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Abstract We show that the economical 3-3-1 model poses
a very high new physics scale of the order of 1000 TeV due
to the constraint on the flavor-changing neutral current. The
implications of the model for neutrino masses, inflation, lep-
togenesis, and superheavy dark matter are newly recognized.
Alternatively, we modify the model by rearranging the third
quark generation differently from the first two quark gen-
erations, as well as changing the scalar sector. The resul-
tant model now predicts a consistent new physics at TeV
scale unlike the previous case and may be fully probed at the
current colliders. Particularly, due to the minimal particle
contents, the models under consideration manifestly accom-
modate dark matter candidates and neutrino masses, with
novel and distinct production mechanisms. The large flavor-
changing neutral currents that come from the ordinary and
exotic quark mixings can be avoided due to the approximate
B–L symmetry.

1 Introduction

There are now the certain experimental evidences that require
new physics beyond the standard model. They mainly include
neutrino oscillations, the baryon asymmetry of the universe,
dark matter, and the cosmic inflation [1]. Traditional pro-
posals such as supersymmetry, extradimension, and grand
unification can solve only some of the questions separately
and obey several issues on both the theoretical and experi-
mental sides [1]. In this work, we show that the model based
upon the gauge symmetry SU (3)C ⊗ SU (3)L ⊗ U (1)X (3-
3-1) [2–7] may be an intriguing choice for the new physics,
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besides its ability to provide common answers to most of
these puzzles.

Indeed, the new weak isospin group SU (3)L that is
directly extended from the SU (2)L symmetry of the stan-
dard model is well-motivated due to its ability to obtain the
number of generations to match that of fundamental col-
ors by the [SU (3)L ]3 anomaly cancelation. However, the
electric charge Q neither commutes nor closes algebraically
with SU (3)L , analogous to the standard model. Hence, a
new Abelian group U (1)X is derived as a result to close
those symmetries by the gauge group SU (3)L ⊗ U (1)X ,
which includes Q = T3 + βT8 + X as a residual charge,
where Tn (n = 1, 2, 3, . . . , 8) and X denote the SU (3)L
and U (1)X charges, respectively (cf. [8]). Imposing the
color group SU (3)C , one has the complete gauge symme-
try SU (3)C ⊗ SU (3)L ⊗U (1)X , as mentioned. The nontriv-
ial commutations for Q are [Q, T1 ± iT2] = ±(T1 ± iT2),
[Q, T4 ± iT5] = ∓q(T4 ± iT5), and [Q, T6 ± iT7] = ∓(1+
q)(T6 ± iT7), where the last two relations define the electric
charges of new particles in representations via a basic elec-
tric charge q ≡ −(1 + √

3β)/2. Let us stress that β (thus q)
is arbitrary on the theoretical ground and is independent of
all anomalies.1

The general 3-3-1 model including the original ver-
sions [2–7] have plenty of fields, three scalar triplets, η =
(η0

1, η
−
2 , η

q
3 ), ρ = (ρ+

1 , ρ0
2 , ρ

q+1
3 ), χ = (χ

−q
1 , χ

−q−1
2 , χ0

3 ),
with/without one scalar sextet, S = (S0

11, S
−
12, S

q
13, S

−−
22 ,

Sq−1
23 , S2q

33 ), and more exotic fermions, as the choice for mass
generation and/or anomaly cancelation. However, those par-
ticle contents are complicated, preventing the models’ pre-
dictability. Therefore, we would like to search for some calcu-
lable 3-3-1 model that contains a minimal content of fermions
and scalars. Following this approach, the first one was the
economical 3-3-1 model working only with two scalar triplets

1 The introduction of the embedding coefficient β was given early in
[9,10].
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ρ, χ [11,12], extracted from the 3-3-1 model with right-
handed neutrinos, for β = −1/

√
3 [5–7]. The new physics

implications as well as the supersymmetric extension were
extensively investigated in [13–27]. The second one was first
introduced as the reduced 3-3-1 model working with ρ, χ

[28], deduced from the minimal 3-3-1 model, for β = −√
3

[2–4]. However, such version was encountered with the prob-
lems of the ρ-parameter bound, the flavor-changing neutral
current (FCNC) constraint, and the Landau pole limit (cf.
[29]). The realistic theory for the second approach that over-
comes such issues was finally achieved, called the simple
3-3-1 model [30], which works with η, χ and has the phe-
nomenological aspects extensively studied in [31,32].

Although not presenting a low Landau pole, the econom-
ical 3-3-1 model may encounter the other bounds similarly
to the reduced 3-3-1 model, which lead to the interesting
consequences to be examined in this work. To be concrete,
we reconsider the new physics scale of the economical 3-3-1
model due to the FCNC constraint. We show that there are
such two distinct versions of it. The first version is just the
original model, but it works surprisingly with a new physics
scale beyond 1000 TeV. As a viable high energy regime, this
case provides naturally a seesaw mechanism, inflationary
scenario, leptogenesis, and superheavy dark matter. These
features are in sharp contrast with the previous interpreta-
tions in the old model [11–26]. The second version arises
once the fermion and scalar contents are appropriately recast
(i.e., changed), yielding a low new physics scale just beyond 1
TeV. This setup provides new physics consequences, such as
the neutrino mass mechanism, new fermions, new Higgs and
gauge bosons, and the weakly-interacting massive particle
(WIMP), which may be fully probed at the current colliders.

For the purpose, in Sect. 2, we consider the 3-3-1 model
with arbitrary β and extract the bound for the 3-3-1 breaking
scale due to the FCNC constraints. As we see, this bound of
the new physics scale depends only on the arrangement of
quark representations. In Sect. 3, applying the above result
to the economical 3-3-1 model, two folds for the model are
derived, and their corresponding consequences are discussed.
Let us remind the reader that these variants of the economical
3-3-1 model are not limited by a Landau pole, because this
pole is actually higher than the Planck scale, as proven in
[33,34]. Finally, we conclude this work in Sect. 4.

