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By adding new gauge singlets of neutral leptons, the improved versions of the 3-3-1 models with right-
handed neutrinos have been recently introduced in order to explain recent experimental neutrino oscillation
data through the inverse seesaw mechanism. We prove that these models predict promising signals of
lepton-flavor-violating decays of the standard-model-like Higgs boson h(l) — ut, et, which are suppressed
in the original versions. One-loop contributions to these decay amplitudes are introduced in the unitary
gauge. Based on a numerical investigation, we find that the branching ratios of the decays h? — ut, et can
reach values of 1073 in the regions of parameter space satisfying the current experimental data of the decay
u — ey. The value of 10~* appears when the Yukawa couplings of leptons are close to the perturbative

limit. Some interesting properties of these regions of parameter space are also discussed.
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I. INTRODUCTION

Signals of lepton-flavor-violating decays of the standard-
model-like Higgs boson (LFVHDs) were investigated at
the LHC [1] not very long after its discovery in 2012 [2]. So
far, the most stringent limits on the branching ratios (Br) of
these decays are Br(h — uz, er) < O(1073) from the CMS
Collaboration using data collected at a center-of-mass energy
of 13 TeV. The sensitivities of the planned colliders for
LFVHD searches are predicted to reach the order of 10> [3].

On the theoretical side, model-independent studies
showed that the LFVHDs predicted from models beyond
the standard model (BSM) are constrained indirectly from
experimental data such as lepton-flavor-violating decays of
charged leptons (cLFV) [4]. Namely, they are affected most
strongly by the recent experimental bound on Br(u — ey).
Fortunately, large branching ratios of the decays h — ur, et
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are still allowed up to the order of 107*. Also, LFVHDs
have been widely investigated in many specific BSM
models, where the decay rates were indicated to be close
to the upcoming sensitivities of colliders, including non-
supersymmetric [5,6] and supersymmetric versions [7].
Among them, the models based on the gauge symmetry
SU3)exSU(3), xU(1)y (3-3-1) contain rich lepton-
flavor-violating (LFV) sources which may result in inter-
esting cLFV phenomenology such as charged lepton
decays e; — ey [8-11]. In particular, it was shown that
Br(u — ey) is large in these models, and hence it must be
taken into account to constrain the parameter space. In
addition, such rich LFV resources may give large LFVHD
rates as promising signals of new physics.

Although the 3-3-1 models were introduced a long time
ago [12,13], LFVHDs have been investigated only in the
version with heavy neutral leptons assigned as the third
components of lepton (anti)triplets, where active neutrino
masses come from effective operators [14]. The largest
values of LFVHD rates were shown to be O(107°),
originating from heavy neutrinos and charged Higgs
bosons [6]. Improved versions consisting of new neutral
lepton singlets were recently introduced [8,15]. They are
more interesting because they successfully explain the
experimental neutrino data through the inverse seesaw
(ISS) mechanism. We call them the 331ISS models for
short. They predict a large cLFV decay rate of y — ey
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corresponding to recent experimental bounds. They may
also contain dark matter candidates [8,15]. These properties
make them much more attractive than the original versions
of 3-3-1 models with right-handed neutrinos (331RHN)
[13]. They predict suppressed LFV decay rates, because all
neutrinos including exotic ones are extremely light.
Furthermore, loop corrections to the neutrino mass matrix
must be taken into account to obtain an active neutrino mass
spectrum that explains the experimental data [16]. Hence,
LFV signals are an interesting way to distinguish the 331ISS
and 331RHN models. More specifically, a simple ISS
extension of the SM allows large Br(h — ur, ez) ~
O(1073) in the allowed regions satisfying Br(u — ey) <
42 x 10713 [17]. Inspired by this, we will address
the following questions in this work: how large is the
Br(h — ut, et) predicted by the 331ISS models under the
experimental constraints of the cLFV decays?; and, are these
branching ratios larger than the values calculated in the
simplest ISS extension of the SM? Because these 331
models contain many more particles that contribute to
LFV processes through loop corrections, either constructive
or destructive correlations among them will strongly affect
the allowed regions of the parameter space satisfying the
current bound of the decay rate 4 — ey. The mostinteresting
allowed regions will also allow large LEVHD rates, which
we will try to look for in this work. Because the discussion
onthe decay h — erisrather similarto thedecay h — ur, we
only briefly mention the latter.

Our paper is organized as follows. In Sec. II we discuss
the necessary ingredients of a 331ISS model for studying
LFVHDs and how the ISS mechanism works to generate
active neutrino parameters consistent with current exper-
imental data. In Sec. III we present all couplings needed to
determine the one-loop amplitudes of the LFVHDs of the
SM-like Higgs boson. In Sec. IV we show important
numerical LFVHD results predicted by the 3311SS model.
Section V contains our conclusions. Finally, the Appendix
lists all of the analytic formulas expressing one-loop
contributions calculated in the unitary gauge.

II. THE 331ISS MODEL FOR TREE-LEVEL
NEUTRINO MASSES

A. The model and neutrino masses from the
inverse seesaw mechanism

First, we will consider a 331ISS model based on the
original 331RHN model given in Ref. [16], where active
neutrino masses and oscillations are generated from the ISS
mechanism. The quark sector and SU(3). representations
are irrelevant in this work, and hence they are omitted here.
The electric charge operator corresponding to the gauge
group SU(3), x U(1)yis Q =Ty —%Tg + X, where T g
are diagonal SU(3), generators. Each lepton family con-
sists of a SU(3),, triplet y,; = (v, €4, N,)T ~ (3, —1) and
a right-handed charged lepton ez ~ (1,—1) with a = 1, 2,

3. Each left-handed neutrino N,; = (N,z)¢ implies a new
right-handed neutrino beyond the SM. The three Higgs
triplets are p=(p{.p%.p3)"~(33), n=(n}.i"n3)" ~(3.—3).
and y = (y).x7.x9)" ~(3,—4%). The necessary vacuum

expectation values for generating all tree-level quark masses
are (p)=(0.5.0)", (1) = (£5.0.0)", and (y) = (0,0, 25)".
Gauge bosons in this model get masses through the covariant
kinetic term of the Higgs bosons,

Lf= " (D,H)"(D,H).

H=y.n.p

where the covariant derivative for the electroweak symmetry
is defined as

D, =0, —igWiT* — gxT°XX,, a=12,...8 (1)

and 7° = \/— and - NG for (anti)triplets and singlets [18]. It can
be identified that

g=es g_X:ﬂ (2)
" 9 \/3—45%,’

where e and sy are, respectively, the electric charge and sine
of the Weinberg angle, s3, ~ 0.231.

The model includes two pairs of singly charged gauge
bosons, denoted as W+ and Y=, defined as

Wl ¥ lW2 g2
Wf:iﬂﬂ £, m%v Z(”f"”z)

WS +iw] e
Yf:%’ mzyZz( w? + 7). (3)

The bosons Wi are identified with the SM ones, leading to

? + v} =17 = (246 GeV)?. In the remainder of the text,
we will consider in detail the simple case v; = v, =
v/V/2 = \/2my /g given in Refs. [6,19].

