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Joint remote state preparation (JRSP) is a useful way to securely transfer quantum information encoded in
quantum states between distant places without physically sending the states themselves. In this paper we study
JRSP of the most general D-dimensional quantum state called quDit state, with arbitrary integer D. We first show
that, by standard procedures, i.e., by exploiting projective measurements on the Hilbert space of the systems of
concern, this task can be completed for the dimensions 2, 4, or 8 only. We then propose a nonstandard protocol
by means of a positive operator-valued measurement (POVM), which we suitably design so that our protocol
works deterministically for any dimension. We also propose a nonstandard protocol for deterministic JRSP of
arbitrary hybrid quDit-quNit entanglement with another POVM. Moreover, we construct quantum circuits to
realize the two POVMs in the two nonstandard JRSP protocols mentioned above. Our results may be of interest
not only from a theoretical point of view but also from an experimental one.
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I. INTRODUCTION

A salient power in the quantum world is the possibility of
performing, by means of local operation and traditional (i.e.,
classical) communication, a number of global tasks that can-
not be performed in the classical world. Most of those tasks,
such as superdense coding [1], quantum-algorithm-based
computation [2,3], quantum teleportation [4], quantum secret
sharing [5], remote state preparation (RSP) [6,7], quantum di-
alogue [8–10], joint remote state preparation (JRSP) [11–18],
and so on, are thanks to the so-called quantum entanglement
[19,20] which has no counterparts at all in our everyday life.
As a prerequisite requirement for accomplishment of any
quantum global task, an appropriate quantum entanglement
bridging all the parties authorized to participate in a given
task has to be established prior to the task’s execution. Thus
generation of entangled states is of paramount importance. As
for quantum entanglements, they may exist not only among
systems of similar natures or of the same dimension but also
among systems of distinct natures or of different dimensions.
Since quantum information can be encoded and manipulated
by various means based on hardware platforms that may be
largely dissimilar in nature or in dimension, preparation of
such hybrid entanglements is necessary enabling a flexible
interfacing between different physical systems for the pur-
pose of achieving the internet of things in the era of the
industrial revolution 4.0. Many useful hybrid protocols relying
on discrete-continuous-variable techniques have been realized
in the laboratory [21]. Applications of micro-macro hybrid
entangled states to perform quantum teleportation [22,23] and

*nban@iop.vast.ac.vn

test Bell-Clauser-Horne-Shimony-Holt inequality [24] have
been theoretically considered. Their mechanisms and realiza-
tion have also attracted great attention from experimentators
[25–27]. In particular, schemes to generate quantum entangle-
ment of photons in their dual wave-particle nature have been
devised theoretically and confirmed experimentally [28,29].

In this work, we are interested in hybrid quDit-quNit
entanglements [30,31] with arbitrary dimensions D and N.

In very recent publications [32,33] such a type of quantum
entanglement has been investigated via the technique of JRSP,
but only equatorial states of the form

|ψ〉12 = 1√
DN

D−1∑
d=0

N−1∑
n=0

eiϕdn |d, n〉12, (1)

with ϕdn real angles carrying the phase information and
|d, n〉12 ≡ |d〉1|n〉2, have been dealt with. A natural extension
is to construct a JRSP protocol for the most general hybrid
quDit-quNit entangled state of the form

|�〉12 =
D−1∑
d=0

N−1∑
n=0

adne
iϕdn |d, n〉12, (2)

where adn are real numbers carrying the amplitude
information and satisfying the normalization condition∑D−1

d=0

∑N−1
n=0 a2

dn = 1. In comparison with |ψ〉12 in Eq. (1),
the state |�〉12 in Eq. (2) is the most general one because it is
characterized by both the phase {ϕdn} and the amplitude {adn}
information. Before designing JRSP protocol of |�〉12, let us
first consider the case of JRSP of a general single-quDit state

|�〉 =
D−1∑
d=0

ade
iϕd |d〉, (3)
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with ϕd and ad real numbers satisfying the conditions 0 �
ϕd � 2π and

∑D−1
d=0 a2

d = 1. This seemingly simple task turns
out to be interestingly nontrivial. In fact, it was rigorously
proved in [34] that the standard procedure for RSP (and also
for JRSP as will be shown shortly) of the state (3) with
ad = 1/

√
D ∀d [i.e., |�〉 = (1/

√
D)

∑D−1
d=0 eiϕd |d〉] applies

to any dimension D, but that with ϕd = 0 ∀d (i.e., |�〉 =∑D−1
d=0 ad |d〉) can only be implemented for D = 2, 4, or 8.

