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By adding new gauge singlets of neutral leptons, the improved versions of the 3-3-1 models with right-
handed neutrinos have been recently introduced in order to explain recent experimental neutrino oscillation
data through the inverse seesaw mechanism. We prove that these models predict promising signals of
lepton-flavor-violating decays of the standard-model-like Higgs boson h01 → μτ; eτ, which are suppressed
in the original versions. One-loop contributions to these decay amplitudes are introduced in the unitary
gauge. Based on a numerical investigation, we find that the branching ratios of the decays h01 → μτ; eτ can
reach values of 10−5 in the regions of parameter space satisfying the current experimental data of the decay
μ → eγ. The value of 10−4 appears when the Yukawa couplings of leptons are close to the perturbative
limit. Some interesting properties of these regions of parameter space are also discussed.
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I. INTRODUCTION

Signals of lepton-flavor-violating decays of the standard-
model-like Higgs boson (LFVHDs) were investigated at
the LHC [1] not very long after its discovery in 2012 [2]. So
far, the most stringent limits on the branching ratios (Br) of
these decays are Brðh → μτ; eτÞ < Oð10−3Þ from the CMS
Collaboration using data collected at a center-of-mass energy
of 13 TeV. The sensitivities of the planned colliders for
LFVHD searches are predicted to reach the order of 10−5 [3].
On the theoretical side, model-independent studies

showed that the LFVHDs predicted from models beyond
the standard model (BSM) are constrained indirectly from
experimental data such as lepton-flavor-violating decays of
charged leptons (cLFV) [4]. Namely, they are affected most
strongly by the recent experimental bound on Brðμ → eγÞ.
Fortunately, large branching ratios of the decays h → μτ; eτ

are still allowed up to the order of 10−4. Also, LFVHDs
have been widely investigated in many specific BSM
models, where the decay rates were indicated to be close
to the upcoming sensitivities of colliders, including non-
supersymmetric [5,6] and supersymmetric versions [7].
Among them, the models based on the gauge symmetry
SUð3ÞC × SUð3ÞL ×Uð1ÞX (3-3-1) contain rich lepton-
flavor-violating (LFV) sources which may result in inter-
esting cLFV phenomenology such as charged lepton
decays ei → ejγ [8–11]. In particular, it was shown that
Brðμ → eγÞ is large in these models, and hence it must be
taken into account to constrain the parameter space. In
addition, such rich LFV resources may give large LFVHD
rates as promising signals of new physics.
Although the 3-3-1 models were introduced a long time

ago [12,13], LFVHDs have been investigated only in the
version with heavy neutral leptons assigned as the third
components of lepton (anti)triplets, where active neutrino
masses come from effective operators [14]. The largest
values of LFVHD rates were shown to be Oð10−5Þ,
originating from heavy neutrinos and charged Higgs
bosons [6]. Improved versions consisting of new neutral
lepton singlets were recently introduced [8,15]. They are
more interesting because they successfully explain the
experimental neutrino data through the inverse seesaw
(ISS) mechanism. We call them the 331ISS models for
short. They predict a large cLFV decay rate of μ → eγ
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corresponding to recent experimental bounds. They may
also contain dark matter candidates [8,15]. These properties
make them much more attractive than the original versions
of 3-3-1 models with right-handed neutrinos (331RHN)
[13]. They predict suppressed LFV decay rates, because all
neutrinos including exotic ones are extremely light.
Furthermore, loop corrections to the neutrino mass matrix
must be taken into account to obtain an active neutrino mass
spectrum that explains the experimental data [16]. Hence,
LFV signals are an interestingway to distinguish the 331ISS
and 331RHN models. More specifically, a simple ISS
extension of the SM allows large Brðh → μτ; eτÞ ∼
Oð10−5Þ in the allowed regions satisfying Brðμ → eγÞ <
4.2 × 10−13 [17]. Inspired by this, we will address
the following questions in this work: how large is the
Brðh → μτ; eτÞ predicted by the 331ISS models under the
experimental constraints of the cLFVdecays?; and, are these
branching ratios larger than the values calculated in the
simplest ISS extension of the SM? Because these 331
models contain many more particles that contribute to
LFV processes through loop corrections, either constructive
or destructive correlations among them will strongly affect
the allowed regions of the parameter space satisfying the
current bound of the decay rate μ → eγ. Themost interesting
allowed regions will also allow large LFVHD rates, which
we will try to look for in this work. Because the discussion
on the decayh → eτ is rather similar to the decayh → μτ, we
only briefly mention the latter.
Our paper is organized as follows. In Sec. II we discuss

the necessary ingredients of a 331ISS model for studying
LFVHDs and how the ISS mechanism works to generate
active neutrino parameters consistent with current exper-
imental data. In Sec. III we present all couplings needed to
determine the one-loop amplitudes of the LFVHDs of the
SM-like Higgs boson. In Sec. IV we show important
numerical LFVHD results predicted by the 331ISS model.
Section V contains our conclusions. Finally, the Appendix
lists all of the analytic formulas expressing one-loop
contributions calculated in the unitary gauge.

