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Abstract We propose a viable model based on the SU (3) ¢
x SU(3)r x U(1)x gauge group, augmented by the U (1)L,
global lepton number symmetry and the A(27) x Z3 X Ziq
discrete group, capable of explaining the Standard Model
(SM) fermion masses and mixings, and having a low scale
seesaw mechanism which can be tested at the LHC. In addi-
tion the model provides an explanation for the SM fermion
masses and mixings. In the proposed model, small masses for
the light active neutrinos are generated by an inverse seesaw
mechanism caused by non renormalizable Yukawa opera-
tors and mediated by three very light Majorana neutrinos
and the observed hierarchy of the SM fermion masses and
mixing angles is produced by the spontaneous breaking of
the A(27) x Z3 x Z16 symmetry at very large energy scale.
This neutrino mass generation mechanism is not presented
in our previous 3-3-1 models with A(27) group (Vien et al.
in Nucl Phys B 913:792, 2016, Carcamo Hernandez et al. in
Eur Phys J C 76(5):242, 2016), where the masses of the light
active neutrinos arise from a combination of type I and type
II seesaw mechanisms (Vien et al. Nucl. Phys. B 913:792,
2016) as well as from a double seesaw mechanism (Hernan-
dez et al. in Eur Phys J C 76(5):242, 2016). Thus, this work
corresponds to the first implementation of the A(27) sym-
metry in a 3-3-1 model with low scale seesaw mechanism.

1 Introduction

Despite its great successes, the SM still has some puzzles
such as the smallness of neutrino masses, Dark Matter, etc.
In addition, the SM does not render an agreeable explanation
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for the fermion masses and mixings. It is well known that
that the top quark mass (around 175 GeV) is 13 orders of
magnitude much larger than the light active neutrino masses.
Furthermore, the mixings among quarks are small while lep-
ton mixings are quite large. Moreover, two of the leptonic
mixing angles are large and the another one is Cabibbo sized.
In traditional way, the particle masses are generated
through Yukawa couplings, and the latter also enter in the
CKM/PMNS matrices. Thus, the hierarchy of Yukawa cou-
plings is a problem in the SM without a compelling expla-
nation. Another puzzle of the SM is that it does not give a
reason of why there are only three generations of fermions.
Within this point of view, theories having a SU(3)¢ X
SU@3)r x U(1)x gauge symmetry [1-3] (called 3-3-1 mod-
els for short) can address many inexplicable issues of the SM
because those models have the following features: within the
QCD asymptotic freedom, the number of fermion genera-
tions is exactly three, the large mass splitting the heaviest
quark and the two lighter ones is caused by quark family dis-
crimination, the quantization of the electric charge [4,5] and
the CP violation [6,7] are clarified in these models. In addi-
tion, these theories contain a Peccei—Quinn symmetry, thus
allowing to address the strong-CP problem [8—11]. Finally,
the 3-3-1 models with heavy sterile neutrinos in the fermionic
spectrum have cold dark matter candidates as weakly inter-
acting massive particles (WIMPs) as shown in Refs. [12—15].
In addition, discrete symmetry groups associated with the
SM are an useful tool to explain the pattern of SM fermion
masses and mixing angles. In particular the A(27) [16-35]
discrete group has attracted a lot of attention since it provides
a viable and very predictive description of the observed pat-
tern of SM fermion masses and mixing angles.
In this work we build a A(27) flavor 3-3-1 model, where
the A(27) discrete symmetry is supplemented by the Z3 x Z1¢
discrete group, providing a framework capable of reproduc-
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ing the SM fermion masses and mixings. The model is much
more economical in terms of scalar fields, discrete sym-
metries and number of scales than all 3-3-1 models with
discrete symmetries proposed in the literature [3]. In this
model, the SM charged fermion masses and quark mixing
angles are originated from the spontaneous breakdown of
the A(27) x Z3 x Z1¢ discrete symmetry and the masses for
the light active neutrinos are produced by an inverse seesaw
mechanism, which can be probed at the LHC since the sterile
neutrinos have masses at the TeV scale and can be produced
via a Drell-Yan mechanism mediated by a Z’ gauge boson.
This neutrino mass generation mechanism is not presented
in our previous 3-3-1 models with A(27) discrete symmetry
[34,35] where the masses for the light active neutrinos are
generated from a combination of type I and type II seesaw
mechanisms [34] and from a double seesaw mechanism [35].
In those models the sterile neutrinos have extremely large
masses, very much outside the LHC reach and the scalar
spectrum, symmetries and number of scales are significantly
much larger than in the current 3-3-1 model. Thus, this work
corresponds to the first A(27) flavor 3-3-1 model with low
scale seesaw mechanism. The layout of the remainder of the
paper is as follows. In Sect. 2 we describe the model. Sec-
tion 3 is devoted to the implications of our model in quark
masses and mixings. Section 4 deals with lepton masses and
mixings. We conclude in Sect. 5.

