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Abstract Radiative corrections to the decay h → Zγ are
evaluated in the one-loop approximation. The unitary gauge
is used. The analytic result is expressed in terms of the
Passarino-Veltman functions. The calculations are applica-
ble for the Standard Model as well for a wide class of its
gauge extensions. In particular, the decay width of a charged
Higgs boson H± → W±γ can be derived. The consistence
of our formulas and several specific earlier results is shown.

1 Introduction

After the discovery of the Higgs boson particle at LHC in
2012 [1,2], many improved measurements confirmed the
consistence of its quantum numbers and couplings with
the Standard Model (SM) predictions, including the loop-
induced coupling hγ γ [3,4]. Meanwhile, another loop-
induced coupling hZγ related to the decay h → Zγ has not
been measured yet even so that the predicted decay rate is of
the same order as the one of h → γ γ in the SM case [5].
The partial decay width h → Zγ was calculated within
the SM framework and its supersymmetric extension [6–14].
From the experimental side, this decay channel is now been
searched at the LHC by both CMS and ATLAS collabora-

a e-mail: lthue@iop.vast.ac.vn
b e-mail: arbuzov@theor.jinr.ru
c e-mail: tthong@agu.edu.vn
d e-mail: thanhphong@ctu.edu.vn
e e-mail: dangtrungsi@cantho.edu.vn
f e-mail: hoangngoclong@tdtu.edu.vn
e Corresponding author

tions [15–17]. Many discussions concerning studies of this
channel are going also in planned experimental projects as
at the LHC as well as at future e+e− and even 100 TeV
proton-proton colliders [18,19]. While the effective coupling
hγ γ is now very strictly constrained experimentally, the cou-
pling hZγ might be still significantly different from the
SM prediction in certain SM extensions because of the Z
boson couplings with new particles. Studies the decay of the
SM-like Higgs boson h → Zγ affected by the presence of
new fermions and charged scalars were performed in several
models beyond the SM (BSM) having the same SM gauge
group [10,20–23].

At the one loop level, the amplitude of the decay h → Zγ

contains also contributions from new gauge boson loops of
the BSM models constructed from larger electroweak gauge
groups such as the left-right (LR), 3-3-1, and 3-4-1 mod-
els [24–39]. Calculating these contributions is rather difficult
in the usual ’t Hooft-Feynman gauge, because of the appear-
ance of many unphysical states, namely Goldstone bosons
and ghosts which always exist along with the gauge bosons.
They create a very large number of Feynman diagrams. In
addition, their couplings are indeed model dependent, there-
fore it is hard to construct general formulas determining vec-
tor loop contributions using the t’ Hooft-Feynman gauge.
This problem has been mentioned recently [21] in a discus-
sion of the Georgi-Machacek model, where only new Higgs
multiplets are added to the SM. The reason is that the new
Higgs bosons will change the couplings of unphysical states
with the gauge bosons Z and W±. In the left-right models
predicting new gauge bosons that contribute to the amplitude
of the decay h → Zγ , previous calculations in this gauge
were also model dependent [40,41]. An approach introduced
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recently in Ref. [87] for calculating the decay h → Zγ , with
the help of numerical computation packages, may be more
convenient.

The technical difficulties caused by unphysical states will
vanish if calculations have been done in the unitary gauge.
There the number of Feynman diagrams as well as the num-
ber of necessary couplings become minimum, namely only
those which contain physical states are needed. Then the
Lorentz structures of these couplings are well defined, and
hence the general analytic formulas of one-loop contribu-
tions from gauge boson loops can be constructed. But in
the unitary gauge we face complicated forms of the gauge
boson propagators, which generate many dangerous diver-
gent terms. Fortunately, many of them are excluded by the
condition of on-shell photon in the decay h → Zγ . The
remaining ones will vanish systematically when loop inte-
grals are written in terms of the Passarino-Veltman (PV)
functions [42]. This situation will be demonstrated in this
work explicitly. Moreover, the choice of the unitary gauge
allows us to derive general analytic formulas for one-loop
contributions involving various gauge bosons to the ampli-
tude of the decay h → Zγ . The formulas will be given in
terms of standard PV functions defined by Ref. [43] and in the
LoopTools library [44]. The analytic forms of these PV func-
tions are also presented so that our results can be compared
with the earlier results calculated independently in specific
cases. In addition, the analytic formulas can be implemented
into numerical stand-alone packages without dependence on
the LoopTools. Our results can be translated into the gen-
eral analytic form used to calculate the amplitudes of the
charged Higgs decay H± → W±γ which is also an inter-
esting channel predicted in many BSM models. Our results
can be easily compared also with those given recently in [21],
which were calculated in the ’t Hooft-Feynman gauge. More-
over, our results can be cross-checked with another one-loop
formula expressing new gauge boson contributions in the
gauge-Higgs unification (GHU) model [45].

The decay H → Zγ of the new heavy neutral Higgs boson
H in the SM supersymmetric model was also mentioned in
[13]. The signal strength of this decay was shown to be very
sensitive with the parameters of the model, hence it may give
interesting information on the parameters once it is detected.
Many other BSM also contain heavy neutral Higgs bosons H ,
and the one loop amplitudes of their decays H → Zγ may
include many significant contributions that do not appear in
the case of the SM-like Higgs boson. Some of the compli-
cated contributions are usually ignored by qualitative esti-
mations. The analytic formulas introduced in this work are
enough to determine more quantitatively these approxima-
tions.

Apart from the above BSM with non-Abelian gauge group
extensions, there are BSM with additional Abelian gauge
groups [84,85]. These models predict new kinetic mixing

parameters between Abelian gauge bosons, which appear in
the couplings of the neutral physical gauge bosons including
the SM-like one, for example see [88]. Our calculation in the
unitary gauge are also applicable with only condition that
couplings of physical states are determined.

Our paper is organized as follows. Section 2 will give
the general notations and Feynman rules necessary for cal-
culation of the width of the decay h → Zγ in the unitary
gauge. In Sect. 3 we present important steps of the derivation
of the analytic formula for the total contribution of gauge
boson loops. We also introduce all other one-loop contribu-
tions from possible new scalars and fermions appearing in
BSM models. In Sect. 4, the comparison between our results
with previous ones will be discussed, including the case of
charged Higgs decays. We will emphasize the contributions
from gauge boson loops both in decays of neutral CP-even
and charged Higgs bosons. Our result will be applied to dis-
cuss on two particular models in Sect. 5. In Conclusions
we will highlight important points obtained in this work. In
the first Appendix, we review notations of the PV functions
given by LoopTools and their analytic forms used in other
popular numerical packages. Two other Appendices contain
detailed calculations of the one-loop fermion contributions
to the amplitude h → Zγ and the relevant couplings in the
LR models discussed in our work.

2 Feynman diagrams and rules

The amplitude of the decay h → Zγ is generally defined as

M(h→Zγ ) ≡ M (
Zμ(p1), γν(p2), h(p3)

)
ε
μ∗
1 (p1)ε

ν∗
2 (p2)

≡ Mμνε
μ∗
1 εν∗

2 , (1)

where ε
μ
1 and εν

2 are the polarization vectors of the Z boson
and the photon γ , respectively. The external momenta p1, p2,
and p3 satisfy the condition p3 = p1 + p2 with the direc-
tions denoted in Fig. 1 where one-loop Feynman diagrams
contributing to the decay are presented. Only diagrams which
are relevant in the unitary gauge are mentioned. The on-shell
conditions are p2

1 = m2
Z , p2

2 = 0, and p2
3 = m2

h .
The decay amplitude is generally written in the following

form [10]:

Mμν ≡ F00 gμν +
2∑

i, j=1

Fi j piμ p jν + F5 × iεμναβ p
α
1 p

β
2 ,

(2)

where εμναβ is the totally antisymmetric tensor with ε0123 =
−1 and ε0123 = +1 [46].

The equality εν∗
2 p2ν = 0 for the external photon implies

that F12,22 do not contribute to the total amplitude (1). In
addition, the Mμν in Eq. (2) satisfies the Ward identity,

123
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Fig. 1 One-loop diagrams contributing to the decay h → Zγ , where fi, j , Si, j and Vi, j are fermions, Higgs, and gauge bosons, respectively

pν
2Mμν = 0, resulting in F11 = 0 and [10]

F00 = −(p1.p2)F21 = (m2
Z − m2

h)

2
F21. (3)

Hence the amplitude (1) can be calculated through the
form (2) via the following relations

M(h → Zγ ) = Mμνε
μ∗
1 εν∗

2 ,

Mμν = F21
[−(p2.p1)gμν + p2μ p1ν

]

+ F5 × iεμναβ p
α
1 p

β
2 . (4)

The partial decay width then can be presented in the form [11,
21]

�(h → Zγ ) = m3
h

32π
×
(

1 − m2
Z

m2
h

)3 (
|F21|2 + |F5|2

)
. (5)

The above formula shows us that we need to find only two
scalar coefficients F21 and F5 in Eq. (4). Because F5 arises
from only chiral fermion loops, it is enough to pay attention
to terms proportional to F21 p2μ p1ν for gauge boson loops.
Therefore calculations will be simplified, especially in the
unitary gauge. Combining with notations of the PV func-
tions [42], we will determine explicitly which terms give
contributions to F21 p2μ p1ν , and hence exclude step by step
irrelevant terms throughout our calculations.