II. THE 331ISS MODEL FOR TREE-LEVEL
NEUTRINO MASSES

A. The model and neutrino masses from the
inverse seesaw mechanism

First, we will consider a 331ISS model based on the
original 331RHN model given in Ref. [16], where active
neutrino masses and oscillations are generated from the ISS
mechanism. The quark sector and SUð3ÞC representations
are irrelevant in this work, and hence they are omitted here.
The electric charge operator corresponding to the gauge
group SUð3ÞL ×Uð1ÞX isQ ¼ T3 − 1ffiffi

3
p T8 þ X, where T3;8

are diagonal SUð3ÞL generators. Each lepton family con-
sists of a SUð3ÞL triplet ψaL ¼ ðνa; ea; NaÞTL ∼ ð3;− 1

3
Þ and

a right-handed charged lepton eaR ∼ ð1;−1Þ with a ¼ 1, 2,

3. Each left-handed neutrino NaL ¼ ðNaRÞc implies a new
right-handed neutrino beyond the SM. The three Higgs
triplets are ρ¼ðρþ1 ;ρ0;ρþ2 ÞT∼ð3;23Þ, η¼ðη01;η−;η02ÞT∼ð3;−1

3
Þ,

and χ ¼ ðχ01; χ−; χ02ÞT ∼ ð3;− 1
3
Þ. The necessary vacuum

expectation values for generating all tree-level quark masses
are hρi¼ð0; v1ffiffi

2
p ;0ÞT , hηi¼ ð v2ffiffi

2
p ;0;0ÞT , and hχi ¼ ð0; 0; wffiffi

2
p ÞT .

Gauge bosons in this model get masses through the covariant
kinetic term of the Higgs bosons,

LH ¼
X

H¼χ;η;ρ

ðDμHÞ†ðDμHÞ;

where the covariant derivative for the electroweak symmetry
is defined as

Dμ ¼ ∂μ − igWa
μTa − gXT9XXμ; a ¼ 1; 2;…; 8; ð1Þ

and T9 ≡ I3ffiffi
6

p and 1ffiffi
6

p for (anti)triplets and singlets [18]. It can

be identified that

g ¼ esW;
gX
g

¼ 3
ffiffiffi
2

p
sWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − 4s2W
p ; ð2Þ

where e and sW are, respectively, the electric charge and sine
of the Weinberg angle, s2W ≃ 0.231.
The model includes two pairs of singly charged gauge

bosons, denoted as W� and Y�, defined as

W�
μ ¼ W1

μ ∓ iW2
μffiffiffi

2
p ; m2

W ¼ g2

4
ðv21 þ v22Þ;

Y�
μ ¼ W6

μ � iW7
μffiffiffi

2
p ; m2

Y ¼ g2

4
ðw2 þ v21Þ: ð3Þ

The bosonsW� are identified with the SM ones, leading to
v21 þ v22 ≡ v2 ¼ ð246 GeVÞ2. In the remainder of the text,
we will consider in detail the simple case v1 ¼ v2 ¼
v=

ffiffiffi
2

p ¼ ffiffiffi
2

p
mW=g given in Refs. [6,19].

The two global symmetries—namely, the normal and
new lepton numbers denoted, respectively, as L and L—
were introduced. They are related to each other by [16,20]
L ¼ 4ffiffi

3
p T8 þ L. The detailed values of nonzero lepton

numbers L and L are listed in Table I.

TABLE I. Nonzero lepton number L (left) and L (right) of
leptons and Higgs bosons in the 331RHN.

