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We consider the baryogenesis picture in the Zee-Babu model. Our analysis shows that electroweak phase
transition (EWPT) in the model is a first-order phase transition at the 100 GeV scale, its strength ranges from
1 to 4.15 and themasses of chargedHiggs boson are smaller than 300GeV. The EWPTis strengthened by only
the newbosons and this strength is enhancedbyarbitrary ξgauge.However, the ξgaugedoes not break the first-
order EWPT or, in other words, the ξ gauge is not the cause of the EWPT. This leads to the fact that the
calculation of EWPT in Landau gauge is enough; and the latter may provide baryon-number violation
(B-violation) necessary for baryogenesis in the relationship with nonequilibrium physics in the early universe.
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I. INTRODUCTION

Physics, at present, has entered into a new period on the
understanding of the early Universe. In that context,
Cosmology and Particle Physics go on the same way.
Being as a central issue of cosmology and particle physics,
at present the baryon asymmetry is an interesting problem.
If we could explain this problem, we can understand the
true nature of the smallest elements and reveal a lot about
an imbalances matter-antimatter from the early Universe.
The electroweak baryogenesis (EWBG) is a way to

explaining the baryon asymmetry of the Universe (BAU) in
the early Universe, associating with Sakharov conditions,
which are B, C, CP violations, and deviation from thermal
equilibrium [1]. These conditions can be satisfied when the
EWPT must be a strongly first-order phase transition.
Because that not only leads to thermal imbalance [2],
but also makes a connection between B and CP violation
via nonequilibrium physics [3].
The EWPT has been investigated in the standard model

(SM) Refs. [2,4,5] as well as its various extended versions

[6–19]. For the SM, although the EWPT strength is larger
than unity at the electroweak scale, the mass of the Higgs
boson must be less than 125 GeV [2,4,5]; so the EWBG
requires new physics beyond the SM at the weak scale [6].
Many extensions such as the two-Higgs-doublet model,

the reduced minimal 3-3-1 model, the economical 3-3-1
model, or the minimal supersymmetric standard model, have
a strongly first-order EWPT and the new sources of CP
violation, which are necessary to account for the BAU;
triggers for the first-order EWPT in these models are heavy
bosons or darkmatter candidates [7–11,16–18,20]. However,
most research of the EWPT are the Landau gauge. Recently
gauge invariant also made important contributions in the
EWPT as researching in Refs. [19,21].
The quantity of sphaleron rate admitting to B violation

rate, has been calculated in the SM in Refs. [2,4,5] and in
the reduced minimal 3-3-1 model in Ref. [11]. In addition,
by using nonperturbative lattice simulations, a powerful
framework and set of analytic and numerical tools have
been developed in Refs. [4,5].
The Zee-Babu (ZB) model is one of the simplest

extensions of the SM which has some interesting features
[22]. Due to its simplicity, in this work, we have considered
the EWPT and sphaleron rate in the ZB model.
In theZBmodel, two extra charged scalarsh� and k�� are

added to the Higgs potential. The kind of new scalars can
play an important role in the early Universe. As shown in
[22,23], they can also be a reason for tiny mass of neutrinos
through two loop or three loop corrections. One important
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property of these particles whichwill be shown in this paper,
is that they can be triggers for the first-order phase transition.
In order to drive a gauge dependent effective potential at

one-loop level, in this paper we will use a direct method
which is different from those used in Refs. [19,21]. This
paper is organized as follows. In Sec. II we give a short
review of the ZB model and we drive an effective potential
which has a contribution from heavy scalars and the ξ
gauge at one-loop level. In Sec. III, we find the mass range
of charged scalar particles by a first-order phase transition
condition. Finally, Sec. IV is devoted to constraints on the
mass of the charged Higgs boson. In Sec. V we summarize
and describe outlooks.