In the next section, Sec. II, we will design a JRSP protocol
for the state (3) with arbitrarily possible {ad} and {ϕd} by
means of a positive operator-valued measurement (POVM)
combined with projective measurement (PM), which works
for any dimension D. Since POVMs are not used in a standard
RSP-JRSP protocol, ours can be referred to as nonstandard
protocols. Section III describes the actual procedure of how to
realize the POVM introduced in Sec. II. Subsequently, Sec. IV
presents a JRSP protocol for the most general hybrid quDit-
quNit state (2) whose POVM implementation is described in
Sec. V. The final section, Sec. VI, is the conclusion.

II. JRSP OF A GENERAL QUANTUM STATE OF ANY
DIMENSION

The simplest JRSP protocol involves three distant parties:
two preparers Alice and Bob plus one receiver Charlie. Char-
lie is able to securely and faithfully receive the state (3) only
when Alice and Bob cooperate. A quantum state of dimension
D is referred to as quDit, whose most general form is given
by |�〉 in Eq. (3). To jointly prepare |�〉 the three parties must
priorly share a quantum resource, say, in terms of a tripartite
quantum state of the form

|Q〉ABC = 1√
D

D−1∑
d=0

|d, d, d〉ABC, (4)

which is a high-dimensional version of the well-known two-
dimensional GHZ state [35]. Of the state |Q〉ABC quDit A be-
longs to Alice, B to Bob, and C to Charlie. In a standard JRSP
protocol each party can only carry out a PM on his or her own
quDit or/and apply unitary operators on it, without exploiting
any extra Hilbert spaces besides those of A, B, and C. There-
fore, a standard protocol begins with Alice who measures her
quDit in an orthonormal basis {|ωp〉

A
; p = 0, 1, . . . , D − 1}

(i.e., the measurement is projective) so that when she obtains
an outcome p the state of Bob’s and Charlie’s quDits is
disentangled from |Q〉ABC and projected onto

|�p〉BC = U
(p)
BC

D−1∑
d=0

ad |d, d〉BC, (5)

where operators U
(p)
BC = U

(p)
B ⊗ U

(p)
C should be unitary, de-

pendent on the outcome p but independent of the amplitude
information {ad} of the state to be prepared. Note at this point
that we have assumed that Alice is able to find such a proper
set of orthonormal states |ωp〉

A
with p = 0, 1, . . . ,D − 1. If

so, when Alice publicly announces p the other two parties can
make themselves share an entangled state of the form

|W 〉BC =
D−1∑
d=0

ad |d, d〉BC. (6)

After that Bob performs an appropriate PM of his quDit to
project Charlie’s quDit onto a state that can be transformed
into the desired state (3) by applying a correct recovering
operator conditioned on Bob’s measurement outcome. The
first stage of the above JRSP strategy can be looked upon as
RSP of the state |W 〉 = ∑D−1

d=0 ad |d̃〉 with |d̃〉 ≡ |d, d〉 from
Alice to BoCha, where BoCha serves as one and the same
company owned by both Bob and Charlie (i.e., of interest is
the global two-quDit state

∑D−1
d=0 ad |d, d〉 rather than a single-

quDit one
∑D−1

d=0 ad |d〉). As learnt from Ref. [34], if such
an RSP is implementable (i.e., the operators U

(p)
BC mentioned

above exist) for a dimension D, then the sphere SD−1 is
parallelizable. Since the sphere SD−1 is parallelizable only for
D = 2, 4, or 8 (the case of D = 1 is trivial and will not be
included in our consideration), the RSP of |W 〉 from Alice
to BoCha [which later leads to the JRSP of |�〉 in Eq. (3)
from Alice and Bob to Charlie] is implementable if and only
if D = 2, 4, or 8 (see the main theorem in Ref. [34]).

Approaching the first stage of the standard JRSP strategy
under another angle it can be verified that the operators U

(p)
BC

in Eq. (5) are guaranteed to exist if Alice’s orthonormal
basis states {|ωp〉

A
; p = 0, 1, . . . , D − 1} are related to the

computational basis ones {|p〉A; p = 0, 1, . . . , D − 1} as⎛
⎜⎜⎝

|ω0〉A
|ω1〉A

...
|ωD−1〉A

⎞
⎟⎟⎠ = O(D)

⎛
⎜⎜⎝

|0〉A
|1〉A

...
|D − 1〉A

⎞
⎟⎟⎠, (7)

where O(D) is called a real orthogonal design of size D [36],
which is a D × D unitary matrix with each of its entries being
±a0,±a1, . . . or ±aD−1. For D = 2, for example, one easily
finds

O(2) =
(

a0 a1

−a1 a0

)
. (8)

Yet, already for the next higher dimension D = 3 no such O(3)

can be found. The success of RSP of |W 〉 from Alice to BoCha
(JRSP of |�〉 from Alice and Bob to Charlie) is thus absolutely
decided by the existence of O(D). In fact, O(D) exists if and
only if D = 2, 4, or 8, that is the content of an important
theorem which was rigorously proved by Hurwitz and Radon
in Ref. [37].