Fields NL νL eL eR ρþ2 η02 χ01 χ−

L −1 1 1 1 −2 −2 2 2

Fields χ η ρ ψaL eaR

L 4
3

2
3

2
3

1
3

1
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All tree-level lepton mass terms come from the following
Yukawa part:

LY
l ¼−heabψaLρebRþhνabϵ

ijkðψaLÞiðψbLÞcjρ�kþH:c:; ð4Þ

where ϵijk is the antisymmetric tensor ϵ123 ¼ 1,
ðψaLÞc ≡ ððνaLÞc; ðeaLÞc; ðNaLÞcÞT , and hν is an antisym-
metric matrix, hνab ¼ −hνba. The first term of Eq. (4)
generates charged lepton masses ma satisfying heab ≡ffiffiffi
2

p
δabma=v1 in order to avoid LFV processes at the tree

level. The second term in Eq. (4) is expanded as follows:

hνabϵ
ijkðψaLÞiðψbLÞcjρ�k

¼ 2hνab½−eaLðνbLÞcρ−2 −νaLðNbLÞcρ0� þeaLðνbLÞcρ−1 �;
ð5Þ

where we have used the equality NaLðνbLÞc ¼
νbLðNaLÞc;… The second term on the left-hand side of
Eq. (5) contributes a Dirac neutrino mass term −Lν

mass¼
νLmDNRþH:c:, where νL≡ðν1L;ν2L;ν3LÞT , NR≡ ððN1LÞc;
ðN2LÞc;ðN3LÞcÞT , and ðmDÞab ≡

ffiffiffi
2

p
v1hνab. The model can

predict a neutrino mass spectrum that is consistent with
current neutrino data [21] when loop corrections are
included, where all new neutrinos are very light [16]. As
a result, they will give suppressed LFV decay rates.
Now we consider a 331ISS model as an extension of the

above 331RHN model, where three right-handed neutrinos
[which are gauge singlets, XaR ∼ ð1; 0Þ, a ¼ 1, 2, 3] are
added. Now tree-level neutrino masses and mixing angles
arise from the ISS mechanism. Requiring that L is only
softly broken, the additional Yukawa part is

−LXR
¼ YabψaLχXbR þ 1

2
ðμXÞabðXaRÞcXbR þ H:c:; ð6Þ

where μX is a 3 × 3 symmetric matrix and LðXaRÞ ¼
LðXaRÞ ¼ −1. The last term in Eq. (6) is the only one
that violates both L and L, and hence it can be assumed to
be small, which is exactly the case in the ISS models.
The first term generates mass for heavy neutrinos, resulting
in a large Yukawa coupling Yab with SUð3ÞL Higgs triplets.
In addition, the ISS mechanism allows for large entries
in the Dirac mass matrixmD originated from Eq. (4), which
is the opposite of the well-known requirement in the
331RHN model.
In the basis ν0L ¼ ðνL; NL; ðXRÞcÞT and ðν0LÞc ¼

ððνLÞc;ðNLÞc;XRÞT , Eqs. (4) and (6) give a neutrino mass
term corresponding to a block form of the mass matrix,
namely,

−Lν
mass ¼

1

2
ν0LM

νðν0LÞc þ H:c:; where

Mν ¼

0
B@

0 mD 0

mT
D 0 MR

0 MT
R μX

1
CA; ð7Þ

where MR is a 3 × 3 matrix ðMRÞab ≡ Yab
wffiffi
2

p with

a, b¼1, 2, 3. Neutrino sub-bases are denoted as νR¼
ððν1LÞc;ðν2LÞc;ðν3LÞcÞT , NR¼ððN1LÞc;ðN2LÞc;ðN3LÞcÞT ,
and XL ¼ ððX1RÞc; ðX2RÞc; ðX3RÞcÞT .
The matrixMν can be written in the normal seesaw form,

Mν ¼
�

0 MD

MT
D MN

�
; where MD ≡ ðmD; 0Þ; and

MN ¼
�

0 MR

MT
R μX

�
: ð8Þ

The mass matrix Mν is diagonalized by a 9 × 9 unitary
matrix Uν [17,22],

UνTMνUν¼ M̂ν ¼ diagðmn1 ;mn2 ;…;mn9Þ¼ diagðm̂ν;M̂NÞ;
ð9Þ

where mni (i ¼ 1; 2;…; 9) are mass eigenvalues of the nine
mass eigenstates niL (i.e., physical states of neutrinos),
m̂ν¼diagðmn1 ;mn2 ;mn3Þ, and M̂N¼diagðmn4 ;mn5 ;…;mn9Þ.
They correspond to the masses of the three active neutrinos
naL (a ¼ 1, 2, 3) and six extra neutrinos nIL (I ¼ 4; 5; ::; 9).
The relations between the flavor and mass eigenstates are