The two global symmetries—namely, the normal and
new lepton numbers denoted, respectively, as L and L—
were introduced. They are related to each other by [16,20]
L —7—T8 + L. The detailed values of nonzero lepton

numbers L and £ are listed in Table L.

TABLE 1. Nonzero lepton number L (left) and £ (right) of
leptons and Higgs bosons in the 331RHN.

Fields NL 128 er €r p; }’](2) )((1) X

L -1 1 1 1 2 2 2 2

Fields X n P Wal €ur
4 2 2 1

L 3 3 3 3 1
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All tree-level lepton mass terms come from the following
Yukawa part:

ﬁ?{ =—hg,Warpesr + theijk (WaL)i(l//bL)jc'pz +He., (4)

where €% is the antisymmetric tensor €2 =1,
(l//aL)C = ((yaL)c’ (eaL)C’ (NaL)C)T’ and h” is an antisym_
metric matrix, A%, = —hj . The first term of Eq. (4)
generates charged lepton masses m, satisfying h¢, =

V/26,,m,/v, in order to avoid LFV processes at the tree
level. The second term in Eq. (4) is expanded as follows:

theijk (WaL)i(WbL)jC‘plt
=201, 2o Wpr) P —Var (Npr ) p* +ar (v ) p7 ),

(5)

where we have used the equality N, (v,.)° =
Upz(Nyp), ... The second term on the left-hand side of
Eq. (5) contributes a Dirac neutrino mass term —L% .=
ﬁmDNR+H.C., where V= (I/]L,I/ZL,I/?,L)T, NR = ((NIL)C,
(N2), (N3 )T, and (mp),, = V20, hY,. The model can
predict a neutrino mass spectrum that is consistent with
current neutrino data [21] when loop corrections are
included, where all new neutrinos are very light [16]. As
a result, they will give suppressed LFV decay rates.

Now we consider a 331ISS model as an extension of the
above 331RHN model, where three right-handed neutrinos
[which are gauge singlets, X,z ~ (1,0), a =1, 2, 3] are
added. Now tree-level neutrino masses and mixing angles
arise from the ISS mechanism. Requiring that £ is only
softly broken, the additional Yukawa part is

o 1
Ly, =YuWarxXpr + 3 (Ux)ap(Xar) Xpr +Hee.,  (6)

where py is a 3 x 3 symmetric matrix and L(X,z) =
L(X,z) = —1. The last term in Eq. (6) is the only one
that violates both L and £, and hence it can be assumed to
be small, which is exactly the case in the ISS models.
The first term generates mass for heavy neutrinos, resulting
in a large Yukawa coupling Y, with SU(3), Higgs triplets.
In addition, the ISS mechanism allows for large entries
in the Dirac mass matrix mp originated from Eq. (4), which
is the opposite of the well-known requirement in the
331RHN model.

In the basis v = (v, Np, (Xg)9)T and (v))¢ =
((vr)e,(NL)¢, Xg)T, Egs. (4) and (6) give a neutrino mass
term corresponding to a block form of the mass matrix,
namely,

1
_L?nass = _I/LMU(I/L)C +H.c.,

2 where
0 mp O
M= |mh O Mg|, (7)
0 Mi px

where My is a 3 x3 matrix (MR)abEYab\% with
a, b=1, 2, 3. Neutrino sub-bases are denoted as vp=
((VlL)Ca(VzL)C»(%L)C)T’ NR:((NIL)Cv(NZL)C’(NSL)C)Ta
and X;, = ((Xg)¢, (X2r)<, (X35))".

The matrix M* can be written in the normal seesaw form,

0 M,
MY = ,  where Mp = (mp,0), and

M}, My
0 My

My = ( T > (8)
My  px

The mass matrix M” is diagonalized by a 9 x 9 unitary
matrix U¥ [17,22],

UTMYUY = MY = diag(m,, ,m,,,....m,,) = diag(in,, My),
)

where my, (i=1,2,...,9) are mass eigenvalues of the nine
mass eigenstates n;; (i.e., physical states of neutrinos),
in, =diag(m, ,m,,,m,,), and MN:diag(mn4,mn5,...,mm)).
They correspond to the masses of the three active neutrinos
n,. (a =1, 2, 3) and six extra neutrinos n;; (I =4,5,..,9).
The relations between the flavor and mass eigenstates are

@) =U¥(n)e,  (10)

and (n;) = ((n,)",

v, = U"n;, and

— T
where n; = (nlL’ Nopy eee,y I’lgL)

(L), - (nor))".

A four-component (Dirac) spinor n; is defined
as n;=(n;z,(n)°)" =n¢=(n;)¢, where the chiral compo-
nents are n;;=P;n; and ng;=Pgpn;=(ny;)° with
chiral operators P x=15. Similarly, the definitions
for the original neutrino states are v,=(v; ., (v1.4)¢)7,
Vo = (Npa» (NLa))'s Xp = (Xgs), Xgs)'s  and
V/'=(v,N)T. The relations in Eq. (10) can be written as
follows:

PLI/:' = I/;',L = ?;I’le, and

Prvy=vig = Uy, i,j=1,2,...,9. (11

In general, U" is written in the form [23]

U”:Q<g 3) (12)

where O is a 3 x 6 null matrix, and U, V, and Q are 3 x 3,
6 x 6, and 9 x 9 unitary matrices, respectively. € can be
formally written as
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O R 1-1RR" R \
QZeXp(-RT 0>:< R 1—§R*R>+O(R)
(13)
|
C12€13

_ i5
Upmns = | —S12€23 — 125235 3€"

is
$12823 — C12C23813€"

and c,, =cosf,, s, =sinf,,. The Dirac phase 6 and
Majorana phases a, f are fixed as § = z,a = f = 0. In the
normal hierarchy scheme, the best-fit values of neutrino
oscillation parameters are given as [21]

Am3; =7.370 x 1075 eV?
Am? =250 % 107 eV2, 52, =0.297,
2, = 0437, 53 =0.0214, (15)

Am?
2 2 and Am? = m2, — =22 The

where Am21 = my, — m,,] s >

condition v»; <w gives the reasonable condition
|Mp| < |My|, where |Mp| and |M y| denote the character-
istic scales of M and My. Hence, the following seesaw

relations are valid [23]:

R* = (=mpM~" mp(ME)™), (16)
mpM~'mp, ~m, = UFMNsva;MNSv (17)

N | 1
ViMyV' =My +ZRTR* My + 5 MyR'R, - (18)

where

M = Mpuy'M%. (19)
In the model under consideration, the Dirac neutrino mass
matrix mp must be antisymmetric. Equivalently, mp has

only three independent parameters x;,, X3, and z,

0 X112 X13
—Xq12 0 1 s (20)

where z = \/fvlh§3. In contrast, the matrix m,, in Eq. (17)
is symmetric, (m,);; = (m,);;, implying that