II. EFFECTIVE POTENTIAL IN THE
ZEE-BABU MODEL

In the ZB model, by adding two charged scalar fields h�

and k�� [22], the Lagrangian becomes

L ¼ LSM þ fabψc
aLψbLhþ þ h0abl

c
aRlbRk

þþ þ Vðϕ; h; kÞ
þ ðDμhþÞ†ðDμhþÞ þ ðDμkþþÞ†ðDμkþþÞ þH:c ð1Þ

In the model, the Higgs potential contains more four
couplings between h� or k�� and neutral Higgs boson
[22]:

Vðϕ; h; kÞ ¼ μ2ϕ†ϕþ u21jhj2 þ u22jkj2 þ λðϕ†ϕÞ2 þ λhjhj4
þ λkjkj4 þ λhkjhj2jkj2 þ 2p2jhj2ϕ†ϕ

þ 2q2jkj2ϕ†ϕþ ðμhkh2kþþ þH:cÞ; ð2Þ

where

ϕ ¼
�
ρþ

ρ0

�
ð3Þ

and ρ0 has a vacuum expectation value (VEV)

ρ0 ¼ 1ffiffiffi
2

p ðv0 þ σ þ iζÞ: ð4Þ

The masses of h� and k�� are given by

m2
h� ¼ p2v20 þ u21;

m2
k�� ¼ q2v20 þ u22: ð5Þ

Diagonalizing matrices in the kinetic components of the
Higgs potential and retaining Goldstone bosons, we obtain

m2
Hðv0Þ¼−μ2þ3λv20; m2

Zðv0Þ¼
1

4
ðg2þg02Þv20¼a2v20;

m2
Gðv0Þ¼−μ2þλv20; m2

Wðv0Þ¼
1

4
g2v20¼b2v20: ð6Þ

A. EFFECTIVE POTENTIAL
WITH LANDAU GAUGE

From Eq. (1), ignoring Goldstone bosons, we obtain an
effective potential with contributions of h� and k�� in the
Landau gauge:

VeffðvÞ ¼ V0ðvÞ þ
3

64π2

�
m4

ZðvÞln
m2

ZðvÞ
Q2

þ 2m4
WðvÞln

m2
WðvÞ
Q2

− 4m4
t ðvÞln

m2
t ðvÞ
Q2

�

þ 1

64π2

�
2m4

h�ðvÞln
m2

h�ðvÞ
Q2

þ 2m4
k��ðvÞln

m2
k��ðvÞ
Q2

þm4
HðvÞln

m2
HðvÞ
Q2

�

þ 3T4

4π2

�
F−

�
mZðvÞ
T

�
þ F−

�
mWðvÞ

T

�
þ 4Fþ

�
mtðvÞ
T

��

þ T4

4π2

�
2F−

�
mh�ðvÞ

T

�
þ 2F−

�
mk��ðvÞ

T

�
þ F−

�
mHðvÞ

T

��
; ð7Þ

where vρ is a variable changing with temperature, and at T ¼ 0, vρ ≡ v0 ¼ 246 GeV. Here

F�

�
mϕ

T

�
¼

Z mϕ
T

0

αJ1∓ðα; 0Þdα;

J1∓ðα; 0Þ ¼ 2

Z
∞

α

ðx2 − α2Þ12
ex ∓ 1

dx:
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B. EFFECTIVE POTENTIAL WITH ξ GAUGE

It is known that in high levels, the contribution of Goldstone boson cannot be ignored. Therefore, we must consider an
effective potential in arbitrary ξ gauge given by