Calculation of the factor F21 is very interesting because it
does not receive contributions from diagrams which contain
counterterm vertices. The Lorentz structures of the countert-
erm vertices are shown in Fig. 2. The first line represents
three additional counterterm vertices. The second line shows
two more diagrams. The total amplitude is the sum of three
diagrams 1, 4, and 5 in Fig. 2 and all diagrams shown in
Fig. 1. We can see in Fig. 2 that, the first diagram contributes
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Fig. 2 Counterterm vertices
and related one-loop diagrams
contributing to the one-loop
amplitude of the decay h → Zγ

only to F00. In the unitary gauge, the propagator of a gauge
boson is


μν(k2,m2) = −i

k2 − m2

(
gμν − kμkν

m2

)
. (6)

The Lorentz structures of the two remaining counterterms
are

iMCT
(4)μν ∼ gμα

(

gαα′ − pα
2 p

α′
2

m2
Z

)

× (gα′νC1Z A + p2α′ p2νC2Z A)

= gμνC1Z A + p2μ p2ν

(

C2Z A − C1Z A

m2
Z

)

,

iMCT
(5)μν ∼ (p3 + p2)μ × (

p2νCSi A
)

= (p1 + 2p2)μ p2νCSi A,

which contribute only to F00, F12, and F22. The result for the
Lorentz structures is unchanged if the virtual gauge boson
Z in diagram 4 is replaced with the new ones in a gauge
extended versions of the SM. As the result, F21 is not affected
by counterterms, therefore we do not need to include them
in our calculation. In addition, F21 is finite without including
the related counterterm diagrams. A similar situation in two
Higgs doublet models was discussed in [20]. Examples for
Lorentz structures of the counterterms were given also, e.g.,
in Refs. [43,47].

The Feynman rules used in our calculations are listed
in Table 1. We found them to appear commonly in many
gauge extensions of the SM, for example in the models con-
structed from the following electroweak gauge symmetries:
SU (2)1 × SU (2)2 × U (1)Y , SU (2)L × SU (2)R × U (1)Y ,
and SU (3)L × U (1)X [48–53], where an important relation
gZγ Vi j = e Q gZVi j is valid. It results in that many compli-

cated terms containing dangerous divergences in two contri-
butions from diagrams 5 and 6 in Fig. 1 cancel each other
out.

Following LoopTools [44], Fig. 1 defines three internal
momenta q, q1, q2 as follows

q1 = q + k1 = q − p1, q2 = q + k2 = q − (p1 + p2),

p1 = −k1, p2 = k1 − k2. (7)

Our formulas will be written in terms of common well-
defined PV functions. Moreover, we can compare our results
with previous works, as well as we can perform numeri-
cal estimates with the help of the LoopTools library. Def-
initions and notations for the PV functions are shown in
“Appendix A”.

As the result, we only need to calculate the coefficient F21.
In the next section, we will present important steps of how
to get contributions from pure gauge boson loops to F21.

3 Analytic formulas

3.1 Total contribution from diagrams with pure gauge
boson mediations

Here we will consider calculation of the contribution from
pure gauge boson loops to the decay amplitude of h → Zγ .
All of them were performed using the FORM language [54,
55]. Other contributions from diagrams which contain only
one or two internal gauge boson lines are computed more
easily.

The contribution from diagram 5 from Fig. 1 reads

iM(5)μν = 2 ×
∫

ddq

(2π)d
(ighVi j gαβ)

−i

D0

(

gαα′ − qαqα′

m2
1

)

× [−igZVi j �μα′λ(−p1, q,−q1)
]
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Table 1 Couplings involving
the decay of CP even neutral
Higgs h → Zγ , in the unitary
gauge. A new notation is
�μνλ(p0, p+, p−) ≡
(p0 − p+)λgμν + (p+ −
p−)μgνλ + (p− − p0)νgλμ,
where all momenta are
incoming, and p0,± are
respective momenta of h and
charged gauge and Higgs
bosons with electric charges
±Q, denoted as V±Q

i, j and S±Q
i, j ,

respectively. The general case of
four-gauge-boson coupling is
(2,−1,−1) → (a1, a2, a3) and
gZγ Vi j �= e Q gZVi j

Vertex Coupling

h fi f j −i
(
Yh fi j L PL + Yh fi j R PR

)

hSQi S−Q
j , hS−Q

i SQj −iλhSi j , −iλ∗
hSi j

h(p0)S
−Q
i (p−)V Qμ

j , h(p0)S
Q
i (p+)V−Qμ

j ighSi Vj (p0 − p−)μ, −ig∗
hSi Vj

(p0 − p+)μ

hV−Qμ
i V Qν

j , hZμZν ighVi j gμν , ighZ Z gμν

Aμ fi fi , AμSQi S−Q
i ie Qγμ, ie Q(p+ − p−)μ

Aμ(p0)V
Qν
i (p+)V−Qλ

i (p−) −ieQ�μνλ(p0, p+, p−)

Zμ fi f j i
(
gZ fi j LγμPL + gZ fi j RγμPR

)

ZμSQi (p+)S−Q
j (p−) igZSi j (p+ − p−)μ

ZμV Qν
i S−Q

j , ZμV−Qν
i SQj igZVi S j gμν , ig∗

ZVi S j
gμν

Zμ(p0)V
Qν
i (p+)V−Qλ

j (p−) −igZVi j �μνλ(p0, p+, p−)

ZμAνV Qα
i V−Qβ

j −ie Q gZVi j
(
2gμνgαβ − gμαgνβ − gμβgνα

)

× −i

D1

(

gλρ − qλ
1 q

ρ
1

m2
2

)

× [−ie Q �νρδ(−p2, q1,−q2)
]

× −i

D2

(

gδβ − qδ
2q

β
2

m2
2

)

= 2e Q ghVi j gZVi j

∫
ddq

(2π)d

1

D0D1D2
V1μβλV

βλ
2ν ,

(8)

where m1,2 ≡ mVi, j , D0 = q2 − m2
1, D1,2 = q2

1,2 − m2
2,

V1μβλ = gαβ

(

gαα′ − qαqα′

m2
1

)

�μα′λ(−p1, q,−q1),

V βλ
2μ =

(

gλρ − qλ
1 q

ρ
1

m2
2

)

× [
�νρδ(−p2, q1,−q2)

]
(

gδβ − qδ
2q

β
2

m2
2

)

. (9)

We note that factor 2 appearing in the first line of Eq. (8) was
added in order to count two different diagrams with opposite
internal lines in the loops. It can be done because coupling
constants ghVi j and gZVi j are real numbers in all models that
we consider here. Based on the structure of the PV functions,
we know that F21 p2μ p1ν gets contributions from parts hav-
ing the following factors: qμqν , qμ p1ν , p2μqν , and p2μ p1ν .
This means that we can do the following replacements in the
calculation:

q1μ → qμ, q2μ → qμ − p2μ, q2ν → qν − p1ν = q1ν,

k1μ → 0, k2μ → −p2μ, k1ν, k2ν → −p1ν, gμν → 0.