2 FCNCs

The 3-3-1 model with arbitrary β is given by the electric
charge operator,

Q = T3 + βT8 + X, (1)

as mentioned. Therefore, the hypercharge is obtained as
Y = βT8 + X . Furthermore, the fundamental representa-

tions of SU (3)L can be decomposed as 3 = 2 ⊕ 1 and
3∗ = 2∗ ⊕ 1 under SU (2)L . Here, the antidoublet takes
the form ( f2,− f1), given that ( f1, f2) is a doublet. Hence,
all the left-handed fermion doublets will be enlarged to 3
or 3∗, while the right-handed fermion singlets are retained
as SU (3)L singlets, or suitably combined with the above
fermion doublets. The SU (3)L anomaly cancelation requires
the number of 3 to be equal that of 3∗, where the color number
is appropriately counted. Thus, assuming that the first quark
generation transforms under SU (3)L differently from the last
two quark generations, the fermion content is achieved as

ψaL =
⎛
⎝

νaL
eaL
kaL

⎞
⎠ ∼

(
1, 3,

−1 + q

3

)
, (2)

Q1L =
⎛
⎝
u1L

d1L

j1L

⎞
⎠ ∼

(
3, 3,

1 + q

3

)
, (3)

QαL =
⎛
⎝

dαL

−uαL

jαL

⎞
⎠ ∼

(
3, 3∗,−q

3

)
, (4)

eaR ∼ (1, 1,−1), kaR ∼ (1, 1, q),

νaR ∼ (1, 1, 0), (5)

uaR ∼
(

3, 1,
2

3

)
, daR ∼

(
3, 1,−1

3

)
, (6)

j1R ∼
(

3, 1,
2

3
+ q

)
, jαR ∼

(
3, 1,−1

3
− q

)
, (7)

where a = 1, 2, 3 and α = 2, 3 are generation indices. The
numbers in parentheses denote representations based upon
the SU (3)C , SU (3)L , and U (1)X groups, respectively. The
above fermion pattern is free from all the other anomalies
too.

The new fermions ka, ja have been included to complete
the representations, where their electric charges are related
to the basic electric charge q = −(1 + √

3β)/2 through
Q(ka) = q, Q( j1) = q + 2/3, and Q( jα) = −q − 1/3,
as stated. The right-handed neutrinos νaR are sterile, i.e.
gauge singlets, which may be imposed or not. This feature
also applies for kaR if q = 0. Moreover, two minimal 3-
3-1 versions have traditionally been studied, provided that
νaR and kaR are omitted, while kaL are replaced by either
(eaR)c or (NaR)c, respectively [2–7]. NaR are some neu-
tral fermions like the right-handed neutrinos. Such ingredi-
ent does not work for quarks, i.e. jaL cannot be substituted
by ordinary right-handed quarks, because SU (3)C , SU (3)L ,
and spacetime symmetry commute. Thus, the inclusion of
ja is necessary. On the other hand, if the second or third
quark generation is arranged differently from the remaining
quark generations, by contrast, the index α will take values,
α = 1, 3 or α = 1, 2, respectively. Let us remind the reader
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that the following results can be generalized to all cases of
the quark arrangements.

Typically, the scalar content includes

η =
⎛
⎝

η0
1

η−
2

η
q
3

⎞
⎠ ∼

(
1, 3,

q − 1

3

)
, (8)

ρ =
⎛
⎝

ρ+
1

ρ0
2

ρ
q+1
3

⎞
⎠ ∼

(
1, 3,

q + 2

3

)
, (9)

χ =
⎛
⎝

χ
−q
1

χ
−q−1
2

χ0
3

⎞
⎠ ∼

(
1, 3,−2q + 1

3

)
. (10)

Here, the superscripts stand for electric charge val-
ues, while the subscripts indicate component fields under
SU (3)L . The scalars have such quantum numbers since they
couple a left-handed fermion to a corresponding right-handed
fermion to perform the relevant Yukawa Lagrangian.

When the scalar triplet, χ , develops a vacuum expectation
value (VEV), 〈χ〉 = 1√

2
(0 0 w)T , it breaks the 3-3-1 symme-

try down to the standard model and generates the masses for
the new particles. Hence, this scalar must be introduced. The
scalar triplets, η and ρ, which have VEVs, 〈η〉 = 1√

2
(u 0 0)T

and 〈ρ〉 = 1√
2
(0 v 0)T , break the standard model symme-

try down to SU (3)C ⊗ U (1)Q and give the masses for the
ordinary particles. Note that the other components of the
scalar triplets may have a nonzero VEV, if they are electri-
cally neutral. But such VEV can be strongly suppressed (cf.,
for instance, [35]). The minimal 3-3-1 model and the 3-3-1
model with right-handed neutrinos work with the above three
scalar triplets. Even, they impose additional scalar multi-
plets, e.g. the scalar sextets. However, the simple 3-3-1 model
and the economical 3-3-1 model work only with two scalar
triplets, (χ , η) and (χ , ρ), respectively.

In Ref. [36], we have pointed out that due to U (1)Q
invariance, the gauge boson spectrum and the gauge cou-
pling matching are always determined for the 3-3-1 model
with arbitrary β and scalar sector, which will be used for the
following analysis.

Because the quark generations are not universal under the
SU (3)L⊗U (1)X gauge symmetry, there are FCNCs. Indeed,
the neutral current takes the form:

L ⊃ F̄iγ μDμF

⊃ −gF̄γ μ[T3A3μ + T8A8μ

+ tX (Q − T3 − βT8)Bμ]F, (11)

where F runs over all fermion multiplets, and the covariant
derivative Dμ = ∂μ + igs tnGnμ + igTn Anμ + igX X Bμ con-
tains, by definition, the coupling constants (gs, g, gX ), the
generators (tn, Tn, X), and the gauge bosons (Gn, An, B) of
the SU (3)C , SU (3)L , and U (1)X groups, respectively. We

have also used X = Q − T3 − βT8 and tX ≡ gX/g =
tW /

√
1 − β2t2

W [36]. The ordinary leptons and the new
fermions do not flavor change, because the corresponding
flavor groups that potentially mix (within each group), such
as {νaL}, {eaL}, {eaR}, {kaL}, {kaR}, { jαL}, and { jαR}, are
respectively identical under the gauge charges. Simultane-
ously, the terms of T3 and Q do not leading to flavor changing,
because all the mentioned flavor groups including the ordi-
nary quarks {uaL}, {uaR}, {daL}, and {daR} are respectively
identical under these charges (T3, Q).2 Thus, the FCNCs only
couple the ordinary quarks to T8, arising in part from

L ⊃ −gq̄Lγ μT8LqL(A8μ − βtX Bμ). (12)

Here we denote either q = (u1, u2, u3) for up quarks or q =
(d1, d2, d3) for down quarks, andT8L = 1

2
√

3
diag(1,−1,−1)

summarizes the T8 values of q1L , q2L , and q3L , respectively.
Changing to the mass basis, we have qL ,R = VqL ,qRq ′