VT¼0
1 ðvÞ ¼ 1

4ð4πÞ2 ðm
2
HÞ2

�
ln

�
m2

H

Q2

�
−
3

2

�
þ 1

4ð4πÞ2 ðm
2
h�Þ2

�
ln

�
m2

h�

Q2

�
−
3

2

�
þ 1

4ð4πÞ2 ðm
2
k��Þ2

�
ln

�
m2

k��

Q2

�
−
3

2

�

þ 2 × 1

4ð4πÞ2 ðm
2
G þ ξm2

WÞ2
�
ln

�
m2

G þ ξm2
W

Q2

�
−
3

2

�
þ 1

4ð4πÞ2 ðm
2
G þ ξm2

ZÞ2
�
ln

�
m2

G þ ξm2
Z

Q2

�
−
3

2

�

þ 2 × 3

4ð4πÞ2 ðm
2
WÞ2

�
ln

�
m2

W

Q2

�
−
5

6

�
þ 3

4ð4πÞ2 ðm
2
ZÞ2

�
ln

�
m2

Z

Q2

�
−
5

6

�
−

2 × 1

4ð4πÞ2 ðξm
2
WÞ2

�
ln

�
ξm2

W

Q2

�
−
3

2

�

−
1

4ð4πÞ2 ðξm
2
ZÞ2

�
ln

�
ξm2

Z

Q2

�
−
3

2

�
− “free”; ð8Þ

and

VT≠0
1 ðv;TÞ ¼ T4

2π2

�
JB

�
m2

H

T2

�
þ JB

�
m2

h�

T2

�
þ 2JB

�
m2

k��

T2

��
þ T4

2π2

�
2× JB

�
m2

G þ ξm2
W

T2

�
þ JB

�
m2

G þ ξm2
Z

T2

��

þ 3T4

2π2

�
2× JB

�
m2

W

T2

�
þ JB

�
m2

Z

T4

�
þ JB

�
m2

γ

T4

��
−

T4

2π2

�
2× JB

�
ξm2

W

T2

�
þ JB

�
ξm2

Z

T2

�
þ JB

�
ξm2

γ

T2

��
− “free”;

ð9Þ

where “free” represents a free-field subtraction.

III. ELECTROWEAK PHASE TRANSITION IN THE ZEE-BABU MODEL

A. EWPT in Landau gauge

Ignoring u1 and u2 in Eq. (5) (i.e., u1 and u2 are assumed to be very small) and neglecting contributions of Goldstone
bosons, we can write the high-temperature expansion of the potential in Eq. (7) as a quartic expression in v:

VeffðvÞ ¼ DðT2 − T2
0Þv2 − ETjvj3 þ λT

4
v4; ð10Þ

in which

D ¼ 1

24v02
½6m2

Wðv0Þ þ 3m2
Z1
ðv0Þ þm2

Hðv0Þ þ 2m2
h�ðv0Þ þ 2m2

k��ðv0Þ þ 6m2
t ðv0Þ�;

T2
0 ¼

1

D

�
m2

Hðv0Þ
4

−
1

32π2v20
ð6m4

Wðv0Þ þ 3m4
Z1
ðv0Þ þm4

Hðv0Þ þ 2m4
h�ðv0Þ þ 2m4

k��ðv0Þ − 12m4
t ðv0ÞÞ

�
;

E ¼ 1

12πv30
ð6m3

Wðv0Þ þ 3m3
Z1
ðv0Þ þm3

Hðv0Þ þ 2m3
h�ðv0Þ þ 2m3

k��ðv0ÞÞ; ð11Þ

λT ¼ m2
Hðv0Þ
2v20

�
1 −

1

8π2v20ðm2
Hðv0ÞÞ

�
6m4

Wðv0Þ ln
m2

Wðv0Þ
abT2

þ 3m4
Z1
ðv0Þ ln

m2
Z1
ðv0Þ

abT2
þm4

H0ðv0Þ ln
m2

H0ðv0Þ
abT2

þ 2m4
k��ðv0Þ ln

m2
k��ðv0Þ
abT2

þ 2m4
h�ðv0Þ ln

m2
h�ðv0Þ
abT2

− 12m4
t ðv0Þ ln

m2
t ðv0Þ
aFT2

��
;

where v0 is the value where the zero-temperature effective potential V0
effðvÞ gets the minimum. Here, we acquire V0

eff from
Veff in Eq. (10) by neglecting all terms in the form F∓ðmTÞ.
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The minimum conditions for V0
effðvÞ are

V0
effðv0Þ ¼ 0;

∂V0
effðvÞ
∂v

				
v¼v0

¼ 0;

