ¼ 1, 2). It is not
necessary to consider the mixing angle, ξH, between
Hþþ

1 and Hþþ
2 for the process in which we are currently

interested. Because of the ξH smallness (ξH ≪ 1), the
dominated contributions come from the terms involving
2ðyLH1

Þ
eμ
ðyLH1

Þ
ee
=ðMH1

Þ2 and 2ðyRH2
Þ
eμ
ðyRH2

Þ
ee
=ðMH2

Þ2,
which are easily realized as proportional to cos ξH2 ≃ 1,
whereas the others are suppressed by a factor either sin ξH
or sin ξH2. In the following discussion, we take ξH ¼ 0.1.
The branching ratio expressed in Eq. (86) is, in fact,
inversely proportional to M4

HΛ4
R because it is proportional

to YR;L
H1;2

∼ x, where x ¼ −U�
RM

diag
R U†

R=ð
ffiffiffi
2

p
ΛRÞ, UR ¼

URðθ012; θ013; θ023; δ0Þ, and gLðRÞLðRÞLðRÞS ∼ 1=M2
H. Therefore,

the ratio will be strongly suppressed in the large ranges
of ΛR andMH. TakingM

diag
R ¼ ð10; 20; 30Þ TeV as chosen

before, while varying θ012, θ
0
13, and θ023 in the range of

½0; π=2� and δ0 in ½0; 2π�, one gets a bound,

FIG. 7. Dependence of the branching ratio Brðμ → eγÞ, gov-
erned by the virtual charged Higgs H�ðqþ1Þ

1;2 exchanges, as a
function of wL for different values of the mixing angle ξHY

, where
we fixed the Higgs masses MH ¼ 10 TeV.
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0 ≤ Brðμ → 3eÞ ≤ 1.64 × 106
�
1 TeV
MH

�
4
�
1 TeV
ΛR

�
4

: ð87Þ

As a specific case, taking θ012 ¼ θ013 ¼ θ023 ¼ π=4 and
δ0 ¼ 0, Fig. 8 describes the behavior of theμ → 3e branching
ratio as a function of the doubly charged Higgs masses. The
figure reveals a line of a monotonically decreasing function
as increasing ofMH, which is consistent with the fact that the
branching ratio is inversely proportional to M4

H, mentioned
above. The lower bounds of the doubly charged Higgs
masses corresponding to the current limit, PSI experiment,
and its upgraded sensitivities are 14, 79, and 143 TeV,
respectively. Thus, we apparently conclude that the future
PSI experiment is more sensitive to the new physics of the
considering model than the MEG, which gives the lower
bound MH ¼ 53 TeV for the case ξH ¼ 0.1.

V. CONCLUSION

When a gauge symmetry is flipped, it leads to a deeper
structure that defines a more fundamental theory. For

instance, SUð2ÞL flipped yields electroweak unification;
SUð5Þ flipped defines a seesaw mechanism; and SOð10Þ
flipped leads to E6 and promising superstring theories.
In this work, we have addressed such a nontrivial task,
the flipped trinification and its novel consequences. First
of all, a trinification flipped unifies both the 3-3-1 and
left-right symmetries. Consequently, this flipped trinifica-
tion resolves the generation number and the weak parity
violation. Additionally, it generates neutrino masses and
dark matter naturally via the gauge symmetry.
An important feature of the flipped trinification is that it

presents the flavor-changing currents in both quark and
lepton sectors.We have probed that the quark FCNCs bound
the new physics scale to be at or beyond several tens of tera-
electron-volts via the neutral meson mixings, B0

d;s-B̄
0
d;s. The

charged LFV via the decay μ → eγ yield mostly the same
bound, whereas the other processes such as τ → 3μð3eÞ and
h → μτ are easily experimentally satisfied. The process μ →
3e receives tree-level contributions by the doubly charged
Higgs bosons and presents the same limit on the new physics
as the meson mixing and μ → eγ do.
All the results indicate that the trinification is possibly

flipped at tens of tera-electron-volts. Additionally, the
contributions of the new particles other than the left-right
symmetric model are important to set the charged LFVand
quark FCNC observables, which can be used to prove or
rule out this proposal.
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APPENDIX: NEUTRAL GAUGE BOSON
MASS MATRICES

For convenience in reading, in this Appendix, we supply
the full neutral gauge boson mass matrix as well as the
3 × 3 mass matrix of new neutral gauge bosons.
After the symmetry breaking, the neutral gauge bosons