L ,R ,
where q ′ is either q ′ = (u, c, t) or q ′ = (d, s, b), and VqL ,qR

are the quark mixing matrices that diagonalize the corre-
sponding mass matrices, V †

uLMuVuR = diag(mu,mc,mt )

and V †
dLMdVdR = diag(md ,ms,mb). Further, the Cabibbo-

Kobayashi-Maskawa (CKM) matrix takes the form, VCKM =
V †
uLVdL . With the aid of A8μ−βtX Bμ = (1/

√
1 − β2t2

W )Z ′
μ

[36], it follows

L ⊃ − g√
1 − β2t2

W

q̄ ′
Lγ μ(V †

qLT8LVqL)q ′
L Z

′
μ,

⊃ − g√
3(1 − β2t2

W )

q̄ ′
i Lγ μq ′

j L(V ∗
qL)1i (VqL)1 j Z

′
μ, (13)

which causes tree-level FCNCs for i = j , where i, j =
1, 2, 3 label respective physical quark states in q ′. The new
neutral gauge boson Z ′ might mix with the standard model

Z = cW A3 − sW (βtW A8 +
√

1 − β2t2
W B) and the real part

of new non-Hermitian gauge bosons, V = A4 or V = A6,
for q = 0 or q = −1, respectively. The contribution of V to
the FCNCs is negligible, which can be justified, using [12].
Therefore, we write Z ′ = −sϕZ1 + cϕZ2, where Z1,2 are
two physical neutral gauge bosons with masses

m2
Z1

� g2

4c2
W

(u2 + v2), m2
Z2

� g2w2

3(1 − β2t2
W )

, (14)

2 For the 3-3-1 models without exotic charges (i.e., q = 0 or −1), the
ordinary quarks and the exotic quarks that have different weak isospins
might mix, leading to large FCNCs associated with Z boson, indepen-
dent of the generation nonuniversality [35]. This effect might be more
dangerous than the nonuniversal Z ′ couplings, and is only suppressed
if such mixing is small compared to the mixing of the ordinary quarks,
as shown below. Alternatively, the FCNCs may be associated with the
neutral scalars as discussed in [37–39].
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and the Z -Z ′ mixing angle is

t2ϕ �
√

3(1 − β2t2
W )

2cWw2

[
(1 + √

3βt2
W )u2 − (1 − √

3βt2
W )v2

]
.

(15)

Substituting Z ′ into the above FCNCs and integrating Z1,2

out, we obtain the effective Lagrangian describing meson
mixings,

Leff
FCNC = g2

3(1 − β2t2
W )

(q̄ ′
i Lγ μq ′

j L)2[(V ∗
qL)1i (VqL)1 j ]2

×
(

s2
ϕ

m2
Z1

+ c2
ϕ

m2
Z2

)
. (16)

The contribution of the standard model-like Z1 boson is
negligible too, since

s2
ϕ/m2

Z1

c2
ϕ/m2

Z2

� [(1 + √
3βt2

W )u2 − (1 − √
3βt2

W )v2]2

4(u2 + v2)w2

<

(
1 + √

3tW
2

)2
v2

w

w2 � 0.95
v2

w

w2 , (17)

which is suppressed due to vw � w. Above, we have used:
(i) |β| < 1/tW , which is derived from the conditions of the
photon field normalization and the gauge coupling matching

sW = e/g = tX/

√
1 + (1 + β2)t2

X (partly aforementioned),

and (ii) v2
w ≡ u2+v2 = (246 GeV)2, which is identified from

the W boson mass. It is easily proved that the ρ-parameter
deviation from the standard model value due to the Z -Z ′ mix-
ing is obtained by �ρ = ρ −1 � (s2

ϕ/m2
Z1

)/(c2
ϕ/m2

Z2
). This

again implies the nonsignificant contribution of Z1 because
of �ρ < 0.0006 from the global fit [1]. Therefore, only the
new field Z2 governs the FCNCs, leading to

Leff
FCNC � 1

w2 (q̄ ′
i Lγ μq ′

j L)2[(V ∗
qL)1i (VqL)1 j ]2, (18)

which is independent of β and the Landau pole, if this pole
is presented for large |β|. This is a new observation of the
present work, in agreement with a partial conclusion in [30].

In both economical 3-3-1 models discussed below, the
ordinary (ua, da) and exotic (U, Dα) quarks that are corre-
spondingly represented in the same triplet/antitriplet with
the same electric charge might mix. Hence, the quark
mixing matrices are redefined as (u1 u2 u3 U )TL ,R =
VuL ,uR(u c t T )TL ,R and (d1 d2 d3 D2 D3)

T
L ,R = VdL ,dR

(d s b B B ′)TL ,R , so that the 4 × 4 mass matrix of up-type
quarks (ua,U ) and the 5×5 mass matrix of down-type quarks
(da, Dα) are diagonalized [40]. The FCNC Lagrangian as
coupled to Z ′ is now changed to

− g√
3(1 − β2t2

W )

q̄ ′
i Lγ μq ′

j L [V †
qLVqL ]i j Z ′

μ, (19)

where we denote [V †
uLVuL ]i j ≡ (V ∗

uL)1i (VuL)1 j − 1
2 (V ∗

uL)4i

(VuL)4 j for the up-type quarks and [V †
dLVdL ]i j ≡ (V ∗

dL)1i

(VdL)1 j + 3
2 (V ∗

dL)4i (VdL)4 j + 3
2 (V ∗

dL)5i (VdL)5 j for the
down-type quarks. Correspondingly, the effective Lagrangian
due to the Z ′ contribution is achieved as

1

w2 (q̄ ′
i Lγ μq ′

j L)2[V †
qLVqL ]2

i j . (20)

As mentioned in the above footnote, the ordinary and
exotic quark mixings also lead to the FCNCs associated with
Z , obtained by the Lagrangian,

(±)
g

2cW
q̄ ′
i Lγ μq ′

j L(V ∗
qL)I i (VqL)I j Zμ, (21)

where “+” and I = 4 are applied forVu , whereas “−” and I =
4, 5 are applied for Vd . Integrating Z out, the corresponding
effective Lagrangian is

1

v2
w

(q̄ ′
i Lγ μq ′

j L)2[(V ∗
qL)I i (VqL)I j ]2. (22)

This contribution would spoil the standard model predic-
tion for the neutral meson mass differences, if the mixing of
the ordinary and exotic quarks was compatible to the ordi-
nary quark mixing. For instance, the K 0-K̄ 0 mixing bounds
|(V ∗

dL)I1(VdL)I2| � 10−5, which is much smaller than the
smallest CKM matrix element. To avoid the large FCNCs,
we assume

|(V ∗
qL)I i (VqL)I j | � |(V ∗

qL)1i (VqL)1 j |, (23)

so that the Z contribution (22) is insignificant, and (20)
is thus reduced to (18). The above inequality is also valid
when the 1’s are replaced by α = 2, 3, due to the unitar-
ity condition, (V †

qLVqL)i j = 0. Furthermore, the B–L con-
servation demands that the exotic and ordinary quark mix-
ings vanish [35,41]. Hence, the suppressions like (23) are
naturally preserved by an approximate B–L symmetry, as
interpreted in [8,30,42]. Lastly, there may exist tree-level
FCNCs induced by the new non-Hermitian gauge bosons
X0,0∗ = (A4 ∓ i A5)/

√
2, which couple u1 with U , and dα

with Dα . The relevant Lagrangian is given by

L ⊃ − g√
2
(ū1Lγ μUL − D̄αLγ μdαL)X0

μ + H.c.