2 The model

The model considered in this work is based on the extended
gauge symmetry SU(3)¢c x SU(3)r x U (1)x, which is sup-
plemented by the U(1)., global lepton number symmetry
and the A(27) x Z3 x Z1¢ discrete group. The U, global
lepton number symmetry, assumed to be spontaneously bro-
ken by a vacuum expectation value (VEV) of a gauge-singlet
scalar ¢ to be introduced below. The U (1), global lepton
number symmetry is spontaneously broken down to a resid-

ual discrete Z;Lg ) lepton number symmetry under which the
leptons are charged and the other particles are neutral. This
residual discrete Z;Lg ) lepton number symmetry prevents
interactions with an odd number of leptons, thus forbid-
ding proton decay. The corresponding massless Goldstone
boson, Majoron, is phenomenologically harmless since it
is a scalar singlet. In addition, we further assume that the
A(27) x Z3 x Z16 discrete group is spontaneously broken as
well. We introduce the A(27) and Z3 discrete groups in order
to reduce the number of model parameters, thus increasing
the predictability of the model. The spontaneous breaking of
the A(27) x Z3 x Z1¢ discrete symmetry produces the current
pattern of SM fermion masses and mixing angles. In order to
build the Yukawa terms invariant under all the symmetries of
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the model, we need to enlarge the scalar sector of the 3-3-1
model to include fourteen gauge singlet scalars. The electric
charge of our model reads:

Ty
O0=Tr——+X.

V3
We choose this kind of model (without non SM electric
charges) in order to implement an inverse seesaw mecha-
nism for the generation of the light neutrino masses and to
avoid having in the fermion spectrum non SM fermions with
exotic electric charges. Let us note that, in order to imple-
ment an inverse seesaw mechanism to generate the masses
for the light active neutrinos, the fermion sector of the 3-
3-1 model is expanded by adding three gauge singlets right
handed Majorana neutrinos.

The full symmetry group G exhibits the following spon-

taneous breaking pattern:

G =SUB)e x SUB)L x Ul)x x U(l)z, x AQRT)
XZ3 X Z16- SUB3)e x SUB)L x U (1)x

xU(1),—5SUB)e x SUQ)L x U(l)y
xZS LY SUB) e x Ul)g x 235, 1)
being A > w, vy > u, v.
Moreover, the lepton number operator is defined as:

L=, @)
73

where the fact that the element at the bottom of the lepton
triplet carries lepton number equal to —1, has been accounted
for. Note that L, is a conserved charge associated with the
U(1)r, global symmetry and is interpreted as the ordinary
lepton number.

Assignments of scalars under the SU (3)¢c x SU(3)L X
U(1)x group and the U(1)r, x A(27) X Z3 x Zj¢ fermionic
assignments are displayed in Tables 1 and 2, respectively. For
the quantum numbers of fermionic fields under the SU (3) ¢ x
SU@3)1 x U(1)x symmetry, the reader is referred to Refs.
[34] and [35].

The scalar triplets in this model are decomposed as:

1 T
X = (X?,XZ,E(W-FRX ill}()) )
l T
¢=<¢+,%(v+R¢ii1¢>,¢;) :
1 T
n=<ﬁ(u+Rniiln),n2,n§’> . A3)

Let us remark that the masses of non SM fermions and gauge
bosons arise after the SU(3); x U(1)x gauge symmetry is
spontaneously broken at the scale w by the scalar triplet x,
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Table 1 Assignments of scalars under SU(3)¢c x SUB)r x U(1)x x U, x AQRT) x Z3 X Z16

X n ¢ o ¢ 3 ¢ N i
SU@B)c 1 1 1 1 1 1 1 1
SUB)L 3 3 3 1 1 1 1 1 1
U(x -1 -1 z 0 0 0 0 0 0
L, 3 -2 -3 0 2 0 0 0 0
AQ27) 10,0 11,0 12,0 10,0 10,0 3 3 3 3
Z3 0 0 0 0 0 0 1 1 -1
Zi6 0 0 0 -1 0 0 8 8 0

whereas the SM particles get their masses after the sponta-
neous breaking of the SM electroweak gauge group, caused
by the remaining scalar triplets, i.e., n and ¢, which acquire
Fermi scale VEVs equal to « and v, respectively. In addition,
we have fourteen EW scalar singlets in the scalar spectrum.
They are crucial to build the Yukawa terms invariant under
U, x AQ27) x Z3 x Z16 symmetry, which give rise to
predictive textures for the fermion sector consistent with low
energy SM fermion flavor data.