∂2V0
effðvÞ

∂v2
				
v¼v0

¼ ½m2
HðvÞ�jv¼v0 ¼ 1252 GeV2: ð12Þ

We also have the minima of the effective potential in
Eq. (10)

v ¼ 0; v≡ vc ¼
2ETc

λTc

; ð13Þ

where vc is the critical VEV of ϕ at the broken state,
and Tc is the critical temperature of phase transition
given by

Tc ¼
T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − E2=DλTc

q : ð14Þ

Now let us investigate the phase transition strength

S ¼ vc
Tc

¼ 2E
λTc

ð15Þ

of this EWPT. In the limit E → 0, the transition strength
tends to zero (S → 0) and the phase transition is a second-
order one. To have a first-order phase transition,
we require that the strength is larger or equal to the
unit (S ≥ 1). In Fig. 1, we have plotted the transition

strength S as a function of the new charged scalars: mh�

and mk�� .
According to Ref. [24], the accuracy of a high-temper-

ature expansion for the effective potential such as that in
Eq. (10) will be better than 5% if mboson

T < 2.2, wheremboson is
the relevant boson mass. Therefore, as shown in Fig. 1, for
mh� and mk�� being in the 0–350 GeV range, respectively,
the transition strength is in the range 1 ≤ S < 2.4.
We see that the contribution of h� and k�� are the same.

The larger mass of h� and k��, the larger cubic term (E) in
the effective potential but the strength of phase transition
cannot be strong. Because the value of λ also increases, so
there is a tension between E and λ to make the first order
phase transition. In addition when the masses of charged
Higgs bosons are too large, T0, λ will be unknown
or S → ∞.

B. EWPT in ξ gauge

The high-temperature expansions of the potential in
Eq. (8) and in Eq. (9) can be rewritten in a like-quartic
expression in v

V ¼ ðD1 þD2 þD3 þD4 þ B2Þv2 þ B1v3 þ Λv4

þ fðT; u1; u2; μ; ξÞ; ð16Þ

where

fðT; u1; u2; μ; ξ; vÞ ¼ C1 þ C2; ð17Þ

and

0 100 200 300 400 500
0

100

200

300

400

500

m k GeV

m
h

G
eV

FIG. 1. When the solid contour of S ¼ 2E=λTc
¼ 1, the dashed contour: 2E=λTc

¼ 1.5, the dotted contour: 2E=λTc
¼ 2, the dotted-

dashed contour: 2E=λTc
¼ 2.4, even and nonsmooth contours: S → ∞.
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D1 ¼
T2

24v20
ð3m2

Zðv0Þ þ 6m2
Wðv0Þ þ 6m2

t ðv0Þ þ 2ðm2
h�ðv0Þ − u21Þ þ 2ðm2

k��ðv0Þ − u22Þ þ 6λv20Þ;

D2 ¼
1

32v20π
2
f3m4

Zðv0Þ þ 6m4
Wðv0Þ − 12m4

t ðv0Þ þ 2ðm2
h�ðv0Þ − u21Þ2 − 8π2v20m

2
H0

þ 2ðm2
k��ðv0Þ − u22Þ2 þ 12v40λ

2 þ 2m2
Zðv0Þv20λξþ 4m2

Wðv0Þv20λξg;

D3 ¼
1

32π2

�
2p2u21 ln

�
abT2

p2v20 þ u21

�
þ 2q2u22 ln

�
abT2

q2v20 þ u22

�
− 3λμ2 ln

�
abT2

3v20λ − μ2

�
− λμ2 ln

�
abT2

v20ðλþ a2ξÞ − μ2

�

− 2λμ2 ln

�
abT2

v20ðλþ b2ξÞ − μ2

�
− a2ξμ2 ln

�
abT2

v20ðλþ a2ξÞ − μ2

�
− 2b2ξμ2 ln

�
abT2

v20ðλþ b2ξÞ − μ2

��
;