(M=),
D]+ (M3 = (M),

0=(m,);—(m,); ~xp[(MT), -
+xi3[(M7) ;3 — (M

where R is a 3 X 6 matrix with the maximal absolute values
for all entries |R| satisfying |R| < 1. The matrix U =
Upnmns 18 the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix [24],

—id

$12€13 S13€
; . o p
C12C23 — S12523513€"s sy3cy3 | diag(l, e, e?), (14)
is
—C12823 — §12€23513€ €23C13

|

with i, j = 1, 2, 3. This means that a symmetric matrix M
will give a right antisymmetric matrix mp. To fit the
neutrino data, there must exist matrices M and mp that
satisfy the first equality in Eq. (17). Here we choose M to
be symmetric for simplicity. There must exist some sets of
7, X12, X13, and M;; (i < j < 3) that satisfy the six equations
(mpM~'m,);; = (m,);;, with i <j <3. From the three
equations corresponding to i = j =1, 2, 3, we can write
(M~'); as three functions of z,xj;,x3, and (M~');
(i # j). Inserting them into the three remaining equalities,
and taking some intermediate steps, we obtain

=(m,) 133012 + (m,) px13 = (m,) 1,

—(my)p3x15 + (my)px13 = (M),

—(my,)33x15 + (my)23x13 = (my),3, (21)
where we exclude the case of x;,, x;3 = 0. Solving the

above three equations leads to two solutions for x| ;3 and a
strict relation among (m,);;:

Yoy — (m,)11(m, )3 — (m,)y3(my,)1,
. (my)12(my)33 = (my)13(m, )23
)y (m)s = (m)}
B (m, 33— (my)13(m,) 23

%3"‘( V) (m v>%3+(mv)33(mv>%2
v)

22(my)33=2(m,) 1 (my) 15(my ) 3. (22)

Interestingly, the last relation in Eq. (22) allows us to
predict possible values of the unknown neutrino mass based
on the identification given in Eq. (17). Using the exper-
imental data given in Eq. (15), we derive that m, = Oin the
normal hierarchy scheme. The Dirac matrix now only
depends on z:

m
= (m,

(mz/)l

)12(my)
)11 (my)
(m

0 0545 0395
—0.545 0 1. @3
—0395 -1 0

mp=zX

The above discussion also gives M = diag(10'°z2,
7.029 x 101922, —2.377 x 10''z?) for a diagonal M. In
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this work, we also consider the simple case where My is
diagonal and all elements are positive. We also assume that
|m,| < ux < |mp| < |Mg|. We then derive that heavy
neutrino masses are approximately equal to the entries
of My, as given in Eq. (19). However, this approximation is
not good for investigating LFVHDs, where a divergent
cancellation in the numerical computation is strictly re-
quired. Instead, we will use the numerical solutions of
heavy neutrino masses as well as the mixing matrix U” so
that a total divergent part vanishes in the final numerical
results. This treatment will avoid unphysical contributions
originated from divergent parts.

Another parametrization shown in Ref. [8] can be applied
to the general cases of nonzero 6 as well as both the inverse
and normal hierarchy cases of active neutrino masses. With
the aim of finding regions with large LFVHDs, we will
choose the simple case of mj, given in Eq. (23).

For simplicity in the numerical study, we will consider the
diagonal matrix My, in the degenerate case M = My =
My, = Mg, = k x z. The parameter k will be fixed at small
values that result in large LFEVHD effects. The total neutrino
mass matrix in Eq. (7) depends on only the free parameter z.
The heavy neutrino masses and the matrix U* can be solved
numerically, which is not affected by z because |uy| < z.

Using the exact numerical solutions for the neutrino
masses and mixing matrix U” for our investigation, we
emphasize that the masses and mixing parameters of active
neutrinos derived from the numerical diagonalization of the
matrix M" given in Eq. (7) should satisty the 3¢ constraint
of the experimental data. In contrast, neutrino masses and
mixing parameters defining the matrix m, in Eq. (17),
which are used to calculate th matrix m, are considered as
free parameters. In other words, the experimental values of
neutrino masses and mixing parameters are only used to
estimate the allowed ranges of free parameters determining
the mass matrix M". After that, it is diagonalized numeri-
cally to find the neutrino masses as well as the mixing
matrix U”. The mixing parameters will be calculated from
the matrix Upyng, Which is related to U” by the relation
(12). Requiring that the expansion of € in Eq. (13) and the
ISS condition |uy| > m,, are valid, we find that small
values of k > 1 are allowed. In particular, we find that if
three mixing parameters are fixed at the three respective
center values, the two inputs for the active neutrino masses
may be outside of (but very close to) the 3¢ ranges with
k =5. When k > 5.5, we always find that the input lies
within the 3¢ ranges of the experimental data that produces
the consistent numerical solutions of active neutrino
masses. When k > 9, the input corresponding to all center
values given in Eq. (15) always produces numerical
solutions lying in the 30 ranges of experimental data.

The LFVHD rates depend strongly on the unitarity of the
mixing matrix U* and heavy neutrino masses. On the other
hand, they are weakly affected by the requirement that
solutions for active neutrino masses and mixing parameters

satisfy the 30 experimental data. Hence, we will use the
matrix mp given in Eq. (23) and k > 5.5 for our numerical
investigation. We numerically checked that our choice
produces reasonable values for the neutrino data close to
the 30 ranges mentioned above.

B. Higgs and gauge bosons

To study the LFVHD effects, we will choose the simple
case of the Higgs potential discussed in Refs. [6,19],
namely,

V=13(p"p+n"n)+13x x+ 0" p+n"n)?+ A2 (xx)?
+anptp+n'n)(y) = V2f(eunp/y +He.), (24)

where f is a mass parameter and is assumed to be real.
The detailed calculations for finding the masses and mass
eigenstates of Higgs bosons were presented in Refs. [6,19],
where the minimum condition results in v; = v,. Here we
will only list the part that is involved in LFVHDs.

The model contains two pairs of singly charged Higgs
bosons H7, and Goldstone bosons of the gauge bosons W=
and Y*, which are denoted as Gi; and G5, respectively. The
masses of all charged Higgs bosons are milli = fw(r5+ 1),

2 2 _ .2
me = 2fw, and mc‘i,, = my,

relations between the original and mass eigenstates of the
charged Higgs bosons are

(1) -0 DG
(-G

The neutral scalars are expanded as

. = 0, where ty = v,/w. The
Y

(25)

! . 1 :
p°:7§(vl+31+1A1), ﬂ?:%(”2+52+“42)’
1
2= 7§(w+ %+ iAL),
1 . 1 .
7 = 7§(S’2 +idy), )= %(Sg +iAy). (26)

There are four physical CP-even Higgs bosons h?72_3’4
and a Goldstone boson of the non-Hermitian gauge boson.
The neutral Higgs components relevant for this work are
defined via

Ca  Sa 1
Sy ~5 v v\ (M
= | ¢ 3« __1 0
S/2 oot L Hg | @)
S5 Sq € 0 h§

where s, = sina and ¢, = cos a, and they are defined by
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TABLE 1II. Couplings related to the SM-like Higgs decay h(l’ — e,ep, in the 331ISS model. All momenta in the Feynman rules
corresponding to these vertices are incoming.