Having been aware of the impossibility of the standard
JRSP of the quDit state (3) with the dimension D �= 2, 4,
and 8, we now propose a nonstandard protocol by using
POVM combined with PM that works for any dimension. The
quantum state shared beforehand among the three parties is
the same in Eq. (4). The measurement that Alice first performs
on quDit A is now not a PM as in a standard protocol but a
POVM of D2 elements

E
(k,l)
A = M

(k,l)†
A M

(k,l)
A , (9)

with k, l ∈ {0, 1, . . . , D − 1} and

M
(k,l)
A = 1

D

D−1∑
r,s=0

ar⊕k exp

[
2πi

D
l(r − s)

]
|s〉A〈r|, (10)

with ⊕ denoting an addition modulo D, is the measure-
ment (or detection) operator. It can be verified that this is
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indeed a D2-element POVM, since E
(k,l)
A are positive and

satisfy the condition
∑D−1

k,l=0 E
(k,l)
A = IA with IA the D × D

unit matrix [38]. Different from the PM, the POVM’s ele-
ments may be nonorthogonal as in our case E

(k,l)†
A E

(k′,l′ )
A �=

δkk′δll′E
(k,l)†
A E

(k,l)
A .

To prevent any of the preparers from knowing the full detail
of |�〉, its amplitude information {ad} is given to Alice, while
its phase information {ϕd} is given to Bob. Having {ad} with
herself Alice is able to perform on her quDit A the above
specified POVM (9). With a probability of 1/D2 she obtains
an outcome k, l that partially disentangles |Q〉ABC as

|Q〉ABC → M
(k,l)
A |Q〉ABC√

ABC〈Q|M (k,l)†
A M

(k,l)
A |Q〉ABC

= |�l〉A|�kl〉BC,

(11)
where

|�l〉A = 1√
D

D−1∑
j=0

exp

(
−2πi

D
lj

)
|j 〉A (12)

and

|�kl〉BC =
D−1∑
d=0

ad⊕k exp

(
2πi

D
ld

)
|d, d〉BC. (13)

To make the present JRSP successful Alice must broadcast via
any public media her outcome k, l.

Next, making use of the broadcasted outcome k, l Bob
applies on his quDit B an operator which is defined in
dependence on k, l as

V
(k,l)
B =

D−1∑
j=0

exp

(
−2πi

D
lj

)
|j ⊕ k〉B〈j | (14)

and then projectively measures B in the {ϕd}-dependent or-
thonormal basis {|�m〉B ; m = 0, 1, . . . ,D − 1} with

|�m〉B = 1√
D

D−1∑
j=0

exp

(
−2πi

D
mj − iϕj

)
|j 〉B. (15)

Bob is capable of managing the basis {|�m〉B} because the
phase information {ϕd} is in his hand. As a consequence of
Bob’s action, if the outcome m occurs, with a probability
of 1/D, the entangled state |�kl〉BC in Eq. (13) becomes
separable as

|�kl〉BC → |�m〉B |�km〉C, (16)

where

|�km〉C =
D−1∑
d=0

ad exp

(
2πi

D
md + iϕd

)
|d  k〉C, (17)

with  a subtraction modulo D. To allow Charlie to get the
desired state |�〉 Bob must also publicly broadcast his mea-
surement outcome m. Note that the operator V

(k,l)
B in Eq. (14)

is nothing else but Xk
BZ

l†
B because XB = ∑D−1

j=0 |j ⊕ 1〉B〈j |
and ZB = ∑D−1

j=0 exp ( 2πi
D

j )|j 〉B〈j |. So V
(k,l)
B is readily avail-

able to Bob with the knowledge of k and l.

Obviously, to complete the JRSP protocol, Charlie, after
hearing about k from a previous announcement by Alice and

FIG. 1. Quantum circuit for JRSP of the general state |�〉 of
dimension D in Eq. (3). A solid line represents a quDit, while a
dashed line represents a classical dit. A, B, and C are quDits of the
quantum channel |Q〉 ≡ |Q〉ABC of Eq. (4). |�kl〉 ≡ |�kl〉BC is given
by Eq. (13), V (k,l) by Eq. (14), and R(k,m) by Eq. (18). POVM is
the positive operator-valued measurement defined by Eq. (9), while
PM is the projective measurement in the basis {|�m〉B} defined by
Eq. (15). The wavy line embraces quDits that are entangled with each
other.

m from a recent broadcasting by Bob, applies on the state
|�km〉C of Eq. (17) the operator

R
(k,m)
C =

D−1∑
j=0

exp

(
−2πi

D
m(j + k)

)
|j ⊕ k〉C〈j | (18)

to transform the state |�km〉C of Eq. (17) to the target state
|�〉C of Eq. (3). The operator R

(k,m)
C defined in Eq. (18) is also

manageable by Charlie, since it is nothing else but Z
m†
C Xk

C.