D4 ¼
1

32π2
ð2p2u21 þ 2q2u22 − 6λμ2 − a2ξμ2 − 2b2ξμ2Þ;

Λ ¼ 1

64π2

�
2p4 ln

�
abT2

u21 þ p2v20

�
þ 2q4 ln

�
abT2

u22 þ q2v20

�
þ 3a4 ln

�
abT2

a2v20

�
þ 6b4 ln

�
abT2

b2v20

�
− 12k4 ln

�
aFT2

k2v20

�

þ 9λ2 ln

�
abT2

3λv20 − μ2

�
þ 8π2

m2
H0

v20
− a4ξ2 ln

�
abT2

a2ξv20

�
− 2b4ξ2 ln

�
abT2

b2ξv20

�
þ a4ξ2 ln

�
abT2

v20ðλþ a2ξÞ − μ2

�

þ 2b4ξ2 ln

�
abT2

v20ðλþ b2ξÞ − μ2

�
þ 2a2λξ ln

�
abT2

v20ðλþ a2ξÞ − μ2

�
þ 4b2λξ ln

�
abT2

v20ðλþ b2ξÞ − μ2

�

þ λ2 ln

�
abT2

v20ðλþ a2ξÞ − μ2

�
þ 2λ2 ln

�
abT2

v20ðλþ b2ξÞ − μ2

��
;

B1 ¼
T

12πv30
ð−3m3

Zðv0Þ − 6m3
Wðv0Þ þm3

Zðv0Þξ3=2 þ 2m3
Wðv0Þξ3=2Þ;

B2 ¼ T

�
−
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ p2v2

p
6π

−
q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u22 þ q2v2

p
6π

−
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λv2 − μ2

p
4π

−
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ a2ξv2 − μ2

p
12π

−
a2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ a2ξv2 − μ2

p
12π

−
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ b2ξv2 − μ2

p
6π

−
b2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ b2ξv2 − μ2

p
6π

�
; ð18Þ

C1 ¼ −
Tu21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ p2v2

p
6π

−
Tu22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u22 þ q2v2

p
6π

−
T2μ2

6
þ 3μ4

32π2
þ Tμ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λv2 − μ2

p
12π

þ Tμ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ a2ξv2 − μ2

p
12π

þ Tμ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ b2ξv2 − μ2

p
6π

þ
u41 ln

h
abT2

v2
0

i
32π2

þ
u42 ln

h
abT2

v2
0

i
32π2

þ 3
μ4 ln

h
abT2

v2
0

i
64π2

;

C2 ¼
T2u21
12

þ 3u41
64π2

þ T2u22
12

þ 3u42
64π2

þ δΩ;

δΩ ¼ −
1

128π2



−4p2u21v

2
0 − 4q2u22v

2
0 þ 3a4v40 þ 6b4v40 − 12k4v40 þ 2p4v40 þ 2q4v40 þ 12v40λ

2 þ 2a2v40λξþ 4b2v40λξ

þ 12v20λμ
2 þ 2a2v20ξμ

2 þ 4b2v20ξμ
2 þ 4u41 ln

�
u21 þ p2v20

v20

�
þ 4u42 ln

�
u22 þ q2v20

v20

�
þ 2μ4 ln

�
3v20λ − μ2

v20

�

þ 2μ4 ln

�
v20λþ a2v20ξ − μ2

v20

�
þ 4μ4 ln

�
v20λþ b2v20ξ − μ2

v20

�
− 16π2v20m

2
H0

�
: ð19Þ

Expanding functions JBðm
2
Gþξm2

W

T2 Þ and JBðm
2
Gþξm2

Z

T2 Þ in Eq. (9), we will obtain the term of mixing between ξ and v in B1 and

B2. Therefore JBðm
2
Gþξm2

W

T2 Þ and JBðm
2
Gþξm2

Z

T2 Þ or B1 and B2 contain a part of daisy diagram contributions mentioned in
Ref. [19]. The other part of ring-loop distribution comes to damping effect. The damping effect is in the thermal self-energy
term (ΣijðTÞϕiϕj and ΠabðTÞAa