Vertex Coupling

eze, % Cy

h(])n_,nj ;gc (/10 PL + /1 )

- S
H\nje,, Hye,n;
Hime,, Hyen;
2 niép, zeant
Winze,, Wye,n;
w'ti€hs uCal*i

Y ey, Y, e.n,

i i P HZIPR)

\/_m
ﬁUZ,-J’ Pr, iUZ?}’MPL

Yl P FUG 7" PL

tgc@ (ALTI*PR +2R:1*PL)
(X.LZ*PR‘FARZ* )

(Ab2PL + A8 PR), f'

V2

H{mY,, YiHT %(cacﬁ + \/Esasﬂ)(ph‘l’ - PHT)”» %(%Ce + \/Esasﬂ)(pH]’ - Ph‘;)”
KWW, —igmyc g"

h?Y}TY”_ % (\/Zsacﬁ - CaSH)gyy

MH{Hy izlf,l =—iw[s, o2 +25,550 — \/5(26,,65/11 —l—caséﬂlz)tg—‘,l/)—ffcacom]

h)H3 H;

i/l,ifz = —ivy (=2v2¢ A +W)

B (4/11 - mi?/v%)tg o \/E(lm —g)
sa - r k) Ca - r k]

— 2 =LY + ah =222 28
r= 2= + (44 mh?/vz) Iy- (28)

There is one neutral CP-even Higgs boson 4 with a mass
proportional to the electroweak scale,

_ fte

A3+ 20+

\/<2/12+f9 4ﬂlt§>2+8t§<£—/{12>2 . (29)

2
W
O(m%,) and s, ~ 0 [19], resulting in the couplings similar
to those predicted by the SM; see Table II. Hence, A0 is
identified with the SM-like Higgs boson found at
the LHC.

2 w?
m2. =2
L)

The decoupling limit #y <1 (v; Kw) gives m

III. COUPLINGS AND ANALYTIC FORMULAS
INVOLVED WITH LFVHDS

A. Couplings

In this section we present Yukawa couplings in terms of
U" and physical neutrino masses. From this, amplitudes
and the LFVHD rate are formulated in terms of physical

masses and mixing parameters. The equality derived from
Eq. (9), M* = U*M"U"", gives

My, = (UM U™, = 0 - U4 UYm,, =0,
V20, = (mp), = (MY), (b+3)
— (UU*MD Uw) (b13) U Uu*

(b+3)k My,
Y = (Mp)p = (M)
\/E ab RJab (a+3)(b+6)
= UlaranUlpropn, (30)
where a, b=1, 2, 3, and the sum is taken over

k=1,2,....9.
The relevant couplings in the first term of the Lagrangian
(4) are

—h wapepr +H.c.

gm
:_m—w[ aLearP| +Carearp’ +Naperps +Hue]

gma a

2 W h(l)_a a
IMare (U . 5Pre,HY +UY . e-P nHT
My [CG( <a+3)ini R€q 1+ (a+3)ieu Ln; 1)]
gma v
— P (UsmPre S + Ui Ptz (1)
w

The relevant couplings in the second term of the
Lagrangian (4) are
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FIG. 1.

hzbe""(waL) (WoL)jpi + Hee.
=2h", [—€ar Wpr)P3 — Var (Npr ) P™ + €z (L) P71 ]

_ 9¢
2mW

RO [Z U, U (m, Py, + my, Pe)n;

C
— 50 () UY, Hy 2P + Hee]
Ny
g
+ P
\/sz

where the last line is derived following the calculation in
Ref. [22]: ;M p((N1)¢, Xg)T <> Uy (Mp) ,;Nir. The first
term in Eq. (6) gives the following couplings:

[(mD)uhUl(’bH)nge_aPRni + H.C.], (32)

= YuWarxXpr + Hec.

V2

i (MR) o [Varx) + €arx™ + Nupx3)Xpr + Hec.
gty

\/zmw
+ V259U%), ¢ @aPriHT + Heel, (33)

O —

(M)ap[5aU% 3 Ut o) T1iPR 1S

where we have used t,=v, /w—1/w=ty/v,=gty/ (V/2my).
The LEVHD couplings between leptons and charged gauge
bosons (W=, Y*) are

LY =g /"Dy

g - — -
D—(eaLJ/#I/aL W[A + eaL}/HIVaL Y/l ) +H.c.

ﬁ

ﬁ
UL @ PuniYy + Ul i PreaY ), (34

[U"* AP W, ULy  Pre W,

where D, =08, ~%(Wii"+tx(-1)B,), 4, (a=1,2,....8)
are the Gell-Mann matrices, and ¢ = gy/g. The charged

I — ;w2 64 w7
+ W,A?lW” + W”:th},
gauge bosons are W = 5 and Y7 = A

One-loop Feynman diagrams contributing to the decay h — e e, in the unitary gauge. Here V* =

(10

W Y=,

By defining a symmetric coefficient /10 =

Gis namely,

3
2= (UL U, + U% U m,,)

c=1

3
= V2t,t9(M3) g [U(ZH) Uldre);t Uless)iUlase)i }
c,d=1

the coupling h?n‘,-nj derived from Egs. (32) and (33) is
written in the symmetric form 7'« hY7;[20,P, + 2%} Pg|n;
which gives the right vertex couplmg based on the
Feynman rules given in Ref. [25]. The Yukawa couplings
of charged Higgs bosons are defined by

Ayt =maUt, s
3

it =>"(m

c=1

;))acUZ? + tg)(M*) Uz/:+6) ]

3
hal =maUtys 25t ==Y (mp)o Ul gy (39)

c=1

Finally, all of the couplings involved in LFV processes are
listed in Table II. The model predicts that the following
couplings are zero: "{W*Y¥, h{W=HT,, l)Y*HJ, and
WHEHT.

B. Analytic formulas

The effective Lagrangian of the LFVHDs of the SM-like

Higgs boson h) — eZe] is

LYVH = BO(A ) eaPres + ApreaPre,) + He.,

where the scalar factors A,z arise from the
loop contributions. In the unitary gauge, the one-loop
Feynman diagrams contributing to this LFVHD amplitude
are shown in Fig. 1.
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The partial width of the decay is

L(h) — eyep) =T(h) = eze)l) +T(h) — efep)

hO
8—1 (1A@sLP + (Al (36)
7
with the condition m 1 > My . where m,, ;, are the masses of
muon and tau, respecnvely The on-shell conditions for
external particles are p? ,=m? , and pho =(p,+p.)? —mho.
’ ’ 1 1

The corresponding branching ratio is Br(hY — e e;) =

T(h) — e,e,) /T3, where Tiitl=4.1x 107 GeV [21.26].