(10)

After some intermediate steps shown in “Appendix B”,
and combining with the relations q2 = D0 +m2

1 and D1,2 =
q2

1,2 + m2
2, we have

iM(5)μν →
[
e Q ghVi j gZVi j

]
×
∫

ddq

(2π)d
× 1

m2
1m

2
2

×
⎧
⎨

⎩
qμqν

⎡

⎣− 1

D2
− 1

D0
+

2
(
m2

1 − m2
2 + m2

Z

)

D1D2
+
(
m2

1 + m2
2 + m2

h

)

D0D2

+
8(d − 2)m2

1m
2
2 + 2

(
m2

1 + m2
2 + m2

h

) (
m2

1 + m2
2 − m2

Z

)

D0D1D2

⎤

⎦

+ qμ p1ν

⎡

⎣ 1

D2
+ 1

D0
−

2
(
m2

1 − m2
2 + m2

Z

)

D1D2

− 5m2
1 + 3m2

2 + m2
h

D0D2
+

2
(
m2

1 + m2
2 − m2

Z

)

D0D1

−
8(d − 2)m2

1m
2
2 + 2

(
m2

1 + m2
2 + m2

h

) (
m2

1 + m2
2 − m2

Z

)

D0D1D2

⎤

⎦

+ p2μqν

[

− 4m2
1

D1D2
+ 2m2

1 + 4m2
2

D0D2

−
4
(
m2

1 − m2
2

) (
m2

1 + m2
2 − m2

Z

)

D0D1D2

⎤

⎦

+p2μ p1ν

[
4m2

1
D1D2

+ 2m2
1

D0D2
+ 4m2

1(m2
1 + 3m2

2 − m2
Z )

D0D1D2

]}

. (11)

The calculation to derive the needed contribution from
digram 6 in Fig. 1 are the same way applied to diagram 1,
see details in “Appendix B”. Diagram 7 does not give any
contributions. We can see that many divergent terms related
to qμqν in two amplitudes (11) and (B7) of diagram 6 will
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cancel out each other when they are summed. Hence, the pure
gauge boson loops give the following total contribution:

M(5+6)μν → e Q ghVi Vj gZVi Vj

∫
ddq

(2π)d
× 1

m2
1m

2
2

×
{

qμqν

[
2
(
m2

1 − m2
2 + m2

Z

)

D1D2

+8(d − 2)m2
1m

2
2 + 2

(
m2

1 + m2
2 + m2

h

) (
m2

1 + m2
2 − m2

Z

)

D0D1D2

]

+ qμ p1ν

[
1

2D2
+ 1

2D0
− 2

(
m2

1 − m2
2 + m2

Z

)

D1D2

− 7
(
m2

1 + m2
2

)+ m2
h

2D0D2
+ 2

(
m2

1 + m2
2 − m2

Z

)

D0D1

−8(d − 2)m2
1m

2
2 + 2

(
m2

1 + m2
2 + m2

h

) (
m2

1 + m2
2 − m2

Z

)

D0D1D2

]

+ p2μqν

[

− 1

2D2
− 1

2D0
− 4m2

1

D1D2
+ 7

(
m2

1 + m2
2

)+ m2
h

2D0D2

−4
(
m2

1 − m2
2

) (
m2

1 + m2
2 − m2

Z

)

D0D1D2

]

+p2μ p1ν

[
4m2

1

D1D2
+ 4m2

1

(
m2

1 + 3m2
2 − m2

Z

)

D0D1D2

]}

. (12)

Based on “Appendix A”, expression (12) can be pre-
sented explicitly in terms of the PV functions M(5+6)μν =
M(5+6)μν(B0,μ,ν,μν,C0,μ,ν,μν) × 1/(16π2). In addition, to
keep only the parts with factor p2μ p1ν we can use the fol-
lowing replacements:

A(0)
μ,ν, A(1)

μ , B(1)
μ,μν → 0,

{
A(2)

μ , B(2)
μ , B(12)

μ

}

→
{

A(2)
0 ,−B(2)

1 ,
B(12)

0

2

}

p2μ,

A(1,2)
ν , B(1,2)

ν , B(12)
ν →

{
A(1,2)

0 ,

−B(1,2)
1 , B(12)

0

}
p1ν, B(12)

μν → B(12)
0

2
p2μ p1ν,

Cμ → −C2 p2μ, Cν → −(C1 + C2)p1ν, Cμν

→ (C12 + C22)p2μ p1ν . (13)

Then, the total contribution from Vi − Vj − Vj gauge boson
loops is

F21,Vi j j =2e Q ghVi j gZVi j
16π2

×
{[

8 +
(
m2

1 + m2
2 + m2

h

) (
m2

1 + m2
2 − m2

Z

)

m2
1m

2
2

]

× (C12 + C22 + C2)

+2
(
m2

1 − m2
2

) (
m2

1 + m2
2 − m2

Z

)

m2
1m

2
2

(C1 + C2)

+2
(
m2

1 + 3m2
2 − m2

Z

)
C0

m2
2

}

, (14)

where all PV functions having divergence completely disap-
peared, and therefore d = 4. We would like to emphasize
now that formula (14) is written in terms of PV functions
which are contained in LoopTools and hence it can be eas-
ily evaluated numerically. Moreover, analytic expressions for
the relevant PV functions have been constructed [10,48], that
is enough to implement our results in existing numerical pro-
grams or to write a new stand-alone code.

We would like comment here about a more general case
when couplings of gauge bosons and photon do not obey
the relation gZγ Vi j = e Q gZVi j , which helps us to reduce
many divergent terms in M(5+6)μν . The key point here is
that the condition of on-shell photon always cancels out
the most dangerous divergent terms in the last line of (B3).
As a by-product, the final form of M(5+6)μν can contain
more PV functions with divergent parts. Fortunately, all of
them are well-determined and widely used for numerical
computation.

Before comparing our result with many well-known
expressions computed in specific models, we will introduce
analytic formulas for contributions from the remaining dia-
grams listed in Fig. 1 for completeness.

3.2 Contributions from other diagrams in Fig. 1

The contributions to F21 from the first four diagrams in Fig. 1
are

F21, fi j j = F (1)
21

= − e Q Nc

16π2

[
4
(
K+

LL ,RR + K+
LR,RL + c.c.

)

× (C12 + C22 + C2)

+2
(
K+

LL ,RR − K+
LR,RL + c.c.

)
(C1 + C2)

+2(K+
LL ,RR + c.c.)C0

]
,

F5, fi j j = − e Q Nc

16π2

[
2
(
K−

LL ,RR − K−
LR,RL − c.c

)
(C1 + C2)

−2(K−
LL ,RR − c.c.)C0

]
, (15)

F21,Si j j = F (2)
21 =

e Q
(
λ∗
hSi j

gZ Si j + c.c.
)

16π2 [4(C12 + C22 + C2)] ,

(16)

F21,V SS = F (3)
21 =

e Q (g∗
hVi S j

gZVi S j + c.c.)

16π2

×
[

2

(

1 + −m2
2 + m2

h

m2
1

)

(C12 + C22 + C2)

+4(C1 + C2 + C0)

]

, (17)
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F21,SV V = F (4)
21 =

e Q (ghVj Si g
∗
ZVj Si

+ c.c.)

16π2

×
[

2

(

1 + −m2
1 + m2

h

m2
2

)

(C12 + C22 + C2)

−4(C1 + C2)

]

, (18)

where m1,2 ≡ mX,Y in the loop of F21,XYY , Nc is the colour
factor coming from the SU (3)C symmetry, and the abbrevi-
ation c.c. stands for the complex conjugated parts. The latter
are the contributions coming from diagrams having opposite
directions of internal lines with respect to the ones given in
Fig. 1. Other relevant notations are

K±
LL ,RR = m1

(
Yh fi j L g∗

Z fi j L ± Yh fi j R g∗
Z fi j R

)
,

K±
LR,RL = m2

(
±Yh fi j L g

∗
Z fi j R + Yh fi j R g∗

Z fi j L

)
. (19)

Details of calculating contributions from fermion loops
F21, fi j j are shown in “Appendix B”. Formulas for F21,Si j j
and F21,V SS are calculated easily. The F21,SV V part was
computed based on the result of V βλ

2μ in Eq. (B1). All steps
we presented here were performed using the FORM lan-
guage [54,55].

Formulas for F21, fi j j , F5, fi j j , and F21,Si j j are irrelevant for
the discussion of boson mediations. Similar general forms
can be found in many previous works, e.g., in [20–22]. All
of them are easy to check to be consistent with our result so
we will not present the comparison here. We just focus on
the most important formula F21,Vi j j .

4 Comparison with previous results

4.1 The standard model

The contribution of W bosons corresponds to (ghVi j , gZVi j ,
Q) → (g mW , g cW , 1) with m1 = m2 = mW , where mW

is the W boson mass, g is the gauge coupling of the SU (2)L
group, sW ≡ sin θW with θW being the Weinberg angle. Then
formula (14) is reduced to the simpler form:

FSM
21,W = e g2mW cW

16π2

{

2

[

8 +
(

2 + m2
h

m2
W

)(

2 − m2
Z

m2
W

)]

× (C12 + C22 + C2) + 4

(

4 − m2
Z

m2
W

)

C0

}

(20)

= αem g cW
4πmW sW

{[
5 + 2

t2
−
(

1 + 2

t2

)
t2
W

]
I1(t2, t1)

− 4(3 − t2
W )I2(t2, t1)

}
, (21)

where we have used αem = e2/(4π), e = g sW , m2
h/m

2
W =

4/t2, m2
Z/m2

W = 4/t1, m2
Z/m2

W = 1/c2
W = 1 + t2

W , sW =
sin θW , and tW = sW /cW . We also used the well-known
functions I1,2(t2, t1) given in Ref. [11] to identifyC12+C22+
C2 = I1(t2, t1)/(4m2

W ), and C0 = −I2(t2, t1)/m2
W

1. They
are proved in “Appendix A.2”. Formula (21) is consistent
with well-known result for the SM case given in [11,21],
which even has been confirmed using various approaches
[56].