0A
b
0 , i.e., V

B
ring in Ref. [19]).
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On the other hand, we see that the ring loop distribution
still is very small, it was approximated g2T2=m2 (g is the
coupling constant of SUð2Þ, m is mass of boson),
m ∼ 100 GeV, g ∼ 10−1 so g2=m2 ∼ 10−5. If we add this
distribution to the effective potential, the D1 term will give
a small change only. Therefore, this distribution does not
change the strength of EWPTor in other words, it is not the
origin of EWPT.
The potential in Eq. (16) is not a quartic expression

because B2, D3, D4 and fðT; u1; u2; μ; ξ; vÞ depend on v, ξ
and T. It has seven variables such as u1, u2, p, q, μ, λ, and ξ.
Therefore, the shape of potential is distorted by u1, u2, p, q,
ξ, but not so much. If Goldstone bosons are neglected and
the gauge parameter is vanished (ξ ¼ 0), it will be reduced
to Eq. (10) in the Landau gauge.
Theminimumconditions for Eq. (16) are still like Eq. (12)

but for this case, it holds:m2
H0

¼ −μ2 þ 3λv20 ¼ 1252 GeV.
There are many variables in our problem and some of

them, for example, u1, u2, p, q, and μ play the same role.
They are components in the mass of particles.

It is emphasized that ξ and λ are two important variables
and have different roles. Therefore, in order to reduce
number of variables, we have to approximate values of
variables, butmust not lose the generality of the problem and
simplify B2,D3,D4, fðT; u1; u2; μ; ξ; vÞ in the next section.

C. The case of small contribution of Goldstone boson

When the mass of Goldstone boson is small, i.e., μ2 ≈
λv20 and taking into account mH0

¼ 125 GeV, we obtain
λ ¼ 0.1297. Note that this is a consequence of the above
argument, in which the values u1 and u2 are ignored
because their existence deforms the potential.
In this subsection, proving the gauge independent effec-

tive potential, we conduct a method yielding an effective
potential as a quartic expression in v through three steps.
The first approximate step is as follows: when μ2 ≈ λv20,

the term 6λv20 in D1 can be simplified with − T2μ2

6
in C1. All

terms in D4 will be destroyed so that D1 and D2 can be
rewritten as

D1 ¼
T2

24v20
ð3m2

Zðv0Þ þ 6m2
Wðv0Þ þ 6m2

t ðv0Þ þ 2m2
h�ðv0Þ þ 2m2

k��ðv0Þ þ 2λv20Þ;

D2 ¼
1

32v20π
2
f3m4

Zðv0Þ þ 6m4
Wðv0Þ − 12m4

t ðv0Þ þ 2ðm2
h�ðv0Þ − u21Þ2 − 8π2v20m

2
H0

þ2ðm2
k��ðv0Þ − u22Þ2 þ 6v40λ

2 þm2
Zðv0Þv20λξþ 2m2

Wðv0Þv20λξg: ð20Þ

In the second approximate step, we neglect u1, u2, and obtain

D3 ¼
1

32π2

�
−3λμ2 ln

�
abT2

2v20λ

�
− λμ2 ln

�
abT2

v20ða2ξÞ
�
− 2λμ2 ln

�
abT2

v20ðb2ξÞ
�
− a2ξμ2 ln

�
abT2

v20ða2ξÞ
�
− 2b2ξμ2 ln

�
abT2

v20ðb2ξÞ
��

;

Λ ¼ 1

64π2

�
2p4 ln

�
abT2

p2v20

�
þ 2q4 ln

�
abT2

q2v20

�
þ 3a4 ln

�
abT2

a2v20

�
þ 6b4 ln

�
abT2

b2v20

�
− 12k4 ln

�
aFT2

k2v20

�
þ 9λ2 ln

�
abT2

3λv20 − μ2

�

þ 8π2
m2

H0

v20
þ 2a2λξ ln

�
abT2

v20ða2ξÞ
�
þ 4b2λξ ln

�
abT2

v20ðb2ξÞ
�
þ λ2 ln

�
abT2

v20ða2ξÞ
�
þ 2λ2 ln

�
abT2

v20ðb2ξÞ
��

;