ν0L ¼ Uν�nL; and ðν0LÞc ¼ UνðnLÞc; ð10Þ
where nL ≡ ðn1L; n2L;…; n9LÞT and ðnLÞc ≡ ððn1LÞc;
ðn2LÞc;…; ðn9LÞcÞT .
A four-component (Dirac) spinor ni is defined

as ni≡ðniL;ðniLÞcÞT¼nci ¼ðniÞc, where the chiral compo-
nents are nL;i≡PLni and nR;i≡PRni¼ðnL;iÞc with
chiral operators PL;R¼1�γ5

2
. Similarly, the definitions

for the original neutrino states are νa≡ðνL;a;ðνL;aÞcÞT ,
νa ≡ ðNL;a; ðNL;aÞcÞT , XI ≡ ððXR;IÞc; XR;IÞT , and
ν0¼ðν;NÞT . The relations in Eq. (10) can be written as
follows:

PLν
0
i ¼ ν0i;L ¼ Uν�

ij njL; and

PRν
0
i ¼ ν0iR ¼ Uν

ijnjR; i; j ¼ 1; 2;…; 9: ð11Þ
In general, Uν is written in the form [23]

Uν ¼ Ω
�
U O

O V

�
; ð12Þ

where O is a 3 × 6 null matrix, and U, V, and Ω are 3 × 3,
6 × 6, and 9 × 9 unitary matrices, respectively. Ω can be
formally written as
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Ω¼ exp

�
O R

−R† O

�
¼
�
1− 1

2
RR† R

−R† 1− 1
2
R†R

�
þOðR3Þ;

ð13Þ

where R is a 3 × 6matrix with the maximal absolute values
for all entries jRj satisfying jRj < 1. The matrix U ¼
UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix [24],

UPMNS ¼

0
BB@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CCAdiagð1; eiα2; eiβ2Þ; ð14Þ

and cab ≡ cos θab, sab ≡ sin θab. The Dirac phase δ and
Majorana phases α, β are fixed as δ ¼ π; α ¼ β ¼ 0. In the
normal hierarchy scheme, the best-fit values of neutrino
oscillation parameters are given as [21]

Δm2
21 ¼ 7.370 × 10−5 eV2;

Δm2 ¼ 2.50 × 10−3 eV2; s212 ¼ 0.297;

s223 ¼ 0.437; s213 ¼ 0.0214; ð15Þ

where Δm2
21 ¼ m2

n2 −m2
n1 and Δm2 ¼ m2

n3 −
Δm2

21

2
. The

condition v1 ≪ w gives the reasonable condition
jMDj ≪ jMN j, where jMDj and jMN j denote the character-
istic scales of MD and MN . Hence, the following seesaw
relations are valid [23]:

R� ≃ ð−mDM−1; mDðMT
RÞ−1Þ; ð16Þ

mDM−1mT
D ≃mν ≡U�

PMNSm̂νU
†
PMNS; ð17Þ

V�M̂NV† ≃MN þ 1

2
RTR�MN þ 1

2
MNR†R; ð18Þ

where

M≡MRμ
−1
X MT

R: ð19Þ

In the model under consideration, the Dirac neutrino mass
matrix mD must be antisymmetric. Equivalently, mD has
only three independent parameters x12, x13, and z,

mD ≡ z

0
B@

0 x12 x13
−x12 0 1

−x13 −1 0

1
CA; ð20Þ

where z ¼ ffiffiffi
2

p
v1hν23. In contrast, the matrix mν in Eq. (17)

is symmetric, ðmνÞij ¼ ðmνÞji, implying that

0 ¼ ðmνÞij − ðmνÞji ∼ x12½ðM−1Þ12 − ðM−1Þ21�
þ x13½ðM−1Þ13 − ðM−1Þ31� þ ðM−1Þ23 − ðM−1Þ32;

with i, j ¼ 1, 2, 3. This means that a symmetric matrix M
will give a right antisymmetric matrix mD. To fit the
neutrino data, there must exist matrices M and mD that
satisfy the first equality in Eq. (17). Here we choose M to
be symmetric for simplicity. There must exist some sets of
z, x12, x13, andMij (i ≤ j ≤ 3) that satisfy the six equations
ðmDM−1mT

DÞij ¼ ðmνÞij, with i ≤ j ≤ 3. From the three
equations corresponding to i ¼ j ¼ 1, 2, 3, we can write
ðM−1Þii as three functions of z; x12; x13, and ðM−1Þij
(i ≠ j). Inserting them into the three remaining equalities,
and taking some intermediate steps, we obtain