The right hand side of Eq. (20) can be proved to be com-
pletely consistent with the W contribution to the amplitude
of the decay h → γ γ with gZWW → gγWW = e, and
in the limit mZ → 0, equivalently t1 = 4m2

W /m2
Z → ∞.

The analytic form of this contribution is known [11,57,58],
namely

Fhγ γ,SM
21,W = αem g

4πmW

[
2 + 3t2 + 3

(
2t2 − t2

2

)
f (t2)

]
, (22)

where t2 = 4m2
W /m2

h and f (x) is the well-known func-
tion given in “Appendix A.2”. The partial decay width is
�(h → γ γ ) = m3

h/(64π)|Fhγ γ,SM
21 |2, where Fhγ γ,SM

21 con-

tains Fhγ γ,SM
21,W . The above determination of F21,W depends

only on the diagrams with W boson, hence it should be the
same in both cases of photon and Z boson, except their
masses and couplings with the W boson. For the case of
photon we have

C0 = − 1

m2
W

lim
t1→∞ I2(t2, t1) = − t2 f (t2)

2m2
W

,

C12 + C22 + C2 = 1

4m2
W

lim
t1→∞ I1(t2, t1)

= 1

8m2
W

[
−t2 + t2

2 f (t2)
]
, (23)

where the expression forC0 is the same as the one in [59]. By
inserting two equalities (23) into the right hand side of (20)
with mZ = 0, we will obtain exactly Eq. (22).

Regarding the fermionic contribution in the SM, we verify
here the simple case of a single fermion without mixing and
color factors, where m1 = m2 = m f and Yh fi j L = Yh fi j R =
e m f /(2mW sW ), leading to

K+
LL ,RR = K+

LR,RL = K+∗
LL ,RR = K+∗

LR,RL = e

2mWsW
×m2

f (gZ f L + gZ f R)

and K−
LL ,RR = K−

LR,RL = K−∗
LL ,RR = K−∗

LR,RL =
m2

f (gZ f L − gZ f R). Two formulas (15) for fermionic con-

1 The functionC0 in this special case is consistent with the one from [20,
21], but different from the one in [10] by the opposite sign.
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tributions are

FSM
21, f = − e2 Q

16π2mWsW
× m2

f (gZ f L + gZ f R)

× [8 (C12 + C22 + C2) + 2C0]

= αem g

4πmW
×
⎡

⎣
−2Q

(
T 3L
f − 2Qs2

W

)

sW cW

⎤

⎦

× [I1(t2, t1) − I2(t2, t1)] ,

F5, fi j j = 0, (24)

where gZ f L + gZ f R =
(
T 3L
f − 2Qs2

W

)
× g/cW , and T 3L

f is

the fermion weak isospin. Formula (24) coincides with the
result given in [11].

At the one loop level, the effective coupling hγ γ can be
calculated using the ’t Hooft–Feynman gauge [86], which
will be useful to crosscheck with our result when the decay
h → γ γ in a particular BSM is investigated.

4.2 Recent results

The one-loop contribution from new gauge bosons in the
GHU model was given in Ref. [45], where the unitary gauge
was mentioned without detailed explanations. We see that the
triple and quartic gauge boson couplings in this model also
obey the Feynman rules listed in Table 1, hence our formula
in Eq. (14) is also valid. Because the final result in Ref. [45]
was written in terms of only B0 and C0 functions, which are
independent on the choice of integration variable, it can be
compared with our result. Translated into our notation, the
most important relevant part in Ref. [45] is

FGHU
21,V = (

m4
1 + m4

2 + 10m2
1m

2
2

)
E+(m1,m2)

+ [(
m2

1 + m2
2

) (
m2

h − m2
Z

)− m2
hm

2
Z

]
E−(m1,m2)

− [
4m2

1m
2
2

(
m2

h − m2
Z

)+ 2m4
Z

(
m2

1 + m2
2

)] (
C0 + C ′

0

)
,

(25)

where function C ′
0 is determined by changing the roles of m1

and m2, and

E±(m1,m2) = 1 + m2
Z

m2
h − m2

Z

(
B(2)

0 − B(1)
0

)

±
(
m2

2C0 + m2
1C

′
0

)
. (26)

Formula (25) should be equivalent to our result, namely
to the sum F21,Vi j j + F21,Vjii . In the special case where
Vi ≡ Vj , corresponding to m1 = m2 = m, C ′

0 = C0 =
−I2(t2, t1)/m2, and C12 + C22 + C2 = I1(t2, t1)/(4m2). In
fact we find the agreement between eq. (3.18) of Ref. [45]

and our result, namely

δF21 = FGHU
21,V −

[
16π2

2e Q ghVi j gZVi j
(F21,Vi j j + F21,Vjii )

]

×
[
−m2

1m
2
2

(
m2

h − m2
z

)]∣∣∣
m1=m2

= 0.

But two general results are not the same, i.e. they differ by
δF21 = −2

(
m2

1C0 + m2
2C

′
0

)
m4

Z .
Except F21,Vi j j in Eq. (14), our formulas are consistent

with the results given in Ref. [21], which were obtained
by calculating the decay amplitude of charged Higgs boson
h± → W±γ in the ’t Hooft–Feynman gauge for the Georgi-
Machacek model. In our notations, F21,Si j j , F21,Si V SS ,
and F21,SV V correspond to scalar, vector-scalar-scalar, and
scalar-vector-vector loop diagrams mentioned in Ref. [21].
By using the same notations from LoopTools, our results and
those of Ref. [21] have the same form.

The consistency between our results and those in Ref. [21]
is explained by the same Lorentz structures in couplings of
the gauge bosons Z and W±. An important difference is
that the W± carry electric charges while the Z does not.
For a certain diagram with W+ or W− in the final state,
the directions of internal lines are fixed, hence the complex
conjugated terms are allowed in the amplitude of the decay
h → Zγ , but not in that of H± → W±γ . Hence, except
the pure gauge boson loop diagrams, the contributions to
h → Zγ can be translated into those to H± → W±γ by
excluding all complex conjugated parts. Of course, the mass
mZ and couplings of the Z boson must be replaced with those
of the W± bosons. This explanation can be checked directly
based on our calculations given above.

Regarding F21,Vi j j , which presents the total vector loop
contribution to the decay amplitude H± → W±γ , the
explicit expression derived from Eq. (14) reads

FH±W±γ

21,Vi j j
= e Q ghVi j gWVi j

16π2

×
{[

8+ (m2
1 + m2

2 + m2
H±)(m2

1 + m2
2 − m2

W )

m2
1m

2
2

]

× (C12 + C22 + C2)

+2(m2
1 − m2

2)(m
2
1 + m2

2 − m2
W )

m2
1m

2
2

(C1 + C2)

+2(m2
1 + 3m2

2 − m2
W )C0

m2
2

}

, (27)

where mH± is the charged Higgs boson mass, gWVi j is the
triple gauge coupling of the W boson, and Q is always the
electric charge of the gauge boson Vj coupling with the pho-
ton. We note that the factor 2 in Eq. (14) is not counted any-
more. Now, we only need to focus on the part generated by
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the loop structures used to compare with the specific result
given in [21]. This case corresponds to m1 = mZ ,m2 =
mW = mZcW and mH± = m5 for the decay h+

5 → W+γ .
Formula (27) now has the following form

F
H±

5 W±γ

21,Vi j j
∼
(

9 + 1

c2
W

+ m2
5

m2
W

)

(C12 + C22 + C2)

+ 2

(
1

c2
W

− 1

)

(C1 + C2) + 2

(
1

c2
W

+ 2

)

C0

= 10(C12 + C22 + C2) + 6C0

+ m2
5

m2
W

(C12 + C22 + C2)

+ s2
W

c2
W

(C12 + C22 + 2C1 + 3C2 + 2C0), (28)

which is different from the result given in Ref. [21] by the
coefficient 10 instead of 12 in front of the sum (C12 +C22 +
C2). We see that the two parts in our result with coefficients
m2

5/m
2
W and s2

W /c2
W are consistent with SGGG and SXGG in

Ref. [21], respectively. The difference in the remaining part
might arise due to a missed sign of the ghost contribution
Sghost.