⊃ − g√
2
[ū′

i Lγ μu′
j L(V ∗

uL)1i (VuL)4 j

−d̄ ′
i Lγ μd ′

j L(V ∗
dL)I i (VdL)α j ]X0

μ + H.c., (24)

where I = 2 + α. This yields the effective Lagrangian,

1

w2

{
(ū′

i Lγ μu′
j L)2[(V ∗

uL)4i (VuL)1 j ]2

+(d̄ ′
i Lγ μd ′

j L)2[(V ∗
dL)I i (VdL)α j ]2

}
, (25)

where we have used m2
X = g2

4 (u2 + w2) � g2w2/4. The X
boson contributions to the FCNCs (25) are radically smaller
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than those of Z ′ in (18) due to the conditions (23). In sum-
mary, for any 3-3-1 model the FCNCs due to Z ′ in (18) would
dominate, which will be taken into account.

Without loss of generality, by alignment in the up quark
sector, i.e. VuL = 1, the CKM matrix is just VCKM = VdL .
The K 0-K̄ 0 mixing yields a bound [1,43,44],

1

w2 [(V ∗
dL)11(VdL)12]2 <

1

(104 TeV)2 . (26)

The CKM factor is |(V ∗
dL)11(VdL)12| � 0.22 [1], which

implies

w > 2.2 × 103 TeV. (27)

This high bound applies for the considering model with
nonuniversal first quark generation. If one arranges the sec-
ond quark generation differently from the others, the CKM
factor is similarly |(V ∗

dL)21(VdL)22| � 0.22 [1], which
presents the same bound for w as in the previous case. Fur-
thermore, putting the third quark generation differently from
the first two, the CKM factor is now smaller than the previ-
ous factors, i.e. |(V ∗

dL)31(VdL)32| � 3.5 × 10−4 [1], which
yields

w > 3.5 TeV. (28)

Let us stress again that the bounds achieved in (27) and
(28) are independent of β, applying for every 3-3-1 model
with appropriate fermion content, i.e. quark arrangement.
This is a new investigation of the present work, in agreement
with the special cases in [8,29].

We can similarly study the bound for the B0
s -B̄0

s mixing,
where (i, j) = (2, 3). One obtains 1

w2 [(V ∗
dL)12(VdL)13]2 <

1/(100 TeV)2 [1,43,44] for nonuniversal first quark gen-
eration, and so forth for other cases of quark arrangement.
With the aid of the CKM factors in [1], if the second or third
quark generation is arranged differently from the two others,
it gives a bound w > 4 TeV. Otherwise, when the first quark
generation is differently arranged, it gives a negligible con-
tribution to the B meson mixing. We see that the B mixing
effect does not discriminate the second and third quark gen-
erations, unlike the case of the kaon mixing. The B mixing
gives the bound in agreement with the K mixing when the
third generation is differently arranged. However, it gives a
negligible contribution to the B mixing, when the kaon mix-
ing bound is applied to the model with nonuniversal first or
second quark generation.

It is noteworthy that the bound (27) applies for both the
original economical 3-3-1 model [11,12] and the reduced
3-3-1 model [28], where the first quark generation is nonuni-
versal. The latter model is ruled out as it is limited by a
low Landau pole, w � 5 TeV [30,33,34]; additionally, it is
encountered with a large ρ-parameter [29]. The former model
presents a new physics at 1000 TeV scale. Of course, the pre-
vious predictions for the model at TeV are useless [13–26].

On the other hand, the bound (28) is valid for both the mini-
mal 3-3-1 model (including the simple 3-3-1 model as well)
and the 3-3-1 model with right-handed neutrinos, where the
third quark generation is nonuniversal, as often studied. We
will also introduce a new economical 3-3-1 model working
at TeV scale, avoiding the large bound (27).

Let us remind the reader that the detailed outcomes of the
FCNCs (18) using the neutral meson mass differences are
worth studying, but the overall bounds as obtained above
would be expected (see, for instance, [37,38]). In other
words, it is sufficient for the purpose of this work as to clas-
sify and interpret the new directions of the economical 3-3-1
models, to be discussed below.

3 Two scenarios for the economical 3-3-1 model

An economical 3-3-1 model is defined to work with the min-
imal fermion and scalar content that includes νaR in lep-
ton triplets and only two scalar triplets, either (χ, ρ) or
(χ, η). Such theory has an electric charge operator Q =
T3− 1√

3
T8+X . As a result of the above analysis, there are two

distinct economical 3-3-1 models. The first model has a par-
ticle content like the original economical 3-3-1 model (i.e.,
possessing nonuniversal first quark generation and χ, ρ), but
the 3-3-1 breaking scale is beyond 1000 TeV, called type-I
economical 3-3-1 model. By contrast, the second model has
nonuniversal third quark generation and χ, η, which implies
a TeV 3-3-1 breaking scale, called type-II economical 3-3-1
model.

3.1 Type-I economical 3-3-1 model

The fermion and scalar content is given by [12,14]

ψaL =
⎛
⎝

νaL
eaL
νcaR

⎞
⎠ ∼

(
1, 3,−1

3

)
, eaR ∼ (1, 1,−1),

(29)

Q1L =
⎛
⎝
u1L

d1L

UL

⎞
⎠ ∼

(
3, 3,

1

3

)
, QαL =

⎛
⎝

dαL

−uαL

DαL

⎞
⎠

∼ (
3, 3∗, 0

)
, (30)

uaR,UR ∼
(

3, 1,
2

3

)
, daR, DαR ∼

(
3, 1,−1

3

)
,

(31)

χ =
⎛
⎝

χ0
1

χ−1
2
χ0

3

⎞
⎠ �

⎛
⎜⎝

1√
2
u′ + G0

X

G−
Y

1√
2
(w + H1 + iGZ ′

⎞
⎟⎠

∼
(

1, 3,−1

3

)
, (32)
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ρ =
⎛
⎜⎝

ρ+
1

ρ0
2

ρ+
3

⎞
⎟⎠ �

⎛
⎜⎝

G+
W

1√
2
(v + H + iGZ )

H+
2

⎞
⎟⎠

∼
(

1, 3,
2

3

)
. (33)

Recall that α = 2, 3, and the exotic quarks U, D have ordi-
nary electric charges, i.e. Q(U ) = 2/3 and Q(D) = −1/3
similar to u and d, respectively.