−ðmνÞ13x12 þ ðmνÞ12x13 ¼ ðmνÞ11;
−ðmνÞ23x12 þ ðmνÞ22x13 ¼ ðmνÞ12;
−ðmνÞ33x12 þ ðmνÞ23x13 ¼ ðmνÞ13; ð21Þ

where we exclude the case of x12, x13 ¼ 0. Solving the
above three equations leads to two solutions for x12;13 and a
strict relation among ðmνÞij:

x12¼
ðmνÞ11ðmνÞ23− ðmνÞ13ðmνÞ12
ðmνÞ12ðmνÞ33− ðmνÞ13ðmνÞ23

;

x13¼
ðmνÞ11ðmνÞ33− ðmνÞ213

ðmνÞ12ðmνÞ33− ðmνÞ13ðmνÞ23
;

0¼ðmνÞ11ðmνÞ223þðmνÞ22ðmνÞ213þðmνÞ33ðmνÞ212
− ðmνÞ11ðmνÞ22ðmνÞ33−2ðmνÞ12ðmνÞ13ðmνÞ23: ð22Þ

Interestingly, the last relation in Eq. (22) allows us to
predict possible values of the unknown neutrino mass based
on the identification given in Eq. (17). Using the exper-
imental data given in Eq. (15), we derive thatmν1 ¼ 0 in the
normal hierarchy scheme. The Dirac matrix now only
depends on z:

mD ≃ z ×

0
B@

0 0.545 0.395

−0.545 0 1

−0.395 −1 0

1
CA: ð23Þ

The above discussion also gives M ¼ diagð1010z2;
7.029 × 1010z2;−2.377 × 1011z2Þ for a diagonal MR. In
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this work, we also consider the simple case where MR is
diagonal and all elements are positive. We also assume that
jmνj < μX ≪ jmDj < jMRj. We then derive that heavy
neutrino masses are approximately equal to the entries
ofMR, as given in Eq. (19). However, this approximation is
not good for investigating LFVHDs, where a divergent
cancellation in the numerical computation is strictly re-
quired. Instead, we will use the numerical solutions of
heavy neutrino masses as well as the mixing matrix Uν so
that a total divergent part vanishes in the final numerical
results. This treatment will avoid unphysical contributions
originated from divergent parts.
Another parametrization shown in Ref. [8] can be applied

to the general cases of nonzero δ as well as both the inverse
and normal hierarchy cases of active neutrino masses. With
the aim of finding regions with large LFVHDs, we will
choose the simple case of mD given in Eq. (23).
For simplicity in the numerical study, wewill consider the

diagonal matrix MR in the degenerate case MR ¼ MR1
¼

MR2
¼ MR3

≡ k × z. The parameter k will be fixed at small
values that result in large LFVHD effects. The total neutrino
mass matrix in Eq. (7) depends on only the free parameter z.
The heavy neutrino masses and the matrixUν can be solved
numerically, which is not affected by z because jμXj ≪ z.
Using the exact numerical solutions for the neutrino

masses and mixing matrix Uν for our investigation, we
emphasize that the masses and mixing parameters of active
neutrinos derived from the numerical diagonalization of the
matrix Mν given in Eq. (7) should satisfy the 3σ constraint
of the experimental data. In contrast, neutrino masses and
mixing parameters defining the matrix mν in Eq. (17),
which are used to calculate th matrix mD, are considered as
free parameters. In other words, the experimental values of
neutrino masses and mixing parameters are only used to
estimate the allowed ranges of free parameters determining
the mass matrix Mν. After that, it is diagonalized numeri-
cally to find the neutrino masses as well as the mixing
matrix Uν. The mixing parameters will be calculated from
the matrix UPMNS, which is related to Uν by the relation
(12). Requiring that the expansion of Ω in Eq. (13) and the
ISS condition jμXj > mn3 are valid, we find that small
values of k > 1 are allowed. In particular, we find that if
three mixing parameters are fixed at the three respective
center values, the two inputs for the active neutrino masses
may be outside of (but very close to) the 3σ ranges with
k ¼ 5. When k ≥ 5.5, we always find that the input lies
within the 3σ ranges of the experimental data that produces
the consistent numerical solutions of active neutrino
masses. When k ≥ 9, the input corresponding to all center
values given in Eq. (15) always produces numerical
solutions lying in the 3σ ranges of experimental data.
The LFVHD rates depend strongly on the unitarity of the

mixing matrix Uν and heavy neutrino masses. On the other
hand, they are weakly affected by the requirement that
solutions for active neutrino masses and mixing parameters

satisfy the 3σ experimental data. Hence, we will use the
matrix mD given in Eq. (23) and k ≥ 5.5 for our numerical
investigation. We numerically checked that our choice
produces reasonable values for the neutrino data close to
the 3σ ranges mentioned above.