The A4z, can be written as

10
_ (Hw (Y
Aan)L.Rr = Z A(ab)L,R + Z A(ab)L.R’ (37)
i=15,7.8 i—1
where the analytic forms of AE r and AY (  are shown

in the Appendix. They can be calculated usmg the unitary
gauge with the same techniques given in Refs. [6,22]. We
have crosschecked this with FORM [27].

The divergence cancellation in the total amplitude (37) is
proved analytically in the Appendix, based on the follow-
ing strict equality:

UD(MD)ZUDT
— (Uu*Mu U”)*U”*M" UYT = MY MY
mpmb 0 miyMpy
= 0 mpmp+MpMy Mppx (38)
Mpm}, uxMp M Mg + pipx

In the model under consideration, the divergent parts
coming from the contributions of charged Higgs and heavy
gauge bosons are related to both (M**"M") .33 and
(M**M") (416)(p+6) (@, b < 3), which are affected by heavy
neutrino masses. The cancellation in the total divergent part
|

2
= "2t 2 Yai il (tiw),

W i=1

) 9
€9 U

requires that the physical heavy neutrino masses and U”
must be the exact values. Hence, approximate forms of the
heavy neutrino masses and neutrino mixing matrix derived
from the ISS mechanism cannot be applied. In contrast, we
checked numerically that these formulas are safely used in
the usual minimal ISS version extended directly from the
SM, because the divergent parts are only involved with the
elements (M“*M"),;, = (mpmp) (-

Many of the contributions listed in Eq. (37) are sup-
pressed, and hence they can be ignored in our numerical
computation. From now on, we just focus on the decay
h(l) — uz, and hence the simplified notations A; p =
Ap3)rr Will be used. The decay hY — et has similar
properties, so we do not need to discuss it more explicitly.
We can see that | 2—2 | ~ (9(%) In addition, we prove in the
Appendix that the following combinations are finite:

I+5W A (7+8 4YH, A (6+9+10)YH YH, A (7+8
A(L,;)’A(L,;) A(L%ZA("""F) ZA() 1A<+),
and (AE‘I_;HHS) —|—A(6+9+10)YH‘). With m, ,<my, we
have Bgl)—i—B(lz), (1 '_B ( ~0, and hence A(”S) A(ZES)Y:

0. The two contributions A(LJ)Q &

large m HE for about a few TeV.

* are also suppressed with a

The four diagrams 4, 6, 9, and 10 in Fig. 1 include
contributions from both charged Higgs bosons. They are
not significantly affected by the SU(3), scale my, and thus
they may enhance the partial decay widths of the LFVHDs
if charged Higgs masses are small.

The regions of parameter space predicting large branch-
ing ratios for LFVHDs are affected strongly by the current
experimental bound Br(u — ey) <4.2x 10713 [28]. A
very good approximate formula for this decay rate in the
limit m,,, m, — 0 is [11]

1272
GZ

|D|?

Br(u — ey) = : (39)

where Gy = ¢*/(4v/2m3,) and Dy is the one-loop con-
tribution from charged gauge and Higgs boson mediations,

+ +
Dg = DY + DY+ D' + Dj*. The analytic forms are

Y= v
Dk 327°m3, & U(a+3)iU(b+3)iF(tiY)»
pli _ engk Ny k*,{L k L0t t 382, + 20, — 62, In(t,)  my AEFARE 112 2t n(ry) B
R =16 Z 12 1)* + 3 X 5 s . (40)
wim?, i=1 Hki (t—1) my (= 1)
where
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b:2, a=1, thEm%i, tiYEm%i, tikE m%i B
mé, m? mzf
1
f1E§’ fr=cj, ’%ﬁ’lEU@%)i» Ay? = Ul
Fx) 10—43x +78x% —49x3 +4x* + 18x%In(x) (1)
xX)=-— .
12(x—1)*

Because all charged Higgs bosons couple with heavy
neutrinos through the Yukawa coupling matrix A%, this
matrix is strongly affected by the upper bound O(10~'3) on
Br(y — ey). In fact, our numerical investigation shows that
the allowed regions with light charged Higgs masses are
very narrow. The previous investigation in Ref. [8] showed
that the 3311ISS model predicts a large Br(u — ey), where
the allowed regions discussed there were chosen such that
k~O(10°) and My < 1 TeV, implying that z ~ O(1) eV.
We checked that our formulas are consistent with these
results. In general, the allowed regions are very strict and
satisfy one of the following conditions. First, the regions have
asmall z and large [M | and m w+»implying k > 1, including
those mainly discussed in Ref. [8]. Second, the regions allow
for a large mp and small k, but the strong destructive
correlation between the two-loop contributions of charged
gauge and Higgs bosons must happen. These regions were
also considered in Ref. [8], but they were not given much
attention. They are very interesting because they predict large
branching ratios for LFVHDs and light particles such as new
neutrinos and charged Higgs bosons, which could be found at
the LHC and planned colliders [29,30]. Hence, our numerical
investigation will focus on this case.

IV. NUMERICAL DISCUSSION ON LFVHDS

A. Setup parameters

To numerically investigate the LFVHDs of the SM-like
Higgs boson, we will use the following well-known
experimental parameters [21]: the mass of the W boson
my = 80.385 GeV, the charged lepton masses m,=
5x10™* GeV, m, =0.105 GeV, and m, = 1.776 GeV,
the SM-like Higgs mass ;0 = 125.1 GeV, and the gauge
coupling of the SU(2), symmetry g~ 0.651.

Combined with the discussion in Sec. II, the independent
parameters are the heavy neutrino mass scale Mp =
diag(Mg, Mg, M), the heavy gauge boson mass my [con-
sidered as the SU(3), breaking scale], the charged Higgs
boson mass m HE> the characteristic scale of m, defined as
the parameter z, and the two Higgs self-couplings 4, ;5.

Other parameters can be calculated in terms of the above
free ones, namely,

\/Emw mW sz
V1 = UV = s s9 = s =,
: : g my\/§ gco
2 2
gcemHt mHt
— 2 2 2 (42

Apart from that, the mixing parameter « of the neutral CP-
even Higgs was defined in Eq. (28). The Higgs self-
coupling 4, is determined as [6]

m? N 2
2 2 </112 - L%)
PR (DA - 43)
272y, 2w? '"2(]) ’
42 — 4

In the model under consideration with the quark sector given
in Refs. [16,29], only the charged Higgs bosons H5 couple
with all SM leptons and quarks. They have been investigated
at the LHC in the direct production pp — t(b)H*, which
then decay into two final fermion states [31]. But the specific
constraints on them in the framework of the 3-3-1 models
have not been mentioned yet, to the best of our knowledge.
Instead, the lower bounds on their masses have been
discussed recently based on recent data of neutral meson
mixing B, — B, where a reasonable lower bound of m HE 2

480 GeV was concerned [29].

The values of 4; » 1, must satisfy theoretical conditions of
unitarity and the Higgs potential must be bounded from
below, as mentioned in Ref. [6]. The heavy charged gauge
boson mass my is related to the recent lower constraint of
neutral gauge boson Z' in this model.