The 3-3-1 breaking scale is bounded by w > 2200 TeV.
Moreover, since χ0

1 has the lepton number L = 2 = 0, its
VEV, u′, that breaks this charge should be much smaller than
the weak scale v, i.e. u′ � v. Indeed, because of u′ = 0 there
mix in the gauge boson sectors, the chargedW -Y and the neu-
tral Z -Z ′-A4, in addition to the ordinary Z -Z ′ mixing. Here
W± = (A1∓i A2)/

√
2 andY∓ = (A6∓i A7)/

√
2 denote the

standard model and new gauge bosons, respectively, whereas
all the other gauge fields including X0,0∗ have been already
defined. Diagonalizing these sectors we get physical eigen-
states and masses similarly to [12]. Consequently, from the
W boson mass, m2

W = g2v2/4, we determine the weak scale
v � 246 GeV. The mixings in both the gauge boson sec-
tors shift the tree-level ρ-parameter from the standard model

prediction by �ρ = ρ − 1 = m2
W

c2
Wm2

Z
− 1 � 3u′2/v2, which

implies |u′| < 3.5 GeV due to the global fit �ρ < 0.0006 [1].
Additionally, the elements of the mixing matrices between
exotic and ordinary quarks are proportional to u′/w ∼ 10−6,
which do not affect the FCNCs due to the Z exchange as
well as the non-unitarity of ordinary quark mixing matrices
as remarked before [35].

Note that all the new particles, including the Higgs bosons
H1,2, the gauge bosons Z ′,Y, X , and the exotic quarksU, D,
gain the masses proportional to the w scale [12,14], which are
very heavy, as expected. Furthermore, after the electroweak
symmetry breaking, the ordinary particles (W , Z , H , charged
leptons, and quarks) get consistent tree-level masses, expect
for the following. As a property of the 3-3-1 model with min-
imal scalar content, there are 3 light quarks (one up and two
down) that possess vanishing tree-level masses. However,
they can obtain appropriate masses, induced by radiative cor-
rections or effective interactions, according to the complete
breakdown of the Peccei-Quinn symmetry, which was gen-
erally proved in [15,21].

At the tree-level, the neutrinos have Dirac masses, one
zero and two degenerate, which are unacceptable [16]. But,
up to five-dimensional interactions, the relevant Yukawa
Lagrangian is

LYukawa ⊃ hν
abψ̄

c
aLψbLρ + h′ν


(ψ̄c

aLψbL)(χχ)∗ + H.c.,

(34)

where  is a cut-off scale, which can be taken as  ∼ w.
Therefore, the observed neutrinos (∼ νL ) gain small Majo-

rana masses via a seesaw mechanism, evaluated to be

mν ∼ hν(h′ν)−1(hν)T
v2

w
, (35)

which naturally fits the data since w is as large as 2200
TeV. For instance, taking mν ∼ 0.1 eV and h′ν ∼ 1 yields
hν ∼ 10−4, which is similar to the Yukawa couplings of the
first- and second-generation fermions of the standard model.
The heavy neutrinos (∼ νR) have masses at w scale. It is
noted that the above neutrino mass generation scheme may
be radiatively induced [16].

The scalar field that breaks SU (3)L ⊗ U (1)X down to
SU (2)L ⊗ U (1)Y is decomposed as χ0

3 = 1√
2
(w + H1 +

iGZ ′), where w provides the masses for all the new particles
as well as setting the seesaw scale, as mentioned. Further, the
imaginary part of this field is an unphysical Goldstone boson
of Z ′ that can be gauged away, while the real part includes a
new, physical neutral Higgs boson, H1, living at the w scale.
In the early universe, the full real field � = √

2�(χ0
3 ) can be

interpreted as an inflaton field involving (in time) toward the
potential minimum �min = w, driving the cosmic inflation.
Let us consider the potential of � when the inflation scale is
either not too high, but significantly larger than w, or close
to the Planck scale.

For the first case, the inflationary potential is radiatively
contributed by the gauge bosons, the fermions, and the
scalars, which couple to the inflaton. That said, it takes the
form,

V (�) = λ

4
(�2 − w2)2 + a

64π2 �4 ln
�2

w2 + V0, (36)

up to the leading-log approximation [45]. Here the renormal-
ization scale has been fixed at w, and

a � 13 + 4t4
W

48(3 − t2
W )2

g4 − 1

2
(h4

U + h4
D2

+ h4
D3

) + 9λ2

+1

4
λ′2. (37)

The first term combines both the SU (3)L and U (1)X
gauge boson contributions, with the substitution of gX =
gtW /

√
1 − t2

W /3. Additionally, hU,Dα denote the Yukawa
couplings of the inflaton with exotic quarks U, Dα , and
λ, λ′ correspond to the self-inflaton and Higgs-inflaton quar-
tic couplings, respectively. This potential yields an appro-
priate local minimum, given that a/λ > − 63.165. Addi-
tionally, since w is radically smaller than the inflation and
Planck scales, i.e. w � �, the inflationary potential is
governed by the quartic and log terms. The number of e-
folds will be chosen in the range N � 40 so that the infla-
tion scale is correspondingly higher than the expected 2200
TeV value. The cosmic microwave background (CMB) mea-
surements yield a constraint on the curvature perturbation,
which leads to λ � 10−12 [1]. Further, the spectral index
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ns , the tensor-to-scalar ratio r , and the running index α can
be evaluated as functions of a′ ≡ a/λ and are fitted to the
experimental data [1]. Then we obtain a′ ∼ −10, and thus
g ∼ hU,Dα ∼ √

λ, λ′ � 10−2.75, which contradicts the elec-
troweak data g ∼ 0.5. Conversely, this regime of the potential
is not flat to reproduce a suitable inflation scenario.