An approach using Feynman gauge was introduced in
Ref. [87], where the result must be implemented in some
numerical packages. The results can be used to crosscheck
with ours for consistence, but left for a further work.

5 Heavy charged boson effects on Higgs decays
h → Zγ in BSM

Because new heavy charged gauge V± and Higgs bosons S±
appear in non-trivial gauge extensions of the SM, they may
contribute to loop-induced SM-like Higgs decays h → γ γ

and h → Zγ . While the couplings hV V and hSS consisting
of virtual identical charged particles always contribute to both
decay amplitudes, the couplings hWV and hW S of the SM-
like Higgs boson only contribute to the later. These couplings
may cause significant effects to Br(h → Zγ ) in the light of
the very strict experimental constraints of Br(h → γ γ ) [3].
When m2

X 	 m2
W with X = S, V , the loop structures of

the form factors with at least one virtual W boson have an
interesting property that

F ′
WX ≡

∣
∣∣∣
F21,WXX + F21,XWW

eQghXW gZXW /(16π2)

∣
∣∣∣

∼ F ′
W ≡

∣∣∣∣
F21,W

eghWW gZWW /(16π2)

∣∣∣∣ ∼ O
(

1

m2
W

)

,

i.e., the same order with the W loop contribution.

Fig. 3 fV m2
V /m2

W , fW,S and fW,V as functions of the SU (2)R scale
mV

In contrast, the loop structure of a heavy gauge boson
F21,VVV is

F ′
V ≡ F21,VVV

ghVV gZVV /(16π2)
∼ O(m−2

V ),

which is different from the SM contribution of the W boson
by a factor m2

W /m2
V . Numerical illustrations are shown in

Fig. 3 where fW,X ≡ F ′
WX/F ′

W , fV ≡ F ′
V /F ′

W , and mS =
mV . Hence, the large coupling product ghW XgZW X may give
significant effects on the total amplitude of the decay h →
Zγ . But the contributions arising from this part were omitted
in the literature, even with well known-models such as the
left-right models and the Higgs Triplet Models (HTM).

In the original LR models reviewed in [49], gZWW ′ ∼
(mW /mW ′)2, lower bounds of few TeV for heavy gauge
boson mass mW ′ were concerned from recent experiments
at LHC [60]. As a result, its contributions may be small. In
contrast, recent versions introducing different assignments of
fermions representations to explain latest experimental data
of anomalies in B meson decays allow lower values of mW ′
near 1 TeV [61,62].

Interesting studies on new charged gauge bosons W ′
in left-right models [63–65] indicated that the couplings
W ′Wh, W ′WZ ,W ′H±Z result in important decays ofW ′±,
which are being hunted at LHC. These coupling also con-
tribute to the decay h → Zγ . The gauge bosons of the gauge
groups SU (2)L ,R and U (1)B−L are Wa

L ,Rμ (a = 1, 2, 3)
and AB−Lμ [64], respectively. The Higgs sector consists of
one bidoublet � whose breaks the electroweak scale, and
a SU (2)R multiplet whose breaks the SU (2)R × U (1)B−L

scale. Apart from the SM-like gauge bosons Zμ, W±
μ , and

photon Aμ, the left-right models predict new heavy gauge
bosons including W ′± and Z ′ with masses mW ′ and mZ ′ ,
respectively. The bidoublet contributes mainly to the SM-
like Higgs boson, Goldstone bosons of Z and W±, and a pair
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Table 2 Vertex factors involved
charged gauge and Higgs
bosons contributing to one loop
amplitude of the SM-like Higgs
decay h → Zγ in the LR model
with g ≡ gL and
sθ+ 
 tan θ+ = gR

gL
× sin(2β)ε2,

and ε = mW /mW ′

Vertex SM LR [63,65]

ghWW gZWW g2 mW cW g2
L mWcW sin(β − α)

ghW ′W gZWW ′ − gLgR mW cos(β + α)
sθ+
cW

ghW ′W ′gZW ′W ′ − −g2
R mW sin(β − α)

s2
W
cW

ghW+H−gZW−H+ − − g2
R
2 mW cW sin(β + α) cos(2β)s2

θ+

ghW ′+H−gZW ′−H+ − − g2
R
2 mW cW sin(β + α) cos(2β)

of singly charged Higgs H± that couple with the SM-like
Higgs boson.

Relevant vertex factors are summarized in Table 2. The
details of the models and calculations are given in “Appendix
C”. We have used the condition α = β − π/2 to guarantee
that the coupling hWW is the same as that in the SM. We
ignore all suppressed terms having factors with orders larger
than O(ε2), where ε = mW /mW ′ and mW ′ is the new heavy
gauge boson mass, which can be considered as the breaking
scale of the SU (2)R group. The couplings of the SM-like
Higgs boson we discuss here are consistent with those in
Refs. [64–67]. The triple gauge couplings are also consis-
tent with Refs. [49,68]. Because they are not affected by the
fermion assignments, they can be considered in the general
case which does not depend on the recent experimental limit.

With the above assumptions, the couplings of the SM-like
Higgs boson are nearly the same as those in the SM. The
decay h → Zγ has contributions associated with charged
gauge bosons estimated as follows,

FLR
21,WWW

FSM
21,W


 1,
FLR

21,W ′W ′W ′

FSM
21,W

∼ −g2
Rs

2
W

g2
Lc

2
W

ε2,

FLR
21,WW ′W ′ + FLR

21,W ′WW

FSM
21,W

∼ g2
R sin2(2β)

2g2
Lc

2
W

ε2,

FLR
21,HW ′W ′ + FLR

21,W ′HH

FSM
21,W

∼ g2
R cos2(2β)

2g2
L

ε2, (29)

where ε ≡ mW /mW ′ and α 
 β − π/2. We can see that
all quantities listed in (29) have the same order, although
some of them are affected by the tiny mixing parameter
sθ+ = O(ε2) between two charged gauge bosons. Hence all
of them must be taken into account. This argument is different
from previous treatment where only FLR

21,W ′W ′W ′ was men-
tioned [40,41,69]. The recent lower bounds of the SU (2)R
scale give ε2 ≤ O(10−3), implying that the heavy charged
Higg and gauge contributions discussed here are suppressed.
But the calculation is very useful for further investigation
in many other gauge extensions allowing lower new break-
ing scales, for example, the models belonging to the class of
breaking pattern I mentioned in Ref. [68], or recent models
with breaking pattern II [61,62].

The effects of heavy charged Higgs boson mH from
F21,WSS and F21,SWW appear in simple models like the HTM,
for a review see [70]. They even appear in the simple HTM
models extended from the SM by adding only one Higgs
triplet 
 [71–73]. It contains one singly, another doubly
charged scalar components, and a neutral one with non-zero
expectation vacuum value (vev) denoted as v
. As a result,
apart from the SM particles, the HTM predicts only new
Higgs bosons. The factors ghSW and gZWS arise from cou-
plings of singly charged Higgs bosons S± with all gauge and
neutral bosons. The correlation of the two decays h → γ γ

and h → Zγ were investigated previously, but the contri-
butions F21,WSS and F21,SWW mentioned here were ignored
in [23] because of the small product ghSW gZWS . It is pro-
portional to the small ratio (v
/v)2 [74], where v = 246
GeV. The requirement that the parameter ρ = m2

W /(m2
Zc

2
W )

is close to 1 at the tree level forces v
 to be small with largest
values of few GeV [23,75,76]. But the tree-level deviation

ρ = ρ − 1 predicted by this model is negative, in con-
trast with the recent experimental results [77]. Hence, loop
corrections should be included into this parameter, imply-
ing that small v
 is no longer necessary [70,78]. Theoretical
prediction for v
 ∼ O(10) GeV is still allowed [79]. The
recent experimental upper bound is v
 < 25 GeV [80].
As a result, contributions from F21,SWW and F21,WSS to
the SM-like Higgs boson decay h → Zγ can reach value
of F21,W × O(10−2), which is still far from the sensitiv-
ity of the recent experiments. Hence, previous investigations
[23,75,81] ignoring F21,SWW and F21,WSS in the one loop
amplitude of the SM-like Higgs decay h → Zγ are still
accepted.