B1 ¼
T

12πv30
ð−3m3

Zðv0Þ − 6m3
Wðv0Þ þm3

Zðv0Þξ3=2 þ 2m3
Wðv0Þξ3=2Þ;

B2 ¼ T
�
−
p2

ffiffiffiffiffiffiffiffiffiffi
p2v2

p
6π

−
q2

ffiffiffiffiffiffiffiffiffi
q2v2

p
6π

−
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λv2 − μ2

p
4π

−
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ a2ξv2 − μ2

p
12π

−
a2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ a2ξv2 − μ2

p
12π

−
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ b2ξv2 − μ2

p
6π

−
b2ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ b2ξv2 − μ2

p
6π

�
;

C1 ¼ −
T2μ2

6
þ 3μ4

32π2
þ Tμ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3λv2 − μ2

p
12π

þ Tμ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ a2ξv2 − μ2

p
12π

þ Tμ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λv2 þ b2ξv2 − μ2

p
6π

þ 3
μ4 ln½abT2

v2
0

�
64π2

;

δΩ ¼ −
1

128π2
ð3a4v40 þ 6b4v40 − 12k4v40 þ 2p4v40 þ 2q4v40 þ 12v40λ

2 þ 2a2v40λξþ 4b2v40λξþ 12v20λμ
2 þ 2a2v20ξμ

2

þ 4b2v20ξμ
2 þ 2μ4 ln½2� þ 2μ4 ln½a2ξ� þ 4μ4 ln½b2ξ� − 16π2v20m

2
H0
Þ: ð21Þ
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In the third approximate step: replacing μ2 ¼ λv20 and in
the square root term of B2 and C1, we can approximate
μ2 ∼ λv2. Therefore, all terms in C1 are destroyed with δΩ
(except the last one, 3

64π2
μ4 ln½abT2

v2
0

�) and D3 and B2, will

finally be simplified with Λ and B1, respectively.

The value 3
64π2

μ4 ln½abT2

v2
0

� depends on T, and it pushes the

effective potential to right, or it distorts the quadratic potential
and this shows the effect of ξ as seen in Ref. [19]. Therefore
the mentioned term in C1 can be neglected.
Finally, we obtain the strength of EWPT as shown in

Fig. 2. The maximum of the strength is about 4.05.
In fact, the mass of Goldstone boson is much smaller than

that of the W� boson or the Z boson so the contribution of
Goldstone bosonmust be very small in the effective potential.
Hence, the lines in Fig. 2 are almost vertical or almost parallel
to the axis ξ. These results match those of Ref. [21]. This
shows that the strength of EWPT is gauge independent.
In addition, the new particles have large masses, so they

provide valuable contributions to the EWPT in the Landau
gauge or in an arbitrary gauge. The charge of these particles
increases their contributions. In particular, k�� is the
doubly charged scalar, so its coefficients in the effective
potential are also greater than two times the coefficient of
W� boson (because of the fact that the doubly charged
particle (k��) always appears in pairs with the singly
charged one (h�), and by our approximation, with the same
masses: mk�� ¼ mh�).
Furthermore, we find that models having doubly charged

particles, provide a very strong first-order EWPT, such as
the Georgi-Machacek model [20] and they are being tested
by LHC [25,26].
According to Nielsen’s identity, in ℏ expansion, the one-

loop effective potential is gauge independent at each order
by ℏ [19], but the general potential still is gauge dependent.
However this dependence is not important as in our above
analysis.