The quark and lepton Yukawa terms consistent with the
symmetries of the model are given by:

5

— L? = yf'f)qlui) u1R + yg)q]LqS UsR—= 3
+y21 CIL¢ M1RA5 +y22 719" MzR A3

+y§L3t)qL¢ “3R +y31 anulRA4

+y§?l>)qL¢ ”3R— + y32 qLUMZR e

97 nusk + y VG xTr + V7 x* Dig

D d)—
+y33 X" Dar + y§3)qi¢d31e—3

6

*
+ y12 CILU dzR G
5

AS

+y§1)qan*d1RA7

+y21 qLU le + yzz qLU*dZR

(d)—1

+¥13 6]L77*d3R 5 +)’31 QL¢d1R

A

4
7T Y32 qL¢d2R— + H.c,
4)

4

o
AS

d
97 n*d3R

yq(ble) (ZL¢®)100 elR A9 + yq(fli (—L¢®) €2R

02

Lo 3R A3

Lo

+y¢, (ZL¢®)
8

1 —= Qo
+ ZyIN (NRNﬁ) —
381

(l) (ILXNR)IO.O > 5

8

—~ Qo
N NC) vo_
—l—yzN( RN 3s2§A9
b
) 7a (1C - g
+y¢ Eabc (lL (ZL) >3a (¢*)L X
o

. b .
35 €abe (fg (zf)> (0") L+ Heo ()
3a

d i l
being y¥ (i, j = 1,2,3), y(;e),qu(l) yéﬂ,y;((),yuv Y2Ns
;1) and y(z) O(1) dimensionless couplings.

In addltlon to these terms, the symmetries unavoidably
allow terms obtained when replacing ® with ®* % o’ 47 and g“

as well as ¢ and © with ©@* — (U ) in L( ). The resulting addi-
tional terms are:

12 8

(L60%),, ernsrse (1697, 2
B . a® - ol
Vor (ILo® )1206’3R e (ILop¢ )1010 IR T3>
. a® 0 . a®
(Lot )11‘0 CR7G Vo (Lot )12,0 €3R 7

* o x4
Eabe (Zi (zf )b> (6)° w, 6)
3a A

These terms will generate very subleading corrections to the
charged lepton and Dirac neutrino mass matrices. Let us note
that the hierarchy in the VEVs of the gauge singlet scalars (to
be specified below) appearing in the aforementioned charged
lepton and Dirac neutrino Yukawa interactions, will allow us
to safely neglect these strongly suppressed corrections, and
thus we will not consider them in our analysis.

As seen from Table 1 and Eq. (5), the Z3 discrete sym-
metry guarantees that: only the A(27) scalar triplets ¢ and
® appear in the Dirac neutrino Yukawa interactions, the &
is the only A(27) scalar triplet that participates in some of
the neutrino Yukawa interactions involving the right handed
Majorana neutrinos N;g (i = 1,2, 3) and © is the only A(27)
scalar triplet appearing in the charged lepton Yukawa terms.
Due to the different A(27) charge assignments for the quark
fields given in Table 2, there is no mixing between the SM
and the non SM quarks. We remark that Z;¢ is the small-
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Table 2 Assignments of fermions under U(1)r, x A(27) x Z3 X Zj6

qi1L QL 3L uig  uzr  usg  Tr dig  dr  dir Dig  Dr I Nr  eir erR e3R
Ly 2 2 -2 0 0 0 -2 0 0 0 2 2 Io-1 1 1
A27) 10,0 19,0 19,0 1,0 1,0 15,0 19,0 11,0 11,0 11,0 19,0 10,0 3 3 10,0 15,0 11,0
Z3 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0
Z1i6 -2 —1 0 4 3 0 0 5 4 3 -2 —1 4 4 —4 8 6

est discrete symmetry permitting to build the Yukawa term
— 8 . . .
(l L¢®) 1o €1R %, required to provide a natural explanation

v
a O(1) coupling, where A = 0.225 is one of the Woignstein
parameters. Therefore, the hierarchy among charged fermion
masses and quark mixing angles is produced by the sponta-
neous breakdown of the A(27) x Z3 x Z¢ discrete group.
Given that in this scenario the quark masses are related with
the quark mixing parameters, the vacuum expectation values
of the scalars o, ¢, ©;,&;,¢;, ®; (j = 1,2, 3) are taken as:

for the small value of the electron mass, which is A% - times

Vg <<v4~~)»2A<<v¢~v@~vg~vg~)»A. (7)