For the above reasons, the default values of the free
parameters chosen for our numerical investigation are as
follows. Without loss of generality, the Higgs self-cou-
plings are fixed as 4, = 1, 1;, = —1, which also guarantee
that all couplings of the SM-like Higgs boson approach the
SM limit when ty — 0. The default value my = 4.5 TeV
satisfies all recent constraints [29,32]. The parameter z
will be considered in the range of the perturbative limit
7 <2y/mxwv; =617 GeV; in particular, we will fix
z =50, 200, 400, 500, and 600 [GeV]. Finally, the charged
Higgs mass m HE will be investigated mainly in the range

of 300 to 5 x 10* GeV, where large values of LFVHDs
may appear.

B. Numerical results

First, we reproduce the regions mentioned in Ref. [8],
where M was chosen to be from hundreds of GeV to 1 TeV,
and the scale of mp, (namely, z) was a few GeV, correspond-
ing to k > 1. As aresult, the respective regions of parameter
space always satisfy the experimental bound on Br(y — ey)
with large enough m HE- These regions are shown in
Fig. 2 with fixed z =1, 5, 10, 100, and 500 GeV. All
allowed regions (i.e., those that satisfy the upper bound
Br(u—ey)<4.2x1071) give a small Br(h)—puz)<
O(107°). In general, for larger k we checked numerically
that the values of the branching ratio of LFVHDs will
decrease significantly, and hence we will not discuss
this further.
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FIG. 2. Br(u — ey) (left) and Br(h? — uz) (right) as functions of mpz with k = 500.

With small values of k = 5.5 and 9, the dependence of
both Br(u — ey) and Br(h — uz) on my;: with fixed z are
shown in Fig. 3. Most regions of the parameter space are
ruled out by the bound on Br(y — ey), except for narrow
parts where particular contributions from charged Higgs
and gauge bosons are destructive. This interesting property
of the 3311SS model was indicated previously in Ref. [8].

Furthermore, it predicts allowed regions that give a large
Br(h{ — ut). In particular, the largest values can reach
O(10™*) when k = 5.5 and z = 600 GeV, which is very
close to the perturbative limit. In general, the illustrations in
two Figs. 2 and 3 suggest that this branching ratio is
enhanced significantly for smaller £ and larger z, but
changes slowly with the change of large m nz- In contrast,

MR=92
107 b -
= =
() O 1012 i
T 10t 1 7
= =
o o
z=50 GeV = =======- z=400 GeV
1010 [ ] 1017 z=50 GeV =~ ====s--- z=500 GeV A
— — — 2z=200 GeV =600 GeV
s s — — — 2=200 GeV z=600 GeV
— - = 2=300 GeV 4.2x10°
— - — =300 GeV 4.2x107"3
1024 [ i 1022 | J
05 1 5 10 50 05 1 5 10 50
my; [TeV] my; [TeV]
MR=5.5Z MR=92
w2l 2250 GeV  =mmsssa- 22500 GeV | 02l z=50 GeV =~ ==m=ese- z=500 GeV |
— — — 2=200GeV 2=600 GeV - = = z=200GeV 2=600 GeV
— - — 22300 GeV 10 — - — =300 GeV 107°
o PP ——— = 10t E
% ------------------------- %
< [ — e — T E [ e
M qg6F =T T T T T —— e _ TTTr—-—-- o 1076_--________.____.5. ---------- |
——————————— — — ————— N'§-~-—
1078 £ 108 F ]
05 1 5 10 50 05 1 5 10 50
mps[TeV] mps[TeV]

FIG. 3. Br(u — ey) (upper) and Br(h — uz) (lower) as functions of M

with k = 5.5 (left) and k = 9 (right).

073003-10



DECAY OF STANDARD-MODEL-LIKE HIGGS BOSON ...

PHYS. REV. D 97, 073003 (2018)

Br{p-ey)x10'3, Brih-pujx105, Mg=5.52
500 LT ; . ——r— . :

499

5.45
498

z[GeV]

497
5.35

496

162 163 1.64 165 166 167
myy [TeV]

Br(uey)x10%, Br(h-p1)x10°, Mi=92

500 - .

Asel 0.825

0.820
498 - 1 0.815

0.810

z[GeV]

a7l 0.805

0.800

0.795
496 -

495 -

2.80

My [TeV]

Br{usey)x103, Brihougx105, Mg=5.52

600 |- g .

599

1.2
598

s
& 1.1
N
597 |
11.0
596 -
109
595/ > ; . 5 : a
1.95 1.96 1.97 1.98 1.99 2.00 2.01
My [TeV]
Br(u-ey)x10™3, Br(h-u1)x10°, Mg=9z
600*] I TS = T T . N A . B A .
599 |
1.68
508 |- 1.67
%} 1.66
O,
N
597 1.65
1.64
596 - 1.63
595 1 : n A a
3.20 3.22 3.24 326 3.28 3.30
My [TeV]

FIG. 4. Density plots of Br(h? — uz) and contour plots of Br(u — ey) (black curves) as functions of mpyz and z, with k = 5.5 (upper)

and k =9 (lower).

a small m HE plays a very important role in creating allowed
regions that predict a large LEVHD. Br(u — ey) does not
depend on 7 when it is large enough. Furthermore, the
branching ratio decreases with increasing k and it will go
below the experimental bound if k is large enough.

The allowed regions in Fig. 3 are shown more explicitly
in Fig. 4, corresponding to k = 5.5 and k = 9. Only regions
that give a large Br(h? — ur) are mentioned. They are
bounded between two black curves representing the con-
stant value of Br(u — ey) x 10'3 =4. Clearly, Br(h) — uz)
is sensitive to z and k, while it changes slowly with
changing values of M. In contrast, the suppressed

Br(u — ey) allows narrow regions of the parameter space

where some particular relation between my+ and k and z is

realized. Hence, if these two decay channel are discovered
by experiments, depending on their specific values, a
relation between heavy neutrino and charged Higgs masses
can be determined from the 331ISS framework.

To understand how Br(h9 — uz) depends on the SU(3),
breaking scale defined by my in this work, four allowed
regions corresponding to the four fixed values my = 3,4, 5,
and 6 TeV are illustrated in Fig. 5. It can be seen that the
branching ratio of LFVHD depends weakly on my, namely,
it decreases slowly with increasing my. Hence, studies of
LFV decays will give useful information about heavy
neutrinos and charged Higgs bosons besides the phenom-
enology arising from heavy gauge bosons discussed in many
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FIG. 5. Density plots of Br(h? — uz) and contour plots of Br(u — ey) (black curves) as functions of myz and z, with k = 5.5, z

around 500 GeV, and different my.

earlier works. More interestingly, this may happen at large
SU(3), scales which the LHC cannot detect at present.