On the other hand, heavy neutral bosons H predicted by
many BSM may have large gHWS gZWS , for example the
HTM [74]. In this case, contributions of F21,SWW , F21,WSS

can reach the significant values of F21,WWW × O(v
/v) =
F21,WWW × O(10−1) in the decay Br(H → Zγ ) but they
were ignored in previous works [76,81,82]. The formulas we
introduced in this work should be used for improved calcu-
lations of the mentioned decay rates.
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6 Conclusions

The decay h → Zγ attracts now a great interest from both
theoretical and experimental sides. It should be observed and
studied soon by the LHC experiments. If a deviation from
the SM prediction is found, it will be associated with new
physics implying additional contributions from exotic parti-
cles in many BSM models. In this paper, we have introduced
the general analytic formulas expressing one-loop contribu-
tions from scalars, fermions, and gauge bosons to the ampli-
tude of the decay h → Zγ . In addition, we proved that our
results can be used to calculate the amplitude of the charged
Higgs decays H± → W±γ which exist in many BSM mod-
els. Although some of these formulas were derived earlier by
other groups, the general forms were not concerned, in partic-
ular, the contributions related to new gauge boson loops. Our
formulas are applicable to many well-known gauge extended
versions of the SM, as we discussed in detail. We stress that all
one-loop contributions with gauge bosons involved are cal-
culated explicitly using the unitary gauge, so that the readers
can cross-check our results. Our final results are written in a
convenient form. Namely, they are presented in terms of the
standard Passarino-Veltman functions which can be evalu-
ated numerically with the help of the LoopTools library. The
analytic forms of these PV functions were also discussed, so
that our results can be identified with well known formulas
in several special cases as well as implemented into other
numerical packages. Our results were checked to be mainly
consistent with several recent calculations in some specific
BSM models, except the contributions from diagrams con-
taining two different virtual gauge bosons. We believe that
our results will be useful for further studies of loop-induced
decays of neutral and charged Higgs bosons H → Zγ,Wγ ,
which have not been yet treated in many well-known BSM
models.
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Appendix A: PV functions in LoopTools

A.1: Definitions, notations and analytic formulas

We use the notations for the Passarino-Veltman functions
from the LoopTools library [44]:

A(i)
0,μ = A0,μ

(
k2
i ;m2

i+1

)

≡ (2πμ)4−d

iπ2

∫
ddq

{
1, qμ,

}

Di
, i = 0, 1, 2,

B(i)
0, μ, μν = B0,μ

(
k2
i ;m2

1,m
2
i+1

)

≡ (2πμ)4−d

iπ2

∫
ddq

{
1, qμ, qμqν

}

D0Di
, i = 1, 2,

C0,μ,μν = C0,μ,μν

(
p2

1, p2
2, (p1 + p2)

2;m2
1,m

2
2,m

2
3

)

≡ (2πμ)4−d

iπ2

∫
ddq

{
1, qμ, qμqν

}

D0D1D2
, (A1)

where d = 4 − 2ε (ε → 0) is the integral dimension, Di =
(q + ki )2 − m2

i+1,k0 = 0, k1 = −p1, k2 = −(p1 + p2),
i = 0, 1, 2. In our case, we always have m3 = m2.

Denoting 
ε = 1
ε

+ ln(4πμ2) − γE , it is well-known
that [46,83]

A(0)
0 = m2

1(
ε − lnm2
1 + 1),

A(1,2)
0 = m2

2(
ε − lnm2
2 + 1), A(i)

μ = −A(i)
0 kiμ, (A2)

Based on the LoopTools notations [44], functions B(i)
0,μ,μν

and C0,μ,μν are written as

B(i)
μ = B(i)

1 kiμ,

B(i)
μν = B(i)

00 gμν + B(i)
11 kiμkiν,

Cμ =C1k1μ + C2k2μ,

Cμν =C00gμν + C11k1μk1ν + C12(k1μk2ν + k2μk1ν)

+ C22k2μk2ν . (A3)

There is another case where we have to change the integration
variable q → q ′ = q + k1 to get the standard form defined
by (A1):

B(12)
0,μ,μν ≡ B0,μ,μν(k

2
1 , k2

2;m2
2,m

2
2)

= (2πμ)4−d

iπ2

∫
ddq

{
1, qμ, qμqν

}

D1D2

= (2πμ)4−d

iπ2

∫
ddq

{
1, qμ − k1μ,

(
qμ − k1μ

)
(qν − k1ν)

}

(q2 − m2
2)
[
(q + k2 − k1)2 − m2

2

] .

(A4)
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Then we can use the scalar coefficients B(12)
0 , B(12)

1 , and B(12)
11

with the standard definitions, where k2 − k1 = −p2,

B0,μ,μν

(
(k2 − k1)

2;m2
2,m

2
2

)

= (2πμ)4−d

iπ2

∫
ddq

{
1, qμ, qμqν

}

(
q2 − m2

2

) [
(q + k2 − k1)2 − m2

2

] ,

= B(12)
0 , −B(12)

1 p2μ, B(12)
00 gμν + B(12)

11 p2μ p2ν. (A5)

Inserting these into (A4) we get with k1 = −p1 and p2
2 = 0

3B(12)
11 = − 2B(12)

1 = B(12)
0 = 
ε − ln

(
m2

2

)
,

B(12)
00 = m2

2

2

(
1 + B(12)

0

)
,

B(12)
μ = B(12)

0

2
p2μ + B(12)

0 p1μ,

B(12)
μν = m2

2

2

(
1 + B(12)

0

)
gμν + B(12)

0

3
p2μ p2ν

+ B(12)
0

2

(
p2μ p1ν + p1μ p2ν

)+ B(12)
0 p1μ p1ν.

(A6)

For two other cases we get

B(i)
0 ≡ B(12)

0 + 2 −
∑

σ=±

(
1 − 1

xiσ

)
ln(1 − xσ ),

B(i)
1 ≡ 1

2k2
i

[
A(0)

0 − A(i)
0 −

(
m2

1 − m2
2 + k2

i

)
B(i)

0

]
, (A7)

where k2
1 = m2

Z , k2
2 = m2

h , and xiσ are the roots of the
equation m2

2x
2 − (m2

2 −m2
1 +k2

i )x +k2
i + iε = 0. The forms

of B(i)
0,1 used for numerical investigation are well-known, see

e.g. [83].
The C0 function with m3 = m2 has a simple form [10]:

C0 = 1

k2
1 − k2

2

2∑

i=1

∑

σ=±
(−1)iLi2

×
[

2k2
i

m2
2 − m2

1 + k2
i + σλ1/2

(
k2
i ,m

2
1,m

2
2

)

]

, (A8)

where λ(x, y, z) = x2 + y2 +z2 −2xy−2yz−2xz. This for-
mula is also consistent with LoopTools and [48], where nota-
tions are changed as (m2

1,m
2
2,m

2
F ,m2

B) → (k2
1, k2

2,m2
1,m

2
2).

The Ci,i j functions are found based on the reduction tech-
nique [83]. Their explicit forms used in this work are [48],

C1 =
(
m2

h + m2
Z

) (
B(1)

0 − B(12)
0

)
− 2m2

h

(
B(2)

0 − B(12)
0

)

(
m2

h − m2
Z

)2

+ f2C0

m2
Z − m2

h

,

C2 =
(
m2

h + m2
Z

) (
B(2)

0 − B(12)
0

)
− 2m2

Z

(
B(1)

0 − B(12)
0

)

(
m2

h − m2
Z

)2

− f1C0

m2
Z − m2

h

,

C22 =
[
f2
(−3m4

h + m4
Z − 4m2

Zm
2
h

)+ 4m6
h − 4m4

Zm
2
h

]
B(2)

0

2m2
h

(
m2

Z − m2
h

)3

+ 3 f1m2
Z B

(1)
0

(
m2

Z − m2
h

)3 −
[
f1 + f2 + 2(m2

Z − m2
h)
]
B(12)

0

2
(
m2

Z − m2
h

)2

+ ( f 2
1 + 2m2

2m
2
Z )C0

(
m2

Z − m2
h

)2

−
(
m2

Z + m2
h

) (
A(1)

0 − A(0)
0

)

2m2
h

(
m2

Z − m2
h

)2 + m2
Z(

m2
Z − m2

h

)2 ,

C12 = −
[
f2
(
5m2

Z + m2
h

)+ m4
Z − m4

h

]
B(1)

0

2
(
m2

Z − m2
h

)3

+
[
f1
(
5m2

h + m2
Z

)+ m4
h − m4

Z

]
B(2)

0

2
(
m2

Z − m2
h

)3

+
(
2m2

2 − 2m2
1 + m2

Z + m2
h

)
B(12)

0

2
(
m2

Z − m2
h

)2

−
[
f1 f2 + m2

2

(
m2

Z + m2
h

)]
C0

(
m2

Z − m2
h

)2

+ A(1)
0 − A(0)

0(
m2

Z − m2
h

)2 − m2
Z + m2

h

2
(
m2

Z − m2
h

)2 , (A9)

where fi = m2
2 −m2

1 +k2
i . Some combinations which appear

commonly in our calculations are

C1 + C2 = − B(1)
0 − B(2)

0

m2
Z − m2

h

− C0,

C12 + C22 + C2 =
(−m2

1 + m2
2 + m2

Z

) (
B(1)

0 − B(12)
0

)

2
(
m2

Z − m2
h

)2

+
[(
m2

1 − m2
2

) (
2m2

h − m2
Z

)− m2
Zm

2
h

] (
B(2)

0 − B(12)
0

)

2m2
h

(
m2

Z − m2
h

)2

+ m2
2C0

m2
Z − m2

h

+ m2
1 − m2

2 + m2
h − m2

1 ln
(
m2

1/m
2
2

)

2m2
h

(
m2

Z − m2
h

) .