On the other hand, as indicated by Table 1, three scalar
triplets (x, 1, ¢) and two scalar singlets (o, ¢) are assigned
into A(27) singlets, whereas the twelve other singlets
;. ¢, ®;,0;) (j = 1,2,3) are accommodated into 4
A(27) triplets. Out of the 14 scalar singlets, only ¢ is assumed
to acquire a VEV around the TeV scale, whereas the remain-
ing 13 scalar singlets get VEVs at very high energy scale.
The role of the fourteen scalar singlets is explained as fol-
lows. The singlet scalar o is required to trigger the spon-
taneous breaking of the Zj¢ discrete symmetry that gener-
ates the current pattern of SM charged fermion masses and
mixing angles. The scalar singlet ¢ is introduced to write
the right handed Majorana neutrino Yukawa terms invari-
ant under the U(1)r, global lepton number symmetry. Let
us note that ¢ is the only scalar singlet charged under the
U(1)r, lepton number symmetry. Consequently, the VEV
of the gauge singlet scalar ¢ breaks the U (1), global lepton
number symmetry thus generating right handed Majorana
neutrino mass terms that violate the lepton number by two
units. These right handed Majorana neutrino mass terms are
crucial for the implementation of the inverse seesaw mecha-
nism crucial to produce the masses for the light active neu-
trinos. The lightness of the right handed Majorana neutrinos,
which mediate the inverse seesaw mechanism, is explained
by the thirteen dimensional Yukawa interactions involving
a pair of right handed Majorana neutrinos and the singlet
scalar fields o, &€ and ¢. After the spontaneous breaking of the
U1, x A(27) x Z3 x Z16 symmetry takes place, small right
handed Majorana neutrino masses of the order of 1%v,, are
generated, being A = 0.225 one of the Wolfenstein param-
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eters. For v, ~ 1 TeV, the right handed Majorana neutrino
masses are of the order of 1 MeV. In addition we need three
A(27) triplets SU (3) . scalar singlets, namely, ®, ¢, ® and
& that only appear in the charged lepton, Dirac neutrino and
right handed Majorana neutrino Yukawa interactions, respec-
tively. These A(27) scalar triplets that spontaneously break
the A(27) discrete group, are required to have different VEV
patterns in order to yield leptonic mixing parameters concor-
dant with current data of neutrino oscillation experiments.
Hence, the VEV patterns for the A(27) triplet SM singlet
scalars ®, &, ¢ and @ are taken as:

_ Yo io ip B
© =2 (1ene’),©="2a.1n,
(€)= —(1,0.1), () = (0,1,0), ®)

V2

which are consistent with the scalar potential minimization
conditions, as explained in detail in Refs. [31,35-37].

3 Quark masses and mixings

The quark Yukawa interactions render the SM mass matrices
for quarks:

a3 a0l

VEW
My = aé’;))ﬁ aég))ﬁ aég)k —
41054 L0535 V2
31 32 33
0V a0 i) |
EW
Mp = a(cll)kﬁ a(d)AS a(d))»4 —_—, ©)]
d d V2

a31)k5 a32)k4 a§‘3’),\3

where A = 0.225, vpy = 246 GeV andal.(J'.”d) (,j=1,273)
are dimensionless quantities of order unity, whose corre-
sponding expressions are:

) _ w Y (u) w U

Ty T Ny TR
@ _ @ 4 d _ @ VY o
Wnj = Inj yoe B = =1,2.3.

(10)

Moreover, the different A(27) charge assignments for the
quark fields produces the absence of mixings between exotic
quarks and SM quarks. The masses of the exotic quarks are:
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Table 3 Model and experimental values related to the quark masses
and CKM parameters

Observable Model value Experimental value
my(MeV) 1.44 1.45703¢
me(MeV) 656 635 + 86
m(GeV) 177.1 1721+ 0.6 0.9
ma(MeV) 2.9 29703

my(MeV) 57.7 577185
my(GeV) 2.82 2.827909

sin 6y, 0.225 0.225

sin 63 0.0412 0.0412

sin6y3 0.00351 0.00351

s 64° 68°
mT:y(T)%, mp, :y,gm%, n=12 (1)