For the second case, the interaction of the inflaton to grav-
ity via a non-minimal coupling ξ may be important,

S =
∫

d4x
√−g

[
1

2
(m2

P + ξ�2)R

+1

2
∂μ�∂μ� − λ

4
(�2 − w2)2

]
, (38)

where R is the scalar curvature, and mP = (8πGN )−1/2 �
2.4 × 1018 GeV is the reduced Planck mass. We assume
ξ � 1, and the action can be rewritten in the Einstein frame
as [46]

S =
∫

d4x
√

−ĝ

[
1

2
m2

P R̂ + 1

2
∂μφ∂μφ −U (φ)

]
, (39)

where the inflationary potential is related to the canonically-
normalized inflaton field φ as

U (φ) = λm4
P

4ξ2

(
1 + e

−
√

2
3

φ
mP

)−2

. (40)

That said, the inflationary potential is flat due to the large
field values, φ � mP or � � mP/

√
ξ , and it success-

fully fits the data if ξ ∼ 104
√

λ, in agreement to [46].
In this case, the number of e-folds set is about 60. Since
λ = m2

H1
/(2w2) can be small for a H1 mass of a few TeV, the

unitarity condition ξ � O(10) is recognized, and the infla-
tion begins from the Planck regime � ∼ mP . The reheating
happens when the inflaton decays into the exotic quarks or
the new gauge bosons. Considering the first case, it yields
TR ∼ hU,Dα (w/1000 TeV)1/2 × 1011 GeV ∼ 1011 GeV.

Since the right-handed neutrinos do not directly couple
to the inflaton, they could only be produced from the ther-
mal bath of radiations. The CP-asymmetric decays of these
right-handed neutrinos into a heavy charged Higgs boson and
a charged lepton, νR → H±

2 e∓, due to the Yukawa couplings
heabψ̄aLρebR +H.c. can generate the expected baryon asym-
metry via a leptogenesis mechanism similarly to the standard
technique, provided thatmνR � mH2 [47]. However, it differs
from the standard prediction due to the fact that the channels
νR → G±

We∓ via the couplings hν
abψ̄

c
aLψbLρ + H.c. are

negligible, as suppressed by hν � hτ and mW � mH2 .
Additionally, like the neutral field H1, the finding of the
charged field H2 with some mass in the TeV regime can mark
(suggest) the existence of this baryon-asymmetry production
scheme.

Let us emphasize that the economical 3-3-1 model has a
natural room for dark matter as basic scalars filling up the
model [30,42]. As studied in [42], the dark matter candidate

might be resided in an inert scalar triplet, η, as a replication
of χ under the gauge symmetry and an odd field under a
Z2 symmetry (η → −η). We may have another inert scalar
triplet responsible for dark matter as a replication of ρ under
the gauge symmetry, labeled ρ′, so that ρ′ → −ρ′ under a Z2

symmetry. However, in the considering model, the candidate
has a mass proportional to the 3-3-1 scale of order 1000 TeV.
Therefore, if this mass is at or beyond this scale, the candi-
date cannot be generated as thermal relics as in [42]; other-
wise, it overcloses the universe due to the unitarity constraint
[48]. Interestingly enough, this superheavy dark matter can
be generated in the early universe by the mechanisms, such
as gravitational and thermal productions, associated with the
existing inflation and reheating, analogous to [49]. By con-
trast, if the inert field masses are at TeV scale, the thermal
generations may be interpreted as in [42].

Hence, by the realization of a high 3-3-1 breaking scale,
the 3-3-1 model might simultaneously explain the neutrino
masses and the cosmological issues, comparable to the other
theories [8,29,35,41,49–52]. Note that the usual 3-3-1 mod-
els do not reveal the inflation and associated superheavy dark
matter. A detailed investigation of all the issues for this kind
of the model is out of the scope of the present work, which
should be published elsewhere [53].

3.2 Type-II economical 3-3-1 model

A low bound for the 3-3-1 breaking scale is available only if
the third quark generation is discriminative. In this case, the
scalar triplet that breaks the electroweak symmetry should be
η, instead of ρ, in order to generate the consistent top-quark
mass (by contrast, if the scalar content as in the previous
model is retained, the top quark has a vanishing tree-level
mass that is impossible to be induced by subleading effects of
radiative corrections or effective interactions, cf. [15,21,30]
for details). Thus, the fermion and scalar content is appro-
priately derived as

ψaL =
⎛
⎝

νaL
eaL
νcaR

⎞
⎠ ∼

(
1, 3, −1

3

)
, eaR ∼ (1, 1, −1),

(41)

QαL =
⎛
⎝

dαL
−uαL
DαL

⎞
⎠

∼ (
3, 3∗, 0

)
, Q3L =

⎛
⎝
u3L
d3L
UL

⎞
⎠ ∼

(
3, 3,

1

3

)
, (42)

uaR,UR ∼
(

3, 1,
2

3

)
, daR, DαR ∼

(
3, 1, −1

3

)
,

(43)

χ =
⎛
⎝

χ0
1

χ−1
2
χ0

3

⎞
⎠ �

⎛
⎜⎝

1√
2
u′ + cξG

0
X − sξ H

0
2

G−
Y

1√
2
(w + H1 + iGZ ′

⎞
⎟⎠
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∼
(

1, 3, −1

3

)
, (44)

η =
⎛
⎝

η0
1

η−1
2
η0

3

⎞
⎠ �

⎛
⎜⎝

1√
2
(u + H + iGZ )

G−
W

1√
2
w′ + sξG

0
X + cξ H

0
2

⎞
⎟⎠

∼
(

1, 3, −1

3

)
, (45)

where note that α = 1, 2, tξ = u′/w′, and the physical
scalar spectrum explicitly displayed can be obtained from
the following scalar potential. Recall that the FCNC bounds
yield: w > 3.5 TeV for the K mixing, and w > 4 TeV for the
Bs mixing. Additionally, the flavor phenomenology of this
kind of the 3-3-1 models has been extensively studied, for
examples, in [54–56].