(A10)

A.2: Analytic formulas in special case of m1 = m2 = m

In the case of equal masses, we can use the following well-
known functions [10,20,21]
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g(x) =
⎧
⎨

⎩

√
x − 1 arcsin

√
1
x x ≥ 1,√

1−x
2

(
−iπ + ln 1+√

1−x
1−√

1−x

)
x < 1

, (A11)

f (x) =
⎧
⎨

⎩

arcsin2
√

1
x x ≥ 1,

− 1
4

(
−iπ + ln 1+√

1−x
1−√

1−x

)2
x < 1

,

(A12)

I1(x, y) = xy

2(x − y)
+ x2y2

2(x − y)2 [ f (x) − f (y)]

+ x2y

(x − y)2 [g(x) − g(y)] , (A13)

I2(x, y) = − xy

2(x − y)
[ f (x) − f (y)] . (A14)

Defining t1 = tz = 4m2/m2
Z and t2 = th = 4m2/m2

h , the
PV functions involved with this work can be written as

B(i)
0 = B(12)

0 + 2 − 2g(ti ), (A15)

C0 = − I2(t2, t1)

m2 , (A16)

C1 + C2 = B(1)
0 − B(2)

0

m2
Z − m2

h

− C0,

C12 + C22 + C2 = m2
Z (B(1)

0 − B(2)
0 )

2(m2
Z − m2

h)
2

+ m2C0

m2
Z − m2

h

+ 1

2(m2
Z − m2

h)
= I1(t2, t1)

4m2 . (A17)

The B(i)
0 in Eq. (A15) is derived from the general well-know

form, namely

B(i)
0 = B(12)

0 −
∫ 1

0
dx ln

[
1 + 4t−1

i x(x − 1)
]

= B(12)
0 −

∫ 1
2

− 1
2

dx ln
[
4t−1

i x2 + 1 − t−1
i

]
.

More intermediate steps, including integration by parts, are
as follows

∫ 1
2

− 1
2

dx ln
[
4t−1

i x2 + 1 − t−1
i

]
= −

∫ 1
2

− 1
2

8t−1
i x2 dx

4t−1
i x2 + 1 − t−1

i

= − 2 +
∫ 1

2

− 1
2

2 dx
4x2

ti−1 + 1

= − 2 + 2g(ti ).

Appendix B: Details of amplitude calculation

For completeness, we present some more detailed steps to
obtain the formulas of M(5)μν and M(5+6)μν in Eqs. (11)

and (12). Also, the contribution from diagram 1 in Fig. 1 will
be discussed.

Using the replacements in Eq. (10) to calculate the F21

factor in M(5)μν , we get

V1μβλ = gαβ

(

gα′
β − qβqα′

m2
1

)
[
(q + q1)μgα′λ

−(q + p1)λgα′μ − (q1 − p1)α′gμλ

]

= (q + q1)μgβλ − (q + p1)λgμβ − (q1 − p1)βgμλ

− (q + q1)μqβqλ

m2
1

+ (q + p1)λqβqμ

m2
1

+ (q1 − p1)qqβgλμ

m2
1

→ 2qμgβλ − (q + p1)λgμβ − (q1 − p1)βgμλ

+ qβ

m2
1

[
−qμq1λ + (q2

1 − m2
Z )gμλ

]

≡ V1,1μβλ + 1

m2
1

× V1,2μβλ, (B1)

where we have used p2
1 = m2

Z , p2
2 = 0, q.(q1 − p1) =

(q1 + p1).(q1 − p1) = q2
1 − p2

1, q1.(q2 − p2) = q2
2 etc. The

arrow means that replacements (10) have been applied. And
we will apply them automatically from now on. Similarly,
we can prove that

V βλ
2ν → V βλ

2,1ν + 1

m2
2

× V βλ
2,2ν + 1

m4
2

× V βλ
2,3ν, (B2)

where

V βλ
2,1ν = −(q1 + p2)

βδλ
ν − (q2 − p2)

λδβ
ν + 2q1νg

βλ,

V βλ
2,2ν = qλ

1

(
δβ
ν q

2
2 + q1ν(q1 + p2)

β − 2q1νq
β
1

)

+ qβ
2

(
δλ
νq

2
1 − q2ν p

λ
2 − q1νq

λ
2

)
,

→ qλ
1 δβ

ν q
2
2 + qβ

2 δλ
νq

2
1 − 2q1νq

λ
1 q

β
2 ,

V βλ
2,3ν = −(q1.p2)q

λ
1 q

β
2 p2ν → 0. (B3)

Now the part we need is written as follows

V1μβλV
βλ
2ν → (V1,1V2,1)μν + (V1,1V2,2)μν

m2
2

+ (V1,2V2,1)μν

m2
1

+ (V1,2V2,2)μν

m2
1m

2
2

, (B4)

where

(V1,1V2,1)μν = 2(2d − 3)qμqν + (−4d + 7)qμ p1ν

− p2μqν + 5p2μ p1ν,

(V1,1V2,2)μν = qμqν

[
q2 + q2

1 + m2
h − 2m2

Z

]
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+ qμ p1ν

[
−q2 − 3q2

1 + q2
2 − m2

h + 2m2
Z

]

+ p2μqν

[
−2q2 + q2

1 + 2m2
Z

]

+ p2μ p1ν

[
2q2 + q2

1 − 2m2
Z

]
,

(V1,2V2,1)μν = qμ

[
−q1ν(q.q2) + qνq

2
2

]

+ (q2
1 − m2

Z )
(
qμqν − 2qμ p1ν + 2p2μqν

)

= qμqν

[

−q2

2
+ q2

1 + q2
2

2
+ m2

h − 2m2
Z

2

]

+ qμ p1ν

[
q2

2
− 2q2

1 + q2
2

2
+ −m2

h + 4m2
Z

2

]

+ p2μqν

[
2q2

1 − 2m2
Z

]
,

(V1,2V2,2)μν = − qμqν p
2
1q

2
2 + qμq1ν(q.q2)

[
2p2

1 − q2
1

]

= qμqν

[
−m2

Zq
2
2 + 1

2
(q2 + q2

2 − m2
h)

×
(
−q2

1 + 2m2
Z

)]

− qμ p1ν

1

2
(q2 + q2

2 − m2
h)
(
−q2

1 + 2m2
Z

)
.

(B5)

From this, it is easy to derive the Eq. (11).
The amplitude corresponding to diagram 6 from Fig. 1 is

iM(6)μν =
∫

ddq

(2π)d
(ighVi j gαβ)

−i

D0

(

gαα′ − qαqα′

m2
1

)

× (−ie Q gZVi j )
[
2gμνgα′β ′ − gμνgα′β ′

−gμνgα′β ′
] −i

D2

(

gββ ′ − qβ
2 q

β ′
2

m2
2

)

→ [
e Q ghVi j gZVi j

]×
∫

ddq

(2π)d

1

D0D2

× 1

m2
1m

2
2

×
[

− 2m2
1q2μq2ν − 2m2

2qμqν

+ (q.q2)(q2μqν + qμq2ν)
]
. (B6)

Then it is easy to derive that

iM(6)μν → [
e Q ghVi j gZVi j

] ∫ ddq

(2π)d
× 1

m2
1m

2
2

×
{

qμqν

[
1

D2
+ 1

D0
− m2

1 + m2
2 + m2

h

D0D2

]

+qμ p1ν

[

− 1

2D2
− 1

2D0
+ 3m2

1 − m2
2 + m2

h

2D0D2

]

+p2μqν

[

− 1

2D2
− 1

2D0
+ 3m2

1 − m2
2 + m2

h

2D0D2

]

+p2μ p1ν

[
−2m2

1

D0D2

]}

. (B7)

Contribution from the diagram 1 of Fig. 1 is

iM(1)μν = (−1) ×
∫

ddq

(2π)d

× Tr

[
−i

(
Yh fi j L PL + Yh fi j R PR

) i(q/2 + m2)

D2

×(ie Q γν)
i(q/1 + m2)

D1

[
i
(
g∗
Z fi j Lγμ PL

+g∗
Z fi j Rγμ PR

)] i(q/ + m1)

D0

]

= −e Q
∫

ddq

(2π)d
× 1

D0D1D2

× 1

2
Tr
[(

q/2γνq/1γμ + m2
2γμγν

)

×
(
K+

LL ,RR − K−
LL ,RRγ5

)

+ (
q/2γνγμq/ + γνq/1γμq/

)

×
(
K+

LR,RL + K−
LR,RLγ5

)]
.