Considering that the spontaneous breakdown of the A(27) x
Z3 x Zj6 discrete group produces the observed pattern of
charged fermion mass and quark mixing angles and for the
sake of simplicity, we take a benchmark scenario character-
ized by the relations:

(u) (1) (1) (u) (u) (u)

dpp =dyy s az; = V13°» a3y = Y23
(d) _ (d) —i‘L’] (d) _ (d) i-[l
ap = ‘a12 ‘e ) ay = || €
@ _ | @] —in d@ _ | @D ir d) _ (d)
413 ——‘013 ‘e o A3 T 3@, dyy =dayp
(12)

Furthermore, motivated by naturalness arguments, we set
aglg) = 1. Then, the experimental values of the quark masses,
mixing angles and CP violating phase can be well reproduced

for the following benchmark point:

a ~058 a4y ~219, a¥% ~0.67,

alV ~0380, oY ~083, a\¥~19,

a?~053, a?~107, a9 ~193

aly ~ 136, al) ~135 1/ ~9.56°, 1 =4.64°.

13)

As displayed in Table 3, the resulting physical quark mass

spectrum [38,39], mixing angles and CP violating phase [40]

obtained in our model, are concordant with the low energy

quark flavor data.

Hereafter we briefly discuss an effect of quarks on flavor
changing processes in our model. The absence of mixings

between the SM and exotic quarks, which arises from the
A(27) symmetry, leads to the fact that the exotic fermions
will not exhibit flavor changing decays into SM quarks and
gauge (or Higgs) bosons. After being pair produced the exotic
fermions will decay into the SM quarks and the intermediate
states of heavy gauge bosons, which in turn decay into the
pairs of the SM fermions, see e.g. [41]. The present lower
bounds on the Z’ gauge boson mass in 3-3-1 models result-
ing from LHC searches, reach around 2.5 TeV [42]. These
limits generate a bound of about 6.3 TeV for the 3-3-1 gauge
symmetry breaking scale w. In addition, lower limits on the
Z' gauge boson mass varying from 1 TeV up to 3 TeV can
be obtained by using the electroweak data associated with
the decays B;g — putu~ and By — K*(K)utu~ [43-
47]. The exotic quarks can be pair produced at the LHC via
Drell-Yan and gluon fusion processes mediated by charged
gauge bosons and gluons, respectively. A detailed study of
the exotic quark production at the LHC and the exotic quark
decay modes is beyond the scope of this work and will be
done elsewhere.

4 Lepton masses and mixings

Using the charged lepton Yukawa interactions we obtain the
mass matrix for charged leptons:
M; = Rypdiag (me, my, mr) )

10 0 111
Rip=—1]0¢é 0 lo? o |,
ﬁ 00 ¢F 1 o o?

with the masses of the charged leptons determined as

w=eT, (14)

) 9VEW ) sVEW
me=a, A’ ——, m, =a, A”——,
e 1 \/§ 123 2
), 3VEW
My =a; A ——, (15)
R V)

being al.([) (i =1,2,3) O(1) dimensionless quantities.
In addition, with the help of Eq. (5), the following expres-
sions for the neutrino mass terms are obtained:

VL
l j—
_‘Cﬁr]l}gss = 5 (VE WNR>MU V% + H.c. (16)
NR

with full 9 x 9 mass matrix for the neutrino fields is given as:

@ Springer
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2
0 0 0 0 e e g 0 0
0 0 0 SR -5 0 0 0 0
0 SEEETE 0 0 0 T 0o
M — vo’ve vy 0 _vuryp 0 0 0 0 w—\g 0 , (17)
B rvaznl)\; Yo v;z[i’z» 0 0 0 0 0 w_jix
0 0 0 % 0 0 leT;f;ng ymxzsgvﬁvw le"ZEgvﬁvw
0 0 0 0 % 0 ywxlrisgvng leljfé)ng lexlv\sgvgwp
0 0 0 0 0 % leX[liivng lexZivng lelX‘;E%
where .
wze%, xzyz_N’ ZU_<I>. s with
YIN V¢ yqz;ywvzvgvs%vg
_ 20)

Remember that the spectrum of the physical neutrino fields is
formed by 3 light active neutrinos and 6 sterile exotic pseudo-
Dirac neutrinos having masses of the order of ~ +w and a
small mass difference of about vgf\%v"’ . The sterile neutrinos
can be pair produced at the Large Hadron Collider (LHC),
via a Drell-Yan annihilation mediated by a heavy Z’ gauge
boson. The mixings of these sterile neutrinos with the SM
neutrinos allow the former to decay into SM particles, so
that the final decay products will be a SM charged lepton
and a W gauge boson. Hence, observing an excess of events
in the dilepton final states above the SM background at the
LHC, might be a signature concordant with this model. Stud-
ies of inverse seesaw neutrino signatures at the Large Hadron
Collider and International Linear Collider as well as the pro-
duction of heavy neutrinos at the LHC are carried out in Refs.
[48,49]. A comprehensive study of the implications of our
model at colliders goes out of the purpose of this work and
will be done elsewhere.