The total Lagrangian is L = Lkinetic + LYukawa − Vscalar,
where

Lkinetic =
∑
F

F̄iγ μDμF +
∑
S

(DμS)†(DμS)

−1

4
Gμν

n Gnμν − 1

4
Aμν
n Anμν − 1

4
BμνBμν, (46)

where F, S run over fermion and scalar multiplets, respec-
tively. Gnμν , Anμν , and Bμν are the field strength tensors
corresponding to the 3-3-1 subgroups, respectively, and Dμ

is the covariant derivative previously supplied. The Yukawa
Lagrangian and scalar potential are

LYukawa = hU33 Q̄3LχUR + hD
αβ Q̄αLχ∗DβR

+ hu3a Q̄3LηuaR + hdαa Q̄αLη∗daR
+ h′u

3a Q̄3LχuaR + h′d
αa Q̄αLχ∗daR

+ h′U
33 Q̄3LηUR+h′D

αβ Q̄αLη∗DβR+H.c., (47)

Vscalar = μ2
1η

†η + μ2
2χ

†χ + λ1(η
†η)2 + λ2(χ

†χ)2

+ λ3(η
†η)(χ†χ) + λ4(η

†χ)(χ†η)

+
[
μ′2

3 η†χ + λ′
5(η

†χ)2 + (λ′
6η

†η

+ λ′
7χ

†χ)η†χ + H.c.
]
. (48)

As established in [8,41], in the general 3-3-1 model,
the baryon minus lepton number B–L neither commutes
nor closes algebraically with SU (3)L . For instance, with
L(νR) = 1 and B(νR) = 0, a lepton triplet has B −
L = diag(−1,−1, 1), which does not commute with the
T4,5,6,7 generators of SU (3)L . Additionally, if the alge-
bras are closed, B–L must be some generator of SU (3)L ,
B − L = xnTn , which yields Tr(B − L) = 0, in con-
trast with the lepton triplet Tr(B − L) = −1. Indeed,
it is clear that the minimal interactions of the model (the
unprimed couplings) conserve a new Abelian symmetry,
U (1)N , that along with SU (3)L close those symmetries, real-
izing B−L = − 4√

3
T8 +N as a residual charge of SU (3)L ⊗

U (1)N . The charges N and X are independent as B–L and

Q are. The N -charges for the multiplets are obtained as
N (ψaL , Q3L , QαL , eaR, uaR, daR,UR, DαR, η, χ) =
−1/3, 1,−1/3,−1, 1/3, 1/3, 7/3,−5/3, 2/3,−4/3, resp-
ectively. Moreover, the nontrivial B–L charges for new parti-
cles are collected as [B − L](U, D, η0

3, χ
0
1 , χ−

2 , X0,Y−) =
7/3,−5/3, 2,−2,−2,−2,−2, respectively. Here, the fields
X and Y are the non-Hermitian gauge bosons respectively
coupled to T4,5 and T6,7, as mentioned.

It is easily checked that the nonminimal Yukawa cou-
plings, those primed in (47), violate B–L by two units, while
the nonminimal scalar-couplings and mass-parameters, those
primed in (48), violate this charge by one or two units, respec-
tively. Furthermore, since the scalar fields η0

3 and χ0
1 have

B − L = 0, their VEVs u′, w′ break B–L . This is in con-
trast with the normal VEVs u, w, which carry no B–L and
conserve this charge. Additionally, all the above ingredients
are necessarily included to realize B–L as an approximate
symmetry; otherwise, the 3-3-1 model is not self-consistent,
warranting a 3-3-1-1 gauge extension [8]. For consistency
with the standard model, the violating parameters such as
the couplings and the VEVs should be much smaller than
the corresponding conserved ones, u′ � u, w′ � w, h′ �
h, λ′ � λ, etc. Additionally, u � 246 GeV is extracted from
the W boson mass, which implies u � w.

It is easily justified that the leptons and three ordinary
quarks (two up quarks and one down quark) have vanish-
ing tree-level masses. Furthermore, the Lagrangian of the
model automatically contains (i.e., conserves) the Peccei–
Quinn-like symmetries, similarly to the original economical
3-3-1 model [21]. Such massless particles can get appro-
priate masses when the Peccei–Quinn-like symmetries are
completely broken via radiative corrections or effective inter-
actions [21]. Let us impose the latter which is given, up to
five dimensions, by

L′
Yukawa = 1


(Q̄3Lη∗χ∗)(hd3adaR + h′D

3αDαR)

+ 1


(Q̄αLηχ)(huαauaR + h′U

α3UR)

+ 1


heabψ̄aLη∗χ∗ebR + 1


(ψ̄c

aLψbL)( f ′ν
abηη

+g′ν
abχχ + h′ν

abηχ)∗ + H.c., (49)

where the unprimed couplings conserve B–L , while the
primed couplings stand for the violating ones, as usual. Addi-
tionally, the quark and neutrino effective couplings explicitly
violate the Peccei-Quinn-like charges [21]. The cutoff scale
 can be taken in the same order as w. Specially f ′ν

ab and
g′ν
ab are symmetric in flavor indices, whereas h′ν

ab is a generic
matrix.

Substituting the VEVs of the scalars into the relevant
Lagrangians in (47) and (49), all the fermion mass matrices
are derived. Using the conditions u′ � u and w′ � w here-
after, the charged leptons obtain masses, [Me]ab � heabu

w
2

.
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Since w ∼  and u � 246 GeV, the Me fits the measured
masses of charged leptons, analogous to the standard model.
We have a seesaw mechanism for the neutrino masses, which
works due to u � w ∼ . Indeed, the right-handed neu-
trinos achieve large Majorana masses, [MR]ab � −g′ν

ab
w2


.

The left-handed neutrinos gain small Majorana masses,
[ML ]ab � − f ′ν

ab
u2


. The neutrino Dirac masses take the form,

[MD]ab � −h′ν
ab

uw
2

. Thus, the observed neutrinos (∼ νL)

obtain small masses via a combined type I and II seesaw
mechanism,

Mν � ML − MT
DM

−1
R MD

� −u2



[
f ′ν − 1

4
(h′ν)T (g′ν)−1h′ν

]
. (50)

The new observation is that the neutrinos get masses when
both the Peccei–Quinn-like and B–L symmetries are broken.
The strength of the symmetry breakings is set by the primed
couplings of the effective interactions, commonly called h′,
thus Mν ∼ u2


h′. Note that for the 3-3-1 model, if B–L is

conserved, it must be a gauged charge, and that the effec-
tive interactions (primed) must be absent [8,29,35,41,49–
51]. Therefore, h′ measures the approximate B–L symmetry
as well as the nonunitarity of the 3-3-1 model, as imprinted
from the 3-3-1-1 model. The h′ strength can be obtained
by integrating the U (1)N gauge boson out from the 3-3-1-1
model, which matches h′/ = gN/N . Further, we have
h′ ∼ /N ∼ 10−11, where N ∼ 1014 GeV is just the
inflation scale and gN ∼ 1 [49,50]. This implies Mν ∼ 0.1
eV as desirable. Alternatively, comparing Mν/Me ∼ u

w
h′
h

with u/w ∼ 0.1 and Mν/Me ∼ 10−6, it yields h′/h ∼ 10−5.
Thus, the breaking strength h′ is suitably smaller than the
electron Yukawa coupling, in agreement to [30].