B. Higgs and gauge bosons

To study the LFVHD effects, we will choose the simple
case of the Higgs potential discussed in Refs. [6,19],
namely,

V¼ μ21ðρ†ρþη†ηÞþμ22χ
†χþλ1ðρ†ρþη†ηÞ2þ λ2ðχ†χÞ2

þλ12ðρ†ρþη†ηÞðχ†χÞ−
ffiffiffi
2

p
fðεijkηiρjχkþH:c:Þ; ð24Þ

where f is a mass parameter and is assumed to be real.
The detailed calculations for finding the masses and mass
eigenstates of Higgs bosons were presented in Refs. [6,19],
where the minimum condition results in v1 ¼ v2. Here we
will only list the part that is involved in LFVHDs.
The model contains two pairs of singly charged Higgs

bosonsH�
1;2 and Goldstone bosons of the gauge bosonsW

�

and Y�, which are denoted asG�
W andG�

Y , respectively. The
masses of all charged Higgs bosons arem2

H�
1

¼ fwðt2θ þ 1Þ,
m2

H�
2

¼ 2fw, and m2
G�

W
¼ m2

G�
Y
¼ 0, where tθ ¼ v2=w. The

relations between the original and mass eigenstates of the
charged Higgs bosons are

�
ρ�1
η�

�
¼ 1ffiffiffi

2
p

�−1 1

1 1

��
G�

W

H�
2

�
;

�
ρ�2
χ�

�
¼

�−sθ cθ
cθ sθ

��
G�

Y

H�
1

�
: ð25Þ

The neutral scalars are expanded as

ρ0 ¼ 1ffiffiffi
2

p ðv1 þ S1 þ iA1Þ; η01 ¼
1ffiffiffi
2

p ðv2 þ S2 þ iA2Þ;

χ02 ¼
1ffiffiffi
2

p ðwþ S03 þ iA0
3Þ;

η02 ¼
1ffiffiffi
2

p ðS02 þ iA0
2Þ; χ01 ¼

1ffiffiffi
2

p ðS3 þ iA3Þ: ð26Þ

There are four physical CP-even Higgs bosons h01;2;3;4
and a Goldstone boson of the non-Hermitian gauge boson.
The neutral Higgs components relevant for this work are
defined via

0
B@

S1
S2
S03

1
CA ¼

0
BB@

− cαffiffi
2

p sαffiffi
2

p 1ffiffi
2

p

− cαffiffi
2

p sαffiffi
2

p − 1ffiffi
2

p

sα cα 0

1
CCA
0
B@

h01
h02
h03

1
CA; ð27Þ

where sα ¼ sin α and cα ¼ cos α, and they are defined by
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sα ¼
ð4λ1 −m2

h0
1

=v22Þtθ
r

; cα ¼
ffiffiffi
2

p ðλ12 − f
wÞ

r
;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
λ12 −

f
w

�
2

þ ð4λ1 −m2
h0
1

=v22Þ2t2θ
s

: ð28Þ

There is one neutral CP-even Higgs boson h01 with a mass
proportional to the electroweak scale,

m2
h0
1

¼w2

2

2
644λ1t2θþ2λ2þ

ft2θ
w

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2λ2þ

ft2θ
w

−4λ1t2θ

�
2

þ8t2θ

�
f
w
−λ12

�
2

s 3
75: ð29Þ

The decoupling limit tθ ≪ 1 (v1 ≪ w) gives m2
h0
1

∼
Oðm2

WÞ and sα ≃ 0 [19], resulting in the couplings similar
to those predicted by the SM; see Table II. Hence, h01 is
identified with the SM-like Higgs boson found at
the LHC.