(A3L, A3R, A8L, A8R, and B) in such order possess a mass
matrix,

g2L
4

0
BBBBBBBBBBBBB@

u21 þ u22 þ 4Λ2
L −tRðu21 þ u22Þ u2

1
−u2

2
þ4Λ2

Lffiffi
3

p tRðu22−u21Þffiffi
3

p m15

−tRðu21 þ u22Þ t2Rðu21 þ u22 þ 4Λ2
RÞ tRðu22−u21Þffiffi

3
p t2Rðu21−u22þ4Λ2

RÞffiffi
3

p m25

u2
1
−u2

2
þ4Λ2

Lffiffi
3

p tRðu22−u21Þffiffi
3

p m33 − 1
3
tRðu21 þ u22 þ 4w2Þ m35

tRðu22−u21Þffiffi
3

p t2Rðu21−u22þ4Λ2
RÞffiffi

3
p − 1

3
tRðu21 þ u22 þ 4w2Þ m44 m45

m15 m25 m35 m45 m55

1
CCCCCCCCCCCCCA

;

FIG. 8. Branching ratio Brðμ → 3eÞ as a function of doubly
charged Higgs masses. The three blue lines, Brðμ → 3eÞ ¼
10−12, 10−15, 10−16, correspond to the current experimental
upper bound and the sensitivities of PSI and PSI upgraded
experiments, respectively.
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where we define for short

m15 ¼ −
4tXð3þ

ffiffiffi
3

p
βÞΛ2

L

3
; m25 ¼ −

4tRtX
ffiffiffi
3

p ð ffiffiffi
3

p þ βÞΛ2
R

3
; ðA1Þ

m35 ¼ −
4tXðw2

Lβ þ ð ffiffiffi
3

p þ βÞΛ2
LÞ

3
; m45 ¼ −

4tRtXðw2
Rβ þ ð ffiffiffi

3
p þ βÞΛ2

RÞ
3

; ðA2Þ

m55 ¼
4t2Xðβ2ðw2

L þ w2
RÞ þ ð ffiffiffi

3
p þ βÞ2ðΛL þ Λ2

RÞÞ
3

; ðA3Þ

m33 ¼
u21 þ u22 þ 4ðw2 þ w2

L þ Λ2
LÞ

3
; m44 ¼

t2Rðu21 þ u22 þ 4ðw2 þ w2
R þ Λ2

RÞÞ
3

: ðA4Þ

Changing to the new basis ðA; ZL; Z0
L; ZR; Z0

RÞ, we obtain A and ZL identical to the standard model photon and Z boson,
respectively, which are light and decoupled. The remaining fields (Z0

L, ZR, and Z0
R) are new and mix via a 3 × 3mass matrix,

M3×3 ¼
g2L
4

0
BB@

m0
11 m0

12 m0
13

m0
21 m0

22 m0
23

m0
13 m0

23 m0
33

1
CCA; ðA5Þ

where mij are defined as

m0
11 ¼

4c2Ww
2

3ðc2W − s2Wβ
2Þ ;

m0
12 ¼

4tRw2cWs2W

3ðc2W − s2Wβ
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2R − ð1þ t2RÞð1þ β2Þs2W

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2Rð1þ β2s2W

t2R−ð1þt2RÞð1þβ2Þs2W
Þ

r ;

m0
13 ¼

4
ffiffiffi
2

p
t2Rw

2cW

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ t2R − ð1þ t2RÞðβ2 − ð1þ β2Þc2WÞ

p
ð1þ β2s2W

t2R−ð1þt2RÞð1þβ2Þs2W
Þð1þ ð1þβ2Þs2W

t2R−ð1þt2RÞð1þβ2Þs2W
Þ
;

m0
22 ¼

4ð3t4RΛ2
R − 6t4Rð1þ β2ÞΛ2

Rs
2
W þ ðβ2w2 þ 3t4Rð1þ β2Þ2Λ2

RÞs4WÞ
3ðð1þ β2Þs2W − 1Þð−t2R þ ð1þ t2Rð1þ β2ÞÞs2WÞ

;

m0
23 ¼

−4t2Rw2βð1þ β2Þ − 4t4Rðβw2 þ ð ffiffiffi
3

p
− 3βÞΛ2

RÞð1þ β2 − c−2W Þ − 4
ffiffiffi
3

p
t6RΛ2

Rð1þ β2 − c−2W Þ2
3ð1þ t2Rð1þ β2Þ − t2Rc

−2
W Þðð1þ t2RÞð1þ β2Þ − t2Rc

−2
W Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þβ2

ð1þβ2Þð−t2R−1Þþt2Rc
−2
W

q ;

m33 ¼
4t2Rððw2 þ Λ2

R þ w2
RÞðt2R − ð1þ t2RÞð1þ β2Þs2WÞ2 þM33Þ

3ðt2R − ð1þ t2RÞð1þ β2Þs2W þ β2s2WÞ
;

where M33 takes the form

M33 ¼ 2t2Rβðð
ffiffiffi
3

p
þ βÞΛ2

R þ βw2
RÞs2W þ βðð−2

ffiffiffi
3

p
þ β − β3 − 2t2Rð

ffiffiffi
3

p
þ βÞð1þ β2ÞÞΛ2

RÞs4W
− βs4Wð2þ β2 þ 2t2Rð1þ β2ÞÞw2

R:
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