At this stage, an evaluation shows that all the ordinary
quarks obtain consistent masses, in agreement to [21]. More-
over, the elements of the mixing matrices of the exotic and
ordinary quarks are proportional to u′/u, w′/w, and h′/h—
the ratios of the B–L violating parameters over the corre-
sponding normal ones [40]. Again, the VEVs u′, w′ and the
couplings h′ should be small, u′ � u, w′ � w, h′ � h,
in order to suppress the dangerous FCNCs coming from Z
boson exchange due to the ordinary and exotic quark mix-
ings. Generalizing the above result as well as in [35], we
obtain u′/u ∼ w′/w ∼ h′/h ∼ √|(V ∗

dL)I1(VdL)I2| �
3.16 × 10−3, where (VdL)I i is the element that correspond-
ingly connects the exotic and ordinary quarks in the mix-
ing matrix. It yields u′ � 0.77 GeV due to u = 246 GeV,
and w′ � 3.16, 15.8, and 31.6 GeV for w = 1, 5, and 10
TeV, respectively. Also, h′ for the quark sector is more sup-
pressed, similarly to the ones for the neutrino masses. In prac-
tice, the VEVs u′, w′ break B–L (i.e., the lepton number),
and that they are suppressed to be small due to the corre-
sponding lepton-number violating scalar-potential. From the

conditions of the potential minimization, we have roundly
u′ ∼ λ′

7u and w′ ∼ λ′
7w. Thus, u′ and w′ should be small

since its absence, i.e. λ′
7 = 0, enhances the 3-3-1-1 gauge

symmetry.
Following the approach in [30,42], the model can pro-

vide realistic dark matter candidates. If one introduces the
inert triplet ρ—which is analogous to the field in the 3-3-
1 model with right-handed neutrinos but is odd under a Z2

symmetry—it cannot be dark matter. Indeed, the candidate
ρ0

2 = 1√
2
(H + i A) resided in ρ yields degenerate masses for

H and A, which implies a large direct detection cross-section
via Z exchange. This is already ruled out by the experiment
[57]. However, an inert triplet as replication of η or χ under
the gauge symmetry, called ζ = (ζ 0

1 , ζ−
2 , ζ 0

3 ), that trans-
forms nontrivially under a Z2 symmetry (ζ → −ζ ) might
provide a consistent candidate as the combination of either
real or imaginary parts of ζ 0

1,3. The inert scalar sextet respon-
sible for dark matter can be also interpreted, similarly to the
simple 3-3-1 model [30]. The details of the dark matter iden-
tification and stability proof could be similarly achieved as
in [30,42], which are not further discussed. That said, the
model predicts those candidates as WIMPs at TeV scale.

In summary, the 3-3-1 model with right-handed neutrinos
has a nontrivial vacuum foru′ = 0 andw′ = 0, and this yields
the appropriate new-physics consequences as obtained. Inter-
estingly, the type II economical 3-3-1 model is a minimal
realization of this vacuum, while it explicitly indicates to
dark matter. See [58–60] for other interpretations. Note that
the previous studies [5–7] only consider the vacuum with
u′ = w′ = 0, and thus the above consequences were not rec-
ognized although they include more than two scalar triplets.

4 Conclusion

As a fundamental property, the 3-3-1 model presents the
FCNCs associated with Z ′ boson due to nonuniversal
fermion generations under the gauge symmetry. We have
proved that the FCNCs that describe neutral meson mixings
are independent of both the embedding of electric charge
operator and the potential Landau pole. Applying the result
for the K and Bs mixings, we obtain the new physics scale:
(a) w > 2200 TeV, if the first or second fermion generation
is discriminative, and (b) w > 3.5 TeV for the K system and
w > 4 TeV for the Bs system, if the third fermion generation
is discriminative.

Due to the above constraint, the original economical 3-
3-1 model (named type-I) works in a large energy regime
of order 1000 TeV, yielding simultaneously the novel con-
sequences of the neutrino mass generation scheme, cosmic
inflation, leptogenesis, and superheavy dark matter. The 3-
3-1 breaking field, χ0

3 , is important to set the seesaw scale
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w, which originates from the inflation scale, and define the
inflaton �. The decays of � to pairs of new quarks or of new
gauge bosons reheat the universe. The CP-violating decays
of νR to a heavy charged Higgs (H±

2 ) and charged lepton
govern the baryon asymmetry. Dark matter is a hidden/inert
scalar field, a replication of χ (called η) or a replication of ρ

(called ρ′), which might be created in the early universe by
nonthermal processes/mechanisms associated with the infla-
tion and reheating. Alternatively, the light candidates may
play the role of WIMPs. The imprints of the inflation and
leptogenesis mechanisms at the TeV scale are just the new
Higgs fields H1,2, which may be verified at the LHC.

Alternatively, we have introduced a new economical 3-
3-1 model (called type-II), where the third fermion genera-
tion is rearranged differently from the first two generations,
and that the scalar content includes η, χ . This model works
naturally at the TeV scale, providing interesting results. The
lepton number breaking/violating parameters are suppressed,
u′ � u, w′ � w, h′ � h, and λ′ � λ, by the approximate
B–L symmetry. The strength of the lepton number breaking
might have a source from the 3-3-1-1 breaking to be natu-
rally small, responsible for the neutrino masses. Moreover,
the approximate B–L symmetry strictly prevents the danger-
ous FCNCs coming from the ordinary and exotic quark mix-
ings, bounding the violating parameters to be u′, w′ ∼ O(1)

GeV and h′/h � 3.16 × 10−3 for the quark couplings. Both
the neutrinos and quarks gain consistent masses also asso-
ciated with the complete breakdown of the Peccei–Quinn-
like symmetries. It is shown that a hidden scalar field ζ as a
replication of η or χ can provide appropriate WIMP thermal
relics. However, if ρ is included as an inert scalar, it cannot
be dark matter.

Let us stress that the discrimination of fermion generations
as recognized at a scale of order 1000 TeV is surprisingly
close to the WIMP mass limit ∼ 500 GeV [48]. Although
the 3-3-1 model does not directly solve this coincidence, it
provides both the scenarios for dark matter as the nonthermal
and thermal relics. Therefore, these two economical 3-3-1
models would predict and connect the particle physics to
cosmological issues with rich phenomenologies, attracting
much attention [53].
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