V. CONCLUSION

The 331ISS models seem to be the most interesting
among the well-known 331 models because of their rich
phenomenology, as indicated in many recent works. This
work addressed a more attractive property, namely, the
LFVHDs of the SM-like Higgs boson which are being
investigated at the LHC. Assuming the absence of the tree-
level decays h{ — e e, and e ;= ey (j > i), the analytical
formulas at the one-loop level to calculate these decay rates
in the 331ISS model have been introduced. The divergent
cancellation in the total decay amplitudes of 7 — e,e;, was

shown explicitly. From the numerical investigation, we
have indicated that the Br(h9 — ur) predicted by the
331ISS model can reach large values of O(107%). They
are even very close to 107, for example, in the special case
with £k =15.5 and z~600 GeV, which is close to the
perturbative limit of the lepton Yukawa couplings. This
value is larger than that predicted by the simplest ISS
version extended directly from the SM [17]. New charged
Higgs bosons may give large contributions to both of the
decay rates Br(u — ey) and Br(h9 — uz), leading to either
constructive or destructive correlations with those from the
charged gauge bosons. As a by-product, the recent exper-
imental bound on Br(u — ey) rules out most of the regions
of parameter space with small £ and large z, except the
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narrow regions arising from the destructive correlations
between contributions of charged Higgs and gauge
bosons. We have shown numerically that only these regions
give a large Br(h) — uz) > 107 when 400 GeV < z <
600 GeV and k£ <9 in the case where the Majorana mass
matrix M is proportional to the identity one. Furthermore,
these large values of Br(h! — utr) depend weakly on the
masses of the heavy charged gauge bosons, but they require
the heavy neutrino mass scale M and m e to be a few TeV,
which can be detected at current colliders. Besides,
Br(hY — 7e) has the same result. In conclusion, large
branching ratios of the LFV processes like hi) — Uz, et
will support the 3311SS model and may rule out the original
331RHN model containing only very light exotic neutrinos.
Additionally, many properties of heavy neutrinos and
charged Higgs bosons in the 331ISS framework may be
determined independently at the SU(3), scale.

(27p)
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APPENDIX: FORM FACTORS OF LFVHDs IN
THE UNITARY GAUGE

In this appendix we list all analytic formulas of one-
loop contributions to LFVHDs defined in Eq. (37). They
are written in terms of Passarino-Veltman functions that
were defined thoroughly in Refs. [6,22]. Using the
notations Dy=k>—M3}+is, D, = (k—p;)* = M? + i3,
and D, = (k + p,)* — M3 + i3, where § is an infinitesi-
mal positive real quantity, the one-loop integrals and
Passarino-Veltman functions needed in this work are

dPk

@0 _ ap)*P [ dPk{1,k,} (12)
BO,ﬂ = > R BO =
13 D()D[
1 d k{1 k,)
COﬂ = CO;t(MO’MlvMZ) / DOD D}2 ’

4-D
in’ / D\D,’

where i = 1, 2. In addition, D = 4 — 2¢ < 4 1is the dimension of the integral, M, M|, M, are masses of virtual particles in the
loop, and p is an arbitrary mass parameter introduced via dimensional regularization [33]. The external momenta of the final

leptons shown in Fig. 1 satisfy p? = m2, p3 = m? and (p, + p,)* = mho, where 0 is the SM-like Higgs boson mass, and

m, , are lepton masses. In the limit m,, , ~ 0, the analytic formulas for B((),i» é) >, Cy,and C , were shown in Refs. [6,22,34],
and hence we will not repeat them here. These functions are used for our numerical investigation. We stress that they were
checked numerically to be well consistent with the exact results computed using LOOPTOOLS [35], as reported in Ref. [36].
(W _ AW
LR =

The analytic expressions for A}’ where i implies the diagram (i) in Fig. 1, are

(ab)L.R’
AW — 694; o Z v Uy {m? (B = By = B{) = m2 B + (2mk, + m2 e, o
— [2m3y, 2m§y, + my, 4 mg — mj) + my, hoici + [2miy (mg mi?) + mimi?icziv
A = 694; St Z Ui Us{=m2 (B + By + BE) + m2B{ + (2mm%, + mi2 )m?, Co
— 2m},(m} —m3) + mamh?]Cl + 2my 2miy + myy, — mg + my) + my m; iC2}
A" = g’jj’ZW UL U {20, (B = mi Co + (b + i, = m2)C] 4+ 2m, [BY + (2 + mi2 = mi)C]},
ij=1
IV 54:”"” Z UL U (2 BY = w3, Co = (2 + m3 = m2)Cs] = A, (B + (2m}, + m2, = m2)Cal},
ATV _ 64ﬂ9 m mb — Z ve vy [2m (BYY — BY) — (2my, + m2)(B\" + BY) — m2B\") — m2B"],
Ag-rs)w _ Z_:A(LHS) . (Al)

vHE A ()YH Y _ A

Defining A(L)R = AE) pLR T A< )LR with i =4, 6, 9, 10, the analytic expressions for AL R (ab)L.R A€
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Wy Tma(V25,69=CaSp) 2 (B g _ gy _ 25
AV = § U3 U oy 2, (BYY =B = BY) ~m3 B!
64\/§7I2m§, - (a+3)i ™ (b+3)

+(2my +mi?)mﬁiC0 —[2m3 (2m5 4 my +mg—mj) +mﬁimi?]C1 +[2m3 (m —mi?) +m12,mi?]C2},

i=1

1y gsmb(\/isacﬁ_casﬁ 2 p2) (1) (2) 2p(1)
Ay =— Uu 3)i h 3i{—mni(31 +B, ' +B; )+m;B,
64212 m3 Z T (6+3)

+(2m%—|—mi?)m%iCo—[2my(mb—mh?)+m5mi?]cl—|—[2 (2my—|—m -m +mb)+mnm ]Cz}

3
2y ¢ macg(cac9+\/§sas9)
AP = 5 S

Uv*
64> mym?