III. COUPLINGS AND ANALYTIC FORMULAS
INVOLVED WITH LFVHDS

A. Couplings

In this section we present Yukawa couplings in terms of
Uν and physical neutrino masses. From this, amplitudes
and the LFVHD rate are formulated in terms of physical

masses and mixing parameters. The equality derived from
Eq. (9), Mν ¼ Uν�M̂νUν†, gives

Mν
ab ¼ ðUν�M̂νUν†Þab ¼ 0 → Uν�

akU
ν�
bkmnk ¼ 0;ffiffiffi

2
p

v1hνab ¼ ðmDÞab ¼ ðMνÞaðbþ3Þ

¼ ðUν�M̂νUν†Þaðbþ3Þ ¼ Uν�
akU

ν�
ðbþ3Þkmnk ;

wffiffiffi
2

p Yab ¼ ðMRÞab ¼ ðMνÞðaþ3Þðbþ6Þ

¼ Uν�
ðaþ3ÞkU

ν�
ðbþ6Þkmnk ; ð30Þ

where a, b¼1, 2, 3, and the sum is taken over
k ¼ 1; 2;…; 9.
The relevant couplings in the first term of the Lagrangian

(4) are

−heabψaLρebRþH:c:

¼−
gma

mW
½νaLeaRρþ1 þeaLeaRρ0þNaLeaRρ

þ
2 þH:c:�

⊃
gmacα
2mW

h01eaea

−
gma

mW
½cθðUν

ðaþ3ÞiniPReaH
þ
1 þUν�

ðaþ3ÞieaPLniH−
1 Þ�

−
gmaffiffiffi
2

p
mW

½ðUν
ainiPReaH

þ
2 þUν�

ai eaPLniH−
2 Þ�: ð31Þ

The relevant couplings in the second term of the
Lagrangian (4) are

TABLE II. Couplings related to the SM-like Higgs decay h01 → eaeb in the 331ISS model. All momenta in the Feynman rules
corresponding to these vertices are incoming.

Vertex Coupling

h01eaea
igma
2mW

cα

h01ninj
igcα
2mW

ðλ0ijPL þ λ0�ij PRÞ
Hþ

1 nieb, H
−
1 eani − igcθ

mW
ðλL;1bi PL þ λR;1bi PRÞ, − igcθ

mW
ðλL;1�ai PR þ λR;1�ai PLÞ

Hþ
2 nieb, H

−
2 eani − igffiffi

2
p

mW
ðλL;2bi PL þ λR;2bi PRÞ, − igffiffi

2
p

mW
ðλL;2�ai PR þ λR;2�ai PLÞ

Wþ
μ nieb, W−

μ eani igffiffi
2

p Uν
biγ

μPL,
igffiffi
2

p Uν�
ai γ

μPL

Yþ
μ nieb, Y−

μ eani igffiffi
2

p Uν
ðbþ3Þiγ

μPL,
igffiffi
2

p Uν�
ðaþ3Þiγ

μPL

Hþ
1 h

0
1Y

−
μ , Yþ

μ H−
1 h

0
1

ig
2
ffiffi
2

p ðcαcθ þ
ffiffiffi
2

p
sαsθÞðph0

1
− pHþ

1
Þμ, ig

2
ffiffi
2

p ðcαcθ þ
ffiffiffi
2

p
sαsθÞðpH−

1
− ph0

1
Þμ

h01W
þ
μ W−

ν −igmWcαgμν

h01Y
þ
μ Y−

ν
igmYffiffi

2
p ð ffiffiffi

2
p

sαcθ − cαsθÞgμν
h01H

þ
1 H

−
1 iλ�H1

¼−iw½sαc2θλ12þ2sαs2θλ2−
ffiffiffi
2

p ð2cαc2θλ1þcαs2θλ12Þtθ−
ffiffi
2

p
v3
fcαcθsθ�

h01H
þ
2 H

−
2 iλ�H2

¼ −iv1ð−2
ffiffiffi
2

p
cαλ1 þ sαv3λ12þsαf

v1
Þ
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hνabϵ
ijkðψaLÞiðψbLÞcjρ�k þ H:c:

¼ 2hνab½−eaLðνbLÞcρ−2 − νaLðNbLÞcρ0� þ eaLðνbLÞcρ−1 �

¼ gcα
2mW

h01

�X3
c¼1

Uν
ciU

ν�
cjniðmniPL þmnjPRÞnj

�

−
gcθ
mW

½ðmDÞabUν
biH

−
1 eaPRni þ H:c:�

þ gffiffiffi
2

p
mW

½ðmDÞabUν
ðbþ3ÞiH

−
2 eaPRni þ H:c:�; ð32Þ

where the last line is derived following the calculation in
Ref. [22]: νLMDððNLÞc; XRÞT ↔ νaLðMDÞaINIR. The first
term in Eq. (6) gives the following couplings:

− YabψaLχXbR þ H:c:

¼ −
ffiffiffi
2

p

w
ðMRÞab½νaLχ01 þ eaLχ− þ NaLχ

0
2�XbR þ H:c:

⊃ −
gtθffiffiffi
2

p
mW

ðMRÞab½sαUν
ðaþ3ÞiU

ν
ðbþ6ÞjniPRnjh01

þ
ffiffiffi
2

p
sθUν

ðbþ6ÞieaPRniH−
1 þ H:c:�; ð33Þ

wherewe have used tθ¼v1=w→1=w¼tθ=v1¼gtθ=ð
ffiffiffi
2

p
mWÞ.