After the implementation of the inverse seesaw mecha-
nism, one finds the mass matrix for the light active neutrino
fields:

—1+if—<1+iﬁ)r2—4rx (1—iﬁ)r—2(r—iﬁ)x
(14iv3) 1 +20)
2 — G4+ r)x + i3 — D)x 2420 — i3r)x — (1+iﬁ) r2

M®P =z| (1-iv3)r=2(r-iv3)x
(1+i~/§) [1+r(+r)x)

-
4A T2 (y)((l)>

Thus, small masses for active neutrinos are naturally pro-
duced in our model because these masses are inversely pro-
portional to powers of the large model cutoff A and fea-
ture a quadratic dependence on the very small VEVs of the
SU (3)r singletand A (27) triplet scalar fields ¢ and ®. On the
other hand, from the VEV hierarchy of Eq. (7) and assuming
vy ~ 1 TeV, we notice that z ~ A%y, ~ 10713 TeV = 0.1
eV, which is associated with the light active neutrino mass
scale. Thence, the small value of the active neutrino mass
scale is naturally explained in our model.

With the help of the rotation matrix R,,, the mass matrix
M 61) for the light active neutrinos is easily diagonalized:

(1 + i«/§> [1+r( +r)x]

—2r—B+rx+iv30r—Dx |, (19

@ Springer
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Aq B Ci
00 0 “/H'AA'ZHAZP \/1+|Bé|2+\32|2 \/1+|cg2+|02|2
2 2 2
Oma O 1. Rv=| A3 imr Jinsra6r Jirornce |- forNH
0 0 mj3 1 1 1
| VIHAPH AR 1HBIPH B A/ 14C1 P+ o2
RIMVR, = 5, e 4 21
my 00 VIFIBIPH B2 A/ 1HICIPHCR V14 A 2+ A2
0 m30 R, = By Gz 4) for IH
0 03 0 o v = J1+|B.]|2+\32\2 «/1+|C11\2+|02|2 J1+|A11|2+\Az|2 ’
NIFIBIRH B2 A/ THCIPHC R V14 A2+ A2
Now, taking into account the Egs. (14) and (21), the
Pontecorvo—Maki—Nakagawa—Sakata (PMNS) leptonic mix-
ing matrix is given by:
N _ pt
UY =R, R,

(e P+A 1 +Are7™®)

NaY V30 V3r;
—(3i+ﬁ)e’iﬂ+2«/§A1+(3i—ﬁ)Aze’i“ —(3i+ﬁ)e’iﬁ+2«/§Bl+(3i—ﬁ)82e’i“ —(3i+\/§)e’iﬁ+2«/§cl+(3i—\f3>Cze’i°‘

(e "P+B1+Bye”'®)

(e P4+C14+Cre™)

6T, 6T 6T3 24

<3i7\/§)e*"5+2\/§A17(3i+«/§)Aze’i°‘ (357\/§)e*i5+2\/5817<3i+\/§)Bze’i°‘ (357«/§)e*fﬁ+zﬁc17(3i+«/§)cze*"a
60 or [

for Normal ordering, and
I _ pt
Ul =R, R,
(=P 4+ B +Bre—i?) (= P4+C +Che) (eTP+A +Are71)

V3, V303 V3r,

_ : —if . —ia . —ip . —ia . —if P —ia

(31+ﬁ)e +2«/§B]+(3t \/g)Bze (3l+\/§>€ +2\/§C1+(3l \/g)Cze (3t+\/§)e +2«/§A1+(3l \/g)Aze (25)

(3i—«/§)e"'ﬂ+2\/gr1;21—(3i+«/§)Bze""’ (3i—x/§)e_iﬁ+2«/§l;31—(3i+x/§)C2e_“" (3i—ﬁ)e-iﬁ+2J§le—(3i+ﬁ)A2e—f”

6y [J}

6"

Here the following notations are used

A= l(—1+i«/§), Ay = (1+i«/§),

1
2 2
2(1+r+r2){7<3+iﬁ)x+r[*1*i\/g+(1*iﬁ)x}}

= {1—i\/§+r[4i+(1+i«/§)“[r(1+i\/§+21x)+2\/§x]’
B — —3i+/3
2T 2+
23 1
Cl:l_x/?+i(3+2r)’ CZ:%—;’?JH' 22)