(a+3

1 1 C 4
)i {llb‘;lmni [Bé >—B§ )+(m§+m2Hli ) o+ (my— mHi mh 0)C1l
i=1

A mp [2m5 Cy = (my gy —mj )G},

Qr_9g Pep(cy Ce+\/_S Sp)
A ZUa+3

R T ER——1 5i mym,, [=2m3 Co— (m3 — mHi+m )Cz]

i=
25! (=, By 4 m2By! : o, (= i) Cy

+ [Zm%,(mio —m3)—m?(m3 —mlzqi —l—mio)]Cl +2mim}C,l},

9
Y_9 Peqlc, Ce+\/_5 5¢) A
A ZU(hH

2 2_ .2 2
L 642 mym’ ni[—2mYCO+(mY—mH]i+mh?)C1]

i=1
_’_/IR,I*[_mZ B2 )_sz( )+m2 (m2—m? . +m?,)C
ai n; 20 b n \""*y HE ) 0

—Zm?lm%,Cl - [Zm%(mio —m%,) —m% (m%, _mHli —i—mh?)]Cz]},

9
CY_9 myco(Cq Ce+\/§S 59) L% 2, p®
A 64> mym? ZU(HS Aot T BB

i=1
(4 =) Com (= 4 2 Col 4 A m, (4 i =2 )€y =2 Cl),

(@)vH? gzﬂfhf R
AL

R.kx 1Lk L.kx L.k R.kx 1R .k
(=2 Agim,, Co= A" Ay m, Cy + A5 20 my, €],

1622 le -
(4)YHE g°2 kak . L.kx 1Rk R ke Rk L.kx 2Lk
Ag :16ﬂ2m2 [=2ai i 1, Co—2ai Ayi- MaCr+- 21 Ay mpCal
i—1
Afw gcam, ZU {2%m [ —mYCO—f—(ZmY—i-mn —mg)Cy|+A);m, B )+(2mY+mn —m3)Cil},
647[ mwm a+3)i h+3

Ag)y 9 CoqlMy, I Ll Z v

v 12 .
6472 mwmy,j (a+3)i Ub+3 ‘UL . [Bo B )_mYCO—(ZmY—i—mn —m3)Cy]— ,10 [ ()+(2m%+mﬁ[—mg)cz]}v

* ca % * * s JKx
A = Ll Zw A B 4 Com i Cy 4 mC) 25 Ay, € 25 2 m,m, ]

+ AN Ay km My _C0+/1R?k*/1R’.kmn[_mb(Co+C2) AL aptmam, (Co—Cp)+ A5 Ay mamy,(Co—C + )1}

N 392;“f k Z{AO 6 A (B 2 Co=mCy -+ m3Co) 2 A mym, Co = A 25 mm,, 1]

+/IQ?‘[/ILk*/1ka 1, Cot A Ay, my(Co+Cy)
ﬂRk*ﬂgjkmamn (CO_ 1) /?‘Iaet:k*ﬂll;j"km“mb(co_cl+C2)]}’
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9

2

(7+8)Y gimamic, E : U v (1) _p® (2) (1) )
Ar ~ 64r me%,(mz—mb) Ularayi U(b+3)i[2m31,(B() —By") = (2my +m; )(B B\")—mgBy’ —myBy”],

(7+8)Y Mg , (748)Y
A =—A ,

R my, L

+ 3 9
AEAQJFIO)YH,C == g Cult E [mambmn A'cLuk*/iRk( ) )_B(() )) my, lfzk*ﬂLk( ler(()l) _mgB(()z))

327 m3, (mg —m}) =

b AL A+ A 2 ) (B + B,

ni*ai nal

+
AE?+10)YHk —_ 32” g cafk m )Z m,mym ﬂRk*/lL k( ( )_B( )) /1L k*ﬂRk( iB(()U_m%B[(Jz))
b
+ mambuf;"*ﬂff;"mb + 255 2 m,) (BY + BY)], (A2)

where f| = cg and f, = 1/2. The details to derive the expressions in Eq. (A2) are the same as those shown in Refs. [6,22],
and hence we do not present them in this work. We note that the scalar functions Aé }e and Ag ,? D include parts that do not
depend on m,, , and therefore they vanish because of the Glashow-Iliopoulos-Maiani mechanism. They are ignored in
Egs. (A1) and (A2).

The divergent cancellation in the total A; p is shown as follows. The divergent parts only contain B functions:
divB(()l) = divB(()z) = divB(()lz) = 2divB(11) =-2 divB(lz) = A,. Ignoring the common factor of ¢*/(647>ms3,) and using
1/my = /2sy/my, the divergent parts of A; derived from Eq. (A2) are

9
. (Hwy 3C(l vk IV
div[A, ]maA€x<— 2) E UviUy.mk

i=1

9
1 5)W 1%3 12 % 1
dlv[A(L) ] =m,A, X c, Z UsiUy; (’1?/‘ My, + E/I?im”i ,

div[A™"] = div[alP"] = div[a®] =0,
9
div[al""] = m A, x 353(V254Co = oS Z (e 21Ul 3,
i=1
9
diV[Af) ] =m,A. X sicg(caco + V25,50) Z Ulirs) Aéllmnl
B3y °
le[Al: ] = maAe X [—2S§C9(C(169 + \/Esasﬂ)] Z U(a+3) Ul(h+3) m% ’

i=1

. 1
le[A(L5)Y] =m,A, X 2s5c, Z U3V, (ﬂ?fmnj + 2/1?]-mni>,
i,j=1

+
diV[A(L6)YHI ] = maAe X 2C(lC9 Z Ula (a+3 1/1?]*/11[;/1’

+
div[A" ) = A, x (—c, Z UYL,

ai’tij

9

div[Ay " = s, x (2e,3) S U 5 i
i=1
div[A O] Z A, x caz Uikim, (A3)

i=1
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Using the equalities M* = U**M*U*" and Eq. (38), we can prove that

9
le A (1) W Z UZTUZlm%, _ {UD(MD)ZUW]ZW =
(5)W) y
div[A}, Z UsiUy A m, Z UsiUyAm,

9

; 13)y 23 v
le[A(L,R> J~ Z Ulara)i U(b+3)
i=1

A (QY.(9+10)VHE . x
le[AL,R Z Ulass) Ay, = (miymp)p, + 3(MxMy),,
o 9
div[ALR ]~ Z Ules3)iUlp13); A} M Z Ulasa)i

ij=1 ij=1

div[al ) Z U 2% 285 = (mpymp) g

9
. (6)YH %90% L2
le[ALR ] Z UZtll?j )“L (mj)mD)hm
i,j=1
9+10 YH Z Uy*ﬂl‘ 2 —(m}-)mD)h

div [

where we have used the antisymmetric property of mp:

(9+10)YH =

diviaA"] 4 div[a®"] = div]al "]+ div]al

diV[A(Ll+2+3+5) —|—A(6+9+10>YHi} (

+ (MpME) [V 2s

=0.

= [U“ (MU ) 3y (a3) =

2
s

a2 (33 + 53 —2c3 -
Co

mEmg)ba = (mTDmD)ba’

(m*DmZ))ba - (m-lr)mD)ba’

(mpmp + MzM%) .

= —(mpmp) e + 15(MRMR),q.

UI(/b+3)j/1?jm ~ (mpymp)py = V21 atg(MyMR) b,
— V2t dlg(MRME) = (mTDmD) V21 Ly (MRME) by
(A4)
mIT):—mD. From this, it can be seen that

0. The sum of the remaining divergent parts is

mhmp)pa{ V2545303 = 1 = 2) + c,[s2(=3s3 — c2 — 2¢3 + 3) + 252 — 253]}

342) + cos5(=3s3 + 55— 2¢5 +2)]

(AS)

Finally, the proof of the divergent cancellation in Ay is exactly the same as that in Aj.
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