The quantum circuit for our JRSP of the general single-quDit
state |�〉 is sketched in Fig. 1.

III. REALIZATION OF THE POVM (9)

The nonstandard JRSP protocol described in the preceding
section is valid for any dimension D, as opposed to the stan-
dard one which is applicable for D = 2, 4, or 8 only. The key
component in our nonstandard JRSP protocol is the POVM
(9). In theory it seems very transparent and simple. But, what
matters in practice is how to actually execute the POVM. In
a recent publication [39] another formally different POVM is
employed for a controlled JRSP protocol. Its realization has,
however, remained unelucidated. Our purpose in this section
is thus to provide a quantum circuit to implement our POVM
defined in Eqs. (9) and (10).

The general idea comes up from Neumark’s theorem [40]
whose spirit is the following. To implement a POVM on
a system of interest, the Hilbert space of it must first be
enlarged to embrace extra dimensions of an auxiliary system
called ancilla. Then the system and the ancilla are forced
to unitarily evolve so that their degrees of freedom, which
are separable initially, become entangled with each other.
Afterwards, depending on the concrete type of the POVM,
PM(s) will be carried out in the combined system-ancilla
Hilbert space or in the Hilbert space of the ancilla or/and
the system. These procedures will result in realization of the
POVM in the system of concern (see, e.g., Ref. [41] for more
details).

In our case the extra dimension is supplied by an ancilla
a which is of the same dimension D as that of quDit A.
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Moreover, the ancilla state should have the form

|χ〉a =
D−1∑
j=0

aj |j 〉a, (19)

with {aj } coincident with those in the state |�〉 of Eq. (3).
Since the POVM (9) is to be carried out on Alice’s quDit
A, she has to create |χ〉a locally by herself. Of course, she
is in the position to do that because she knows the values
of {aj }. There are several methods to create the state |χ〉a
(see, e.g., Refs. [42,43]). Nevertheless, most of the existing
methods suffer from certain limitations, requiring even further
additional dimensions plus entangling transformations and/or

recursive postselection measurements; hence the whole pro-
cess is costly and not deterministic (may be asymptotically
deterministic but consumes a lot of quantum resource [42]).
Here we propose a deterministic and economical method
that only needs an initial quDit a in the simplest state |0〉a
on which a proper unitary operator Ua will act. To imprint
the wanted amplitude information into |0〉a, the operator Ua

should depend on {aj }. The first column of Ua is the normal-
ized vector (a0, a1, a2, . . . , aD−1)T and the remaining column
vectors could be constructed to be mutually orthonormal
vectors using the well-known method such as Gram-Schmidt
process so that Ua becomes a unitary operator. Here we have
designed an explicit form of such an {aj }-dependent unitary
operator as

Ua =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
a1
S2

a0a2
S2S3

. . .
a0aD−3

SD−3SD−2

a0aD−2

SD−2SD−1

a0aD−1

SD−1

a1 − a0
S2

a1a2
S2S3

. . .
a1aD−3

SD−3SD−2

a1aD−2

SD−2SD−1

a1aD−1

SD−1

a2 0 − S2
S3

. . .
a2aD−3

SD−3SD−2

a2aD−2

SD−2SD−1

a2aD−1

SD−1

...
...

...
. . .

...
...

...
aD−3 0 0 . . . − SD−3

SD−2

aD−3aD−2

SD−2SD−1

aD−3aD−1

SD−1

aD−2 0 0 . . . 0 − SD−2

SD−1

aD−2aD−1

SD−1

aD−1 0 0 . . . 0 0 −SD−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

with

Sq =
√√√√q−1∑

j=0

a2
j (21)

for q = 2, 3, . . . , D − 1. Transparently, all the columns of Ua

depend explicitly on {aj } and a direct check gives

Ua|0〉a = |χ〉a, (22)

as we need. In principle the unitary operator Ua that we
explicitly derived in Eq. (20) can be implemented in the
laboratory. Most transparent is the case in the optical domain
where the quDit is employed in terms of multirail coding