Thus, this model predicts in the physical spectrum of active
neutrinos one massless neutrino and two active ones. Here
NH and IH correspond to normal and inverted neutrino mass
hierarchies, respectively and the light active neutrino masses
my and m3 are given by:

my = (1 n i«/§> (=P +r+G+rxlz,

ms = (1+id§)(1 — (1 —x)z, (23)

for Inverted ordering. Here the functions I'1, I'; and I'3 are
defined as:

r <A231—A132+32C1—31C2+A1C2—A2C1)1/2
1= 5

B,Ci — B1Cy
ry — <A2Bl — A1By+ B,Cy — B1Cy + A1Cy —A2C1>1/2
A1Cy — AxCy '
Iy — (AZB] —A1By+ B,C1 — BiCy + A1 Cy _A2C1)1/2
i AyBy — A1 B, '
(26)

where A;, B;, C; (i = 1,2) are given in Eq. (22).

We point out that there are 8 effective free parameters
(agl’)m,r,x, Z,a, B) to describe the lepton sector of this
model. These parameters can be adjusted to reproduce the
experimental values of the eight physical observables in
the lepton sector, including 3 masses for the charged lep-
tons, 2 neutrino mass squared differences and 3 leptonic
mixing parameters. We obtain that the scenario of inverted

@ Springer
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1.00 2.70

Fig. 1 U11\1/,21,31 as functions of «, g with a € (0.8, 1.0)rad and B € (2.7, 2.8)rad in the Normal Hierarchy

neutrino mass ordering of our model cannot be fitted to
the neutrino oscillation experimental data, however, the lep-
ton sector parameters of the model under consideration are
highly consistent with the recent experimental data in the
case of normal ordering. Indeed, in the Normal Hierarchy,
with A;, B;, C;(i = 1,2) given by Eq. (22) and R;;, in Eq.
(14), the matrix UV in Eq. (24) depends on four parame-
ters «, B, r and x, in which three elements Ull\{,21,31 in Eq.
(24) depend only on two parameters «, 3, three elements
U{g’23’33 depend on three parameters «, 8, r and three ele-
ments U 1@,22, 3, depend on four parameters o, B, r and x.

In Fig. 1, we have plotted the magnitudes of U11\1,,21,31
as functions of «, 8 with @« € (0.8,1.0)rad and 8 €
(2.7,2.8) rad.

If « = 0.9rad, the dependence of Ull\{,zml on f with
B € (2.7,2.8)rad is depicted in Fig. 2. For the case
B = 2.75rad (157.563°) we get U]\ = 0.812333,U) =
0.367816, Uﬁ = 0.452577, as well as the following rela-
tions:

yN (0.233612 + 0.179369i) + (0.043704 — 0.220352i)r

13 = ’
(1.5 — 0.866025i + 1), /2 + 57705775

@ Springer

(1.68788 + 1.82961i) + (0.653343 + 0.572327i)r

(1.5 —0.866025i +r),/2 + 3775575

uN (0.67658 — 0.50898i) + (1.035 — 0.3519750)r

3=
(1.5 = 0.866025i + 1), /2 + 585775

The elements U{gy23y33 as functions of r for r € (17.0, 19.0)

N _
23 —

27

are represented in Fig. 3. For the case » = 18.0 we get U{g =
0.141986, Uy = 0.655677, U3 = 0.741571, as well as the
following relations:

(0.290299 + 3.7183i) — (3.07522 — 2.66143i)x

uph = ,
. 44.7731+452.8965x+45.1876x2
(0.905751 — 0.412844i + x)\/ L2 8065045 1876
" (1.25788 + 4.15466i) — (2.37253 — 3.46349i)x
2 = ’
. 44.7731452.8965x +45.1876x2
(0.905751 — 0.412844i + x)\/ TIL52.806584 45,1876
” (120382 4 3.25121i) — (2.04551 — 2.61508i)x
32 =

B : 44.7731+4-52.8965x+45.1876x2 '
(0915112 — 0.382591i + x),/ I BLERSGHISLY

(28)
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N N
‘Ul 1 ‘ U21
0.3695
0.820
0.3690
0.3685
0.815
0.3680
0.810 0.3675
0.3670
0.805 rad 0.3665 rad
2.72 274 2.76 2.78 2.80 0.3660 272 274 2.76 2.78 2.80
N
o]
0.470
0.465
0.460
0.455
0.450
0.445
0.440
2.72 2.74 2.76 2.78 2.80
rad

Fig. 2 U{\{,zl,}l as functions of B with g € (2.7, 2.8)rad and @ = 0.9rad in the Normal Hierarchy

In Fig. 4, we have plotted the values of U 1’322& as functions  or
of x with x € (—1.0, —0.6).