While the contribution of the corresponding diagram with
opposite internal directions is

iM′
(1)μν = −e Q

∫
ddq

(2π)d
× 1

D0D1D2

× 1

2
Tr
[(
q/2γνq/1γμ + m2

2γμγν

)

×
(
K+∗

LL ,RR + K−∗
LL ,RRγ5

)

+ (
q/2γνγμq/ + γνq/1γμq/

) (
K+∗

LR,RL − K−∗
LR,RLγ5

)]
.

The sum of the two above diagrams gives the final result
of F21, fi j j and f5, fi j j where the complex conjugation corre-
sponds to the contribution fromM′

(1)μν . Using the properties
of the Dirac matrices, it is easy to find out the two expresions
given in Eq. (15).

AppendixC:Gauge bosons and couplings in the left-right
model SU(2)L × SU(2)R × U(1)B−L

The model used here was introduced in Refs. [64,65], where
many results we show here were introduced. The relations
between the original gauge boson states and the physical ones
{W ′±

μ , W±
μ , Aμ, Zμ, Z ′

μ} are
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(
W±

Rμ

W±
Lμ

)

=
(

cθ+ sθ+
−sθ+ cθ+

)(
W ′±

μ

W±
μ

)
,

⎛

⎝
W 3

Lμ

W 3
Rμ

AB−Lμ

⎞

⎠ 

⎛

⎝
sW , cW , −c3

R
gR
gL

ε2

sRcW , −sRsW , cR
cRcW , −cRsW , −sR

⎞

⎠

⎛

⎝
Aμ

Zμ

Z ′
μ

⎞

⎠ , (C1)

where W±
L ,Rμ ≡ W 1

L ,Rμ∓iW 2
L ,Rμ√

2
,

sθ+ = gR
g

ε2 sin 2β, sR ≡ gY
gR

= gLtW
gR

,

ε ≡ mW

mW ′
, mZ ′ = mW ′

cR
.

We will keep the approximation up to the order O(ε2),
which gives s2

θ+ = 0 and cθ+ = 1.
Only the bidoublet Higgs � ∼ (2, 2, 0) contributes to the

SM-like Higgs boson, namely

� =
(

�0
1 �+

2
�−

1 �0
2

)
=
(

vHcβ − sα√
2
h, H+cβ

H−sβ, vHsβ + cα√
2
h

)

, (C2)

where only the SM-like Higgs h and charged Higgs bosons
are kept. The SM-like gauge boson W± has mass mW 

gLvH/

√
2.

The respective covariant derivative is [49],

Dμ� = ∂μ� − igL
σa

2
Wa

Lμ� + igR�
σa

2
Wa

Rμ,

≡ ∂μ� − igL
2

P�μ, (C3)

where gL ,R and Wa
L ,Rμ (a = 1, 2, 3) are the gauge couplings

and bosons of the groups SU (2)L ,R , σa are Pauli matrices.
The kinetic term of the � is

Lk
� =Tr

[(
Dμ�

)† (
Dμ�

)]

=Tr

[

∂μ�† (∂μ�
)− igL

2

[
∂μ�† (Pμ�

)

− (
Pμ�

)†
(∂μ�)

]
+ g2

L

4

(
Pμ�

)† (
Pμ�

)
]

, (C4)

which contains couplings of Higgs and gauge bosons. The
part of the Lagrangian (C4) giving couplings hV+V ′− is

L(hV±V ′∓) = g2
L

2

[(
�0∗

1 �0
1 + �0∗

2 �0
2

)

×
(

W+μ
L W−

Lμ + g2
R

g2
L

W+μ
R W−

Rμ

)

−2
gR
gL

(
�0∗

1 �0
2W

+μ
L W−

Rμ + �0∗
2 �0

1W
+μ
R W−

Lμ

)]

→ gLmW sin(β − α)h

(

WμW−
μ + g2

R

g2
L

W ′+μW ′−
μ

)

− gRmW cos(β + α)h
(
W+μW ′−

μ + W−μW ′+
μ

)
,

(C5)

where we keep only dominant contributions to the coeffi-
cients of the hV+V ′−, i.e. we use the approximation W 

WL and W ′ 
 WR .

The couplings ZH±V∓ are

L(ZH±V∓) = − gRmW cos(2β) × W 3
Lμ

(
W+μ

R H−

+ W−μ
R H+)


 − gRcWmW cos(2β)

× Zμ

(
sθ+W

+μH− + W ′+μH− + H.c.
)
,

(C6)

where we used cθ+ = 1 and W 3μ
L → cW Zμ. This result is

consistent with [64]
The couplings hH±V∓ are

L(hH±V∓) = − igL
2

Tr
[
∂μ�† (Pμ�

)− (
Pμ�

)†
(∂μ�)

]

→ gL
2

cos(β − α)
[
(p0 − p−)μW

+μ
L H−h

−(p0 − p+)μW
−μ
L H+h

]

+ gR
2

sin(β + α)
[
(p0 − p−)μW

+μ
R H−h

−(p0 − p+)μW
−μ
R H+h

]
, (C7)

where we have used ∂μ → −i pμ; p0,± are momenta of the
Higgs boson h and H±. The first line of the final result in (C7)
contains the factor cos(β −α) 
 cos(π/2) = 0, because the
matching condition with the SM coupling hW+W− lead to
β = α + π/2. Using W±

Rμ 
 W ′±
μ + sθW±

μ , the second line
is written in the physical gauge boson states as follows,

L(hH±V∓) = gR
2

sin(β + α)
[
(p0 − p−)μ

(
W ′+μ

+sθW
+μ
)
H−h

−(p0 − p+)μ
(
W ′−μ + sθW

−μ
)
H+h

]
.

(C8)

The triplet couplings of three gauge bosons ZV V ′ are
contained in the kinetic term of the non-abelian gauge bosons,
namely [49]

Lk
g = −1

4
Fa
LμνF

aμν
L − 1

4
Fa
RμνF

aμν
R ,

Fa
L ,Rμν = ∂μW

a
L ,Rν − ∂νW

a
L ,Rμ + gL ,RεabcWb

L ,RμW
c
L ,Rν .

(C9)
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The triplet gauge couplings are derived as follows,

L3g = − gLεabc(∂μW
a
Lν)W

bμ
L Wcν

L

− gRεabc(∂μW
a
Rν)W

bμ
R Wcν

R

= − igLcW
[
Zν

(
−∂μW

+
LνW

−μ
L + ∂μW

−
LνW

+μ
L

)

+Zμ
(
∂μW

+
LνW

−ν
L − ∂μW

−
LνW

+ν
L

)

+∂μZν

(
−W+μ

L W−ν
L + W−μ

L W+ν
L

)]

− igR(−sRsW ) × (L → R), (C10)

where we pay attention to only Z couplings by replaced
W 3

L → cW Z and W 3
R → −sRsW Z in the last row of (C10).

Now based on the Feynman rules, the vertex factor of the
coupling ZαW+μW−ν defined as −igZW+W−�αμν(p0, p+,

p−) can be derived by taking the limit W±
L → W±. As a

result, we obtain gZW+W− 
 gLcW . Similarly, the coupling
ZαW ′+μW ′−ν with the vertex factor −igZW ′+W ′−�αμν(p0,

p+, p−) gives gZW ′+W ′− 
 −gRsRsW = −gY sW =
−gLs2

W /cW .
UsingW+

LμW
−
Lν → −sθ+cθ+W

′+
μ W−

ν +H.c. andW+
RμW

−
Rν

→ sθ+cθ+W
′+
μ W−

ν + H.c., the couplings ZαW ′+μW−ν and
ZαW+μW ′−ν give gZW+W ′− = gZW ′+W− = −sθ+cθ+(gLcW
+ gRsRsW ) 
 −gLsθ+/cW , respectively.
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