FIG. 2. Quantum circuit for the POVM defined by Eq. (9):
(a) the formal performance and (b) the actual realization. A solid
line represents a quDit, while a dashed line represents a classical dit.
A, B, and C are quDits of the quantum channel |Q〉 ≡ |Q〉ABC of
Eq. (4), while a is an ancillary quDit in state |χ〉 ≡ |χ〉a of Eq. (19).
|�〉 ≡ |�〉ABCa and |�kl〉 ≡ |�kl〉BC are given by Eqs. (25) and (13),
respectively. BS is short for backward-shift gate, while PM1 and
PM2 are projective measurements in the bases {|k〉a} and {|�l〉A}
of Eq. (12). The wavy line embraces quDits that are entangled with
each other.

and the desired operator Ua can be realized by means of
linear-optics devices such as beam splitters, phase shifters,
and mirrors [44]. Yet, what Alice still needs is the so-called D-
dimensional controlled-backward-shift (CBS) gate that acts
on control quDit c and target quDit t in the following manner:

GCBS
ct |r, s〉ct = |r, s  r〉ct . (23)

The inverse of that CBS gate is obviously the D-dimensional
controlled-forward-shift (CFS) one whose action on control
quDit c and target quDit t reads

GCFS
ct |r, s〉ct = |r, s ⊕ r〉ct . (24)

Now, having the state |χ〉a at hand, Alice applies a CBS gate
on quDit A (served as the control one) of the quantum state
|Q〉ABC and quDit a (served as the target one), making all the
quDits A, B, C, and a entangled in a single four-quDit state:

|�〉ABCa = GCBS
Aa |Q〉ABC |χ〉a

= 1√
D

D−1∑
d,j=0

ajG
CBS
Aa |d, j〉Aa|d, d〉BC

= 1√
D

D−1∑
d,j=0

aj |d, j  d〉Aa|d, d〉BC

= 1√
D

D−1∑
d,k=0

ad⊕k|k, d, d, d〉aABC. (25)

Next, Alice measures quDit a in its computational ba-
sis {|k〉a; k = 0, 1, . . . , D − 1} and quDit A in the basis
{|�l〉A; l = 0, 1, . . . , D − 1}, which was defined in Eq. (12).
The outcome may be one of the D2 possibilities. If an outcome
k, l happens, with a probability of 1/D2, the two unmeasured
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quDits B and C turn out to be disentangled from |�〉ABCa but
remain entangled with each other, notably, in a state identical
to |�kl〉BC defined by Eq. (13) in Sec. II, which is precisely
the product brought about by the POVM (9) on quDit A. The
amount of additional dimension in our circuit of realization of
the POVM (9) is calculated as subtraction between dimension
of HA ⊗ Ha and that of HA (HX denotes the Hilbert space
of system X), which is equal to D(D − 1). This is the lower
bound for our scheme which makes use of the tensor product
extension, i.e., the working Hilbert space is the tensor product
of the Hilbert space of quDit A and the Hilbert space of quDit
a [41]. The quantum circuit for realization of our POVM
defined by Eq. (9) is sketched in Fig. 2.

IV. JRSP OF AN ARBITRARY HYBRID QUDIT-QUNIT
ENTANGLEMENT

As secure exchange of quantum information between phys-
ical systems of different dimensions may be of benefit in
future applications, entangling such systems turns out nec-
essary. In this section, we are concerned with the problem
of how to jointly prepare at a remote location an entan-
gled state between a system of dimension D and another
system of dimension N, with arbitrary D and N. This
kind of entanglement can be named hybrid quDit-quNit that
lives in a Hilbert space, which is the tensor product of the
Hilbert spaces of the two different-in-dimension systems.
A special case of it was dealt with in Refs. [32,33] and
here we address its most general form as given in Eq. (2),
|�〉12 = ∑D−1

d=0

∑N−1
n=0 adne

iϕdn |d, n〉12, of which, to remind
the reader, system labeled 1 has dimension D while sys-
tem labeled 2 has dimension N. It is worthy to note that,
if adn = bdcn and ϕdn = μd + νn, then state |�〉12 factors
out as

∑D−1
d=0 bde

iμd |d〉1 ⊗ ∑N−1
n=0 cne

iνn |n〉2 (i.e., |quDit〉1 ⊗
|quNit〉2 ) and the problem is just a simple consequence of the
protocol proposed in Sec. II [i.e., two independent protocols:
one deals with quDit state |quDit〉1 = ∑D−1