Now, taking the best fit experimental data on neutrino mass 0.812333 0.558336 0.141986

N
square difference, Am%1 = 7.56 x 10~%eV? and Am%1 = U™ = | 0.367816 0.623667 0.655677 | , (32)
2.55 x 1073eV2, given in Ref. [50], we obtain a solution!: 0.452577 0.547084 0.741571
x = —0.648025. 7z =4.74323 x 10~ eV (29) which is consistent with the constraint on the absolute values
of the entries of the lepton mixing matrix given in Ref. [51].
and The value of the Jarlskog invariant determining the magni-

tude of CP violation in neutrino oscillations in the model
Ima| = 8.69482x 107 3eV, [m3| = 5.04976x 10 2eV. (30)  is then J = 2.69528 x 102 The obtained values for the

charged lepton masses and leptonic mixing parameters for the
The lepton mixing matrix in Eq. (24) then takes the form

—0.804496 + 0.112566i —0.0888079 + 0.551228i 0.0429831 — 0.135324i
UN = 0.084411 +0.357999; —0.0258114 + 0.623133i 0.466887 4 0.460358 |, 31
0.220085 + 0.39546i  0.00350582 + 0.547072i 0.709253 — 0.216534i

case of normal neutrino mass hierarchy are obtained starting

! The system of equations has four physical solutions, however, they from the following benchmark point:
have no effect on the neutrino oscillation experiments. So, here we only
consider in detail the case in Eq. (29).

@ Springer
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N
o

0.1425

0.1420

0.1415

0.1410 17.5 18.0 18.5 19.0

33

0.7430

0.7425

0.7420

0.7415

0.7410

0.7405

r
0.7400

17.5 18.0 18.5 19.0

23

0.658

0.657

0.656

0.655

~

0.654

17.5 18.0 18.5 19.0

Fig. 3 U %,23,33 as functions of r with r € (13.5, 14.0) in the Normal Hierarchy

a’~189, af ~1.02, af) ~088, «=~5157,
B = 157.56° .

In what follows, we turn to the determination of the effective
Majorana neutrino mass parameter, which is proportional to
the amplitude of neutrinoless double beta (OvS8) decay. The
effective Majorana neutrino mass parameter reads m,, =
|3k UZmy, | = 3.6963 meV, which is well below its cur-
rent most strict experimentally upper limit m,, < 160 meV,
as follows from the constraint Tlo/vf B (136Xe) > 1.1 x 10%
yr at 90% C.L obtained by the KamLAND-Zen experiment
[52]. Hence, our obtained effective Majorana neutrino mass
parameter is beyond the reach of the present and forthcoming
OvBB-decay experiments.

5 Conclusions
We have built a viable theory based on the SU(3)c x

SU@B)r x U(l)x gauge group, which is supplemented
by the U(l)L, global lepton number symmetry and the

@ Springer

A(27) x Z3 x Z1¢ discrete group, capable of providing a very
good description of the low energy fermion flavor data. In our
model, the spontaneous breakdown of the A(27) x Z3 x Z1¢
discrete symmetry takes place at very large energies, thus
producing the observed SM fermion masses and mixings.
The active neutrinos acquire small masses produced by the
inverse seesaw mechanism mediated by three very light
Majorana neutrinos. The lightness of the right handed Majo-
rana neutrinos mediating the inverse seesaw mechanism is
attributed to the fact that they obtain small masses from thir-
teen dimensional Yukawa terms involving a scalar singlet that
acquires a vacuum expectation value at a scale much lower
than the scale of breaking of the A(27) x Z3 x Zi¢ discrete
group. In this model, small masses for active neutrinos are
naturally generated since these masses are inversely propor-
tional to powers of the large model cutoff A and feature a
quadratic scaling on the very VEVs of the SU(3) singlet
and A(27) triplet scalar fields ¢ and ®. We perform a detailed
analysis in the lepton sector, where the model is only viable
for normal neutrino mass ordering, obtaining leptonic mix-
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Fig. 4 Ulj\é,zz,sz as functions of x with x € (—1.0, —0.6) in the Normal Hierarchy

ing parameters in excellent agreement with the experimental
data and predicting ¢, ~ 3.7 meV and J ~ 2.7 x 1072,
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