IV. CONSTRAINTS ON COUPLING CONSTANTS
IN THE HIGGS POTENTIAL

In order to have the first order phase transition, the
masses of the new charged scalars mh� and mk�� must be
smaller than 350 GeV. Therefore, we obtain

p2v20 < ð300 GeVÞ2; ð22Þ

and

q2v20 < ð300 GeVÞ2: ð23Þ

From the above equations, we obtain the following
limits: 0 < p < 1.22 and 0 < q < 1.22. However, to find
these accurate values ofmh� andmk�� , other considerations
are also needed.
In the ZB model, the tiny masses of neutrino are

generated at two loops, so mh� and mk�� cannot be very
heavy [27]. From the experimental point of view, it is
interesting to consider new scalars light enough to be
produced at the LHC. The theoretical arguments lead to the
fact that the scalar masses should be a few TeVs, to avoid
unnaturally large one-loop corrections to the Higgs boson
mass which would cause a hierarchy problem. Therefore,
these upper bounds of new scalar masses can be 2 TeVs
[28]. Contacting to neutrino oscillation data, in the decay
k�� → ll, the branching ratio to ττ is very small in the ZB
model, less than about 1%. Then, a conservative limit is
mk�� > 200 GeV. In the ZB model, we can have the decay
k�� → h�h�, so 2mh� < mk�� . Therefore, our results in
Eqs. (22) and (23) are consistent with the above estimation.
Recently, the experimental groups at LHC (ATLAS and

CMS Collaborations) [29] have reported an experimental
anomaly in diboson production with apparent excess in
boosted jets of the WþW−, W�Z, and ZZ channels at
around 2 TeV invariant mass of the boson pair.

S=1

S=1.5

S=2

S=4.05

S

200 220 240 260 280 300 320 340
0

20

40

60

80

m k h GeV

FIG. 2. The strength of EWPT with λ ¼ 0.1297 and μ2 ∼ λv20.
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In addition, the calculation the Higgs coupling to
photons (due to charged particles in the loop diagram)
can be related to neutrino mass and CP violation which are
the key of matter and antimatter asymmetry. This study will
be investigated in a future publication.

V. CONCLUSION AND OUTLOOKS

In this paper we have investigated the EWPT in the ZB
model using the high-temperature effective potential. The
EWPT is strengthened by the new scalars to be the strongly
first-order, the phase transition strength ranges from 1 to
4.15. The new charged scalars h� and k�� are triggers for
the first-order EWPT. Our results may be better than the
results in Ref. [30].
It is known that if a particle has the bigger charge, the

decay rate will be larger. In their decay or scattering
channels, we can estimate their mass, or the parameter
domain in the Higgs potential. So the charge of particle also
affects the parameter domain in the Higgs potential or
signatures of the charge of new particles (h�, k��) are
hidden in the parameter domain, which in turn can
indirectly affect the EWPT. However, in our calculation
process, we looked for the mass domain of the new
particles to have a first-order phase transition. Then we
will extract the parameter domain in the Higgs potential. If
they match with values derived from scattering channels,
our solution will be viable. Therefore, signatures of the
charge may be an external condition for checking or
limiting the parameter domain in our solution.

In addition, the EWPT can be calculated in a different
way as in Refs. [19,21]. In order to determine TN or TE,
we will examine this problem in conjunction with the
CP-violation.
In the ZB model, the tiny mass of neutrino which can be

explained at two loop level induced by couplings between
charged Higgs boson and neutrino; and this can be a reason
of the matter-antimatter asymmetry and CP-violation. The
behavior of charged Higgs boson is also very interesting.
Therefore, in the next works, we can investigate the ratio
m0

h�=k�� by using neutrino data and the sphaleron rate. We

will investigate the CP-violation and beyond issues of the
baryon asymmetry problem through neutrino physics.
Furthermore, the sphaleron is an important process in

baryogenesis and leptogenesis so we will continue to
calculate and test the sphaleron solution in this model with
the COSMOTRANSITION code [31]. This code used a Bessel
function for vðrÞ but it is not flexible in changing the value
of the wall.
With this region of self couplings in the Higgs potential,

we can serve as basis for the calculation of other effects
connected to data of the LHC, such as diphoton decay of
Higgs boson, etc.
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