d=0 bde
iμd |d〉1 via

the shared quantum state |QD〉A1B1C1
of Eq. (26) and the

other deals with quNit state |quNit〉2 = ∑N−1
n=0 cne

iνn |n〉2 via
the state |QN 〉A2B2C2

of Eq. (26)]. Here, we are interested in
the case with adn �= bdcn and ϕdn �= μd + νn in which |�〉12
is the genuine hybrid quDit-quNit entangled state and the
protocol for JRSP of |�〉12 can by no means be split into two
independent ones. As mentioned before, to keep the secrecy
of |�〉12, Alice is allowed to know only the amplitudes {adn},
while Bob only the phases {ϕdn}. Furthermore, in order that
Alice and Bob can jointly prepare |�〉12 for a remote Charlie,
the three parties have to be quantumly connected via, say, a
pair of high-dimensional GHZ states |QD〉A1B1C1

|QN 〉A2B2C2
,

one of dimension D and the other of dimension N. The shared
quantum state can be represented in the following way:

|Q〉A1B1C1A2B2C2

≡ |QD〉A1B1C1 |QN 〉A2B2C2

= 1√
DN

D−1∑
d=0

N−1∑
n=0

|d, n〉A1A2
|d, n〉B1B2

|d, n〉C1C2
, (26)

with quDit A1 and quNit A2 (quDit B1 and quNit B2, quDit
C1 and quNit C2) possessed by Alice (Bob, Charlie).

Our protocol is intended to work for arbitrary D and N , so
we need to devise a suitable POVM for Alice to measure her
quDit A1 and quNit A2. Let us devise our POVM like this:

E
(k1,k2,l1,l2 )
A1A2

= M
(k1,k2,l1,l2 )†
A1A2

M
(k1,k2,l1,l2 )
A1A2

, (27)

with k1, l1 ∈ {0, 1, . . . , D − 1}, k2, l2 ∈ {0, 1, . . . , N − 1},
and

M
(k1,k2,l1,l2 )
A1A2

= 1

DN

D−1∑
r1,s1=0

N−1∑
r2,s2=0

ar1⊕k1r2+k2 exp

×
[

2πi

D
l1(r1−s1) + 2πi

N
l2(r2−s2)

]
|s1〉A1

〈r1|

⊗ |s2〉A2
〈r2|, (28)

where + in the subindex of the coefficients aj1⊕k1j2+k2 is
understood as an addition modulo N . We can easily verify
that the operators E

(k1,k2,l1,l2 )
A1A2

in Eq. (27) constitute a rel-
evant POVM with (DN )2 elements because they are pos-
itive and sum up to a unit matrix [38]. Like the POVM
in Eq. (9), the elements of the POVM in Eq. (27) are

not mutually orthogonal either, i.e., E
(k1,k2,l1,l2 )†
A1A2

E
(k′

1,k
′
2,l

′
1,l

′
2 )

A1A2
�=

δk1k
′
1
δk2k

′
2
δl1l

′
1
δl2l

′
2
E

(k1,k2,l1,l2 )†
A1A2

E
(k1,k2,l1,l2 )
A1A2

. Three following steps
are to be proceeded to complete our JRSP of the hybrid
entangled state (2).

Step 1. Alice, by utilizing the POVM (27), measures
A1, A2 of the shared quantum state |Q〉A1B1C1A2B2C2

. With a
probability of 1/(DN )2 she obtains an outcome k1, k2, l1, l2,

projecting B1, B2, C1, C2 onto a hybrid entangled state of the
form ∣∣�k1k2l1l2

〉
B1B2C1C2

=
D−1∑
d=0

N−1∑
n=0

ad⊕k1n+k2 exp

[
2πi

D
l1d + 2πi

N
l2n

]

× |d, n〉B1B2
|d, n〉C1C2

. (29)

After the POVM measurement Alice publicly publishes her
outcome so that both Bob and Charlie are able to know and
use the values of k1, k2, l1, l2 in case of need.

Step 2. Conditioned on Alice’s measurement outcome, Bob
first applies V

(k1,l1 )
B1

= X
k1
B1

Z
l1†
B1

on quDit B1 and V
(k2,l2 )
B2

=
X

k2
B2

Z
l2†
B2

on quNit B2 with the X,Z gates being D dimensional
for B1 and N dimensional for B2. Then, Bob performs PM on
B1B2 in the orthonormal basis∣∣�m1m2

〉
B1B2

= 1√
DN

D−1∑
j1=0

N−1∑
j2=0

exp

(
−2πi

D
m1j1−2πi

N
m2j2 − iϕj1j2

)

× |j1, j2〉B1B2
, (30)

with m1 ∈ {0, 1, . . . , D − 1} and m2 ∈ {0, 1, . . . , N − 1}. If
an outcome m1,m2 happens after the measurement of B1 and
B2, with a probability of 1/(DN ), the two remaining quDit
C1 and quNit C2 are disentangled from |�k1k2l1l2〉B1B2C1C2

with
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FIG. 3. Quantum circuit for JRSP of an arbitrary hybrid
quDit-quNit entanglement |�〉 of any dimensions D and N in
Eq. (2). A solid line represents a quDit or a quNit, while a
dashed line represents a classical dit or nit. QuDits A1, B1, C1

and quNits A2, B2, C2 belong to the quantum channel |Q〉 ≡
|Q〉A1B1C1A2B2C2

of Eq. (26). |�k1k2 l1l2 〉 ≡ |�k1k2 l1l2 〉B1B2C1C2
is

given by Eq. (29), V (k1,l1 ) = Xk1Zl1†, V (k2,l2 ) = Xk2Zl2†, R(k1,m1 ) =
Zm1†Xk1 , and R(k2,m2 ) = Zm2†Xk2 . POVM is the positive operator-
valued measurement defined by Eq. (27), while PM is the projective
measurement in the basis {|�m1m2 〉B1B2

} defined by Eq. (30). The
wavy line embraces quDits and quNits that are entangled with each
other.

their state appearing like this:∣∣�k1k2m1m2

〉
C1C2

=
D−1∑
d=0

N−1∑
n=0

adn exp

(
2πi

D
m1d + 2πi

N
m2n + iϕdn

)

× |d  k1, n − k2〉C1C2
, (31)

where − within the ket for C2 is understood as a subtraction
modulo N . The obtained outcome m1,m2 should be publicly
published too for Charlie’s use in the next step.

Step 3. To complete the JRSP protocol, Charlie, after
getting the values of k1, k2 from Alice’s announcement and
m1,m2 from Bob’s one, applies R

(k1,m1 )
C1

= Z
m1†
C1

X
k1
C1

on qu-

Dit C1 and R
(k2,m2 )
C2

= Z
m2†
C2

X
k2
C2

on quNit C2 of the state
|�k1k2m1m2〉C1C2

to transform it into the target hybrid entangled
state |�〉C1C2

of Eq. (2). Here, as before, the X,Z gates are D

dimensional for C1 and N dimensional for C2.

The quantum circuit for our JRSP protocol of an arbitrary
hybrid quDit-quNit entanglement |�〉 is sketched in Fig. 3.

V. REALIZATION OF THE POVM (27)

In Sec. III we proposed a quantum circuit to implement the
POVM (9). In this section, we shall propose another quantum
circuit to implement the POVM in Eq. (27). As discussed in
Sec. III, in general a POVM is realized by first extending
the Hilbert space of the system of interest to include also
the Hilbert space of some auxiliary system, then entangling
the two systems into a proper entangled state followed by
necessary PMs.

In the case of our POVM (27) Alice produces an auxiliary
entangled state |K〉a1a2

of two ancillas, quDit a1 and quNit a2,

|K〉a1a2
=

D−1∑
j1=0

N−1∑
j2=0

aj1j2 |j1, j2〉a1a2
, (32)

with {aj1j2} nothing else but the amplitudes of |�〉12 in Eq. (2)
which are supposedly exposed to Alice. She then applies a D-
dimensional CBS gate on A1, a1 and an N -dimensional CBS
gate on A2, a2, with A1 (A2) being the control quDit (quNit)
and a1 (a2) the target one. This brings all the involved quDits
and quNits into an entangled state of the form

|	〉a1a2A1A2B1B2C1C2

= 1√
DN

D−1∑
d,k1=0

N−1∑
n,k2=0

ad⊕k1n+k2 |k1, k2〉a1a2
|d, n〉A1A2

× |d, n〉B1B2
|d, n〉C1C2

. (33)

Next, Alice measures a1, a2 in their computational bases
{|k1〉; k1 = 0, 1, . . . , D − 1}, {|k2〉a2

; k2 = 0, 1, . . . , N − 1}
and A1, A2 in the bases {|�(D)

l1
〉
A1

; l1 = 0, 1, . . . , D −
1}, {|�(N )

l2
〉
A2

; l2 = 0, 1, . . . , N − 1}, with

∣∣�(D)
l1

〉
A1

= 1√
D

D−1∑
j1=0

exp

(
−2πi

D
l1j1

)
|j1〉A1

, (34)

∣∣�(N )
l2

〉
A2

= 1√
N

N−1∑
j2=0

exp

(
−2πi

N
l2j2

)
|j2〉A2

. (35)

If an outcome k1, k2, l1, l2 occurs, the unmeasured part is
separated to be in the state |�k1k2l1l2〉B1B2C1C2

, which is exactly
that defined by Eq. (29). This is tantamount to realizing the
POVM (27) on A1, A2. According to a theorem in Ref. [41],
the additional dimension needed to implement the POVM (27)
is DN (DN − 1).

The quantum circuit for realization of our POVM defined
by Eq. (27) is sketched in Fig. 4.

VI. CONCLUSION

We have devised nonstandard JRSP protocols for one-
quDit and quDit-quNit states with all possible complex co-
efficients (i.e., αd = {ade

iϕd } and αdn = {adne
iϕdn}). Our pro-

tocols are nonstandard in the sense that they apply to arbi-
trary dimensions, while a standard one is valid only for the
dimension 2, 4, or 8. The essential components that make
our protocols nonstandard are POVM measurements to be
carried out by one of the preparers at the beginning of the
tasks. Since each concrete task demands a suitable POVM,
we design the POVM (9) for the case of JRSP of a general
quDit state and the POVM (27) for the case of JRSP of
hybrid quDit-quNit entanglement. As the definition of the
POVMs and the formal measurements in terms of them have
a theoretical meaning only, we construct the quantum circuits
in Figs. 2 and 4 to realize our POVMs, that are of importance
making our protocols attractable from both theoretical and
experimental points of view. Usually, a POVM-based proto-
col, like that for unambiguous quantum state discrimination
(see, e.g., Ref. [45]), just succeeds probabilistically, but ours
do deterministically. This is owing to special designs of our
POVMs and the way our protocols proceed. Namely, the
actions of the preparers must be taken in a rigid sequence:
Alice should act first and then Bob because Bob’s action
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FIG. 4. Quantum circuit for the POVM defined by Eq. (27):
(a) the formal performance and (b) the actual realization. A solid
line represents a quDit or quNit, while a dashed line represents
a classical dit or nit. QuDits A1, B1, C1 and quNits A2, B2, C2

belong to the quantum channel |Q〉 ≡ |Q〉A1B1C1A2B2C2
of Eq. (26),

while ancillary quDit a1 and quNit a2 belong to the state |K〉 ≡
|K〉a1a2

of Eq. (32). |	〉 ≡ |	〉a1a2A1A2B1B2C1C2
and |�k1k2 l1l2 〉 ≡

|�k1k2 l1l2 〉B1B2C1C2
are given by Eqs. (33) and (29), respectively. BS is

short for backward-shift gate, while PM1, PM2, PM3, and PM4 are
projective measurements of a1 in the basis {|k1〉a1

}, a2 in the basis
{|k2〉a2

}, A1 in the basis {|�(D)
l1

〉
A1

} of Eq. (34), and A2 in the basis

{|�(N )
l2

〉
A2

} of Eq. (35). The wavy line embraces quDits and quNits
that are entangled with each other.

is dictated by the result of Alice’s action. Furthermore, for
the case of JRSP of hybrid quDit-quNit entanglement no
combined actions are to be taken simultaneously on both
quDit C1 and quNit C2 (see Fig. 3). This means that C1 and C2

can be separated arbitrarily far away from each other. That is,
our protocol can be served as an entangler of distant parties,
which is practically advantageous, since there is no need to
bring them together to the same place to implement entangling
transformations. Theoretical extensions of our proposals to
more complicated contexts to involve more preparers, more

receivers, and also additional controllers as well as to use
different types of quantum resources, say, in terms of high-
dimensional EPR pairs, are straightforward.

Last but not least, we would like to address a quite
delicate issue as follows. Formally, the state (2) can
be relabeled as |�〉 = ∑D−1

d=0

∑N−1
n=0 adne

iϕdn |d, n〉 → |� ′〉 =∑DN−1
m=0 cm|m〉, where adne

iϕdn → cm and |d, n〉 → |m〉. Then
|� ′〉 = ∑DN−1

m=0 cm|m〉 deems to be a quMit state (with M =
D × N ), which could be jointly and remotely prepared using
the scheme developed in Secs. II and III, provided that the
shared quantum state (4) is replaced by that of three quMits

of the form |Q〉ABC → 1√
M

M−1∑
m=0

|m,m,m〉ABC. However, the

intrinisic natures of the above two formal ways of labelings
are totally distinct. Namely, |� ′〉 can be dealt with by the
scheme in Secs. II and III iff it describes a single object with
M = D × N orthonormal states (e.g., an M-level atom or an
M-rail single photon) and is present only at one place as a
whole. On the other hand, our state |�〉 in Eq. (2) describes
a system of two objects, one with D orthonormal states and
the other with N orthonormal states (e.g., two atoms, one
with D levels and the other with N levels, or two photons,
one in D-rail coding and the other in N -rail coding), and can
be present in two spatially separated places, thus generally
establishing a hybrid entanglement of different dimensions.
As such, our state |�〉 must be jointly and remotely prepared
by the scheme in Secs. IV and V using a couple of shared
quantum states as in Eq. (26).
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