The LFVHD couplings between leptons and charged gauge
bosons ðW�; Y�Þ are

LllV ¼ψaLγ
μDμψaL

⊃
gffiffiffi
2

p ðeaLγμνaLW−
μ þeaLγμNaLY−

μ ÞþH:c:

¼ gffiffiffi
2

p ½Uν�
ai eaγ

μPLniW−
μ þUν

ainiγ
μPLeaWþ

μ

þUν�
ðaþ3Þieaγ

μPLniY−
μ þUν

ðaþ3Þiniγ
μPLeaYþ

μ �; ð34Þ

where Dμ¼∂μ−
ig
2
ðWa

μλ
aþt×ð−1

3
ÞBμÞ, λa (a ¼ 1; 2;…; 8)

are the Gell-Mann matrices, and t ¼ gX=g. The charged

gauge bosons are W�
μ ¼ W1

μ∓iW2
μffiffi

2
p and Y�

μ ¼ W6
μ�iW7

μffiffi
2

p .

By defining a symmetric coefficient λ0ij ¼ λ0ji, namely,

λ0ij¼
X3
c¼1

ðUν
ciU

ν�
cjmniþUν�

ci U
ν
cjmnjÞ

−
X3
c;d¼1

ffiffiffi
2

p
tαtθðM�

RÞcd
h
Uν�

ðcþ3ÞiU
ν�
ðdþ6ÞjþUν�

ðcþ3ÞjU
ν�
ðdþ6Þi

i
;

the coupling h01n̄inj derived from Eqs. (32) and (33) is
written in the symmetric form gcα

4mW
h01ni½λ0ijPL þ λ0�ij PR�nj,

which gives the right vertex coupling based on the
Feynman rules given in Ref. [25]. The Yukawa couplings
of charged Higgs bosons are defined by

λR;1ai ¼ maUν
ðaþ3Þi;

λL;1ai ¼
X3
c¼1

½ðm�
DÞacUν�

ci þ t2θðM�
RÞacUν�

ðcþ6Þi�;

λR;2ai ¼ maUν
ai; λL;2ai ¼ −

X3
c¼1

ðm�
DÞacUν�

ðcþ3Þi: ð35Þ

Finally, all of the couplings involved in LFV processes are
listed in Table II. The model predicts that the following
couplings are zero: h01W

�Y∓, h01W�H∓
1;2, h

0
1Y

�H∓
2 , and

h01H
�
1 H

∓
2 .

B. Analytic formulas

The effective Lagrangian of the LFVHDs of the SM-like
Higgs boson h01 → e�a e

∓
b is

LLFVH ¼ h01ðΔðabÞLeaPLeb þ ΔðabÞReaPRebÞ þ H:c:;

where the scalar factors ΔðabÞL;R arise from the
loop contributions. In the unitary gauge, the one-loop
Feynman diagrams contributing to this LFVHD amplitude
are shown in Fig. 1.

FIG. 1. One-loop Feynman diagrams contributing to the decay h01 → eaeb in the unitary gauge. Here V� ¼ W�; Y�.
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The partial width of the decay is

Γðh01 → eaebÞ≡ Γðh01 → e−a e
þ
b Þ þ Γðh01 → eþa e−b Þ

¼
mh0

1

8π
ðjΔðabÞLj2 þ jΔðabÞRj2Þ; ð36Þ

with the conditionmh0
1
≫ ma;b. wherema;b are themasses of

muon and tau, respectively. The on-shell conditions for
external particles arep2

1;2¼m2
a;b andp

2
h0
1

≡ðp1þp2Þ2¼m2
h0
1

.

The corresponding branching ratio is Brðh01 → eaebÞ ¼
Γðh01 → eaebÞ=Γtotal

h0
1

, where Γtotal
h0
1

≃4.1×10−3GeV [21,26].

The ΔðabÞL;R can be written as

ΔðabÞL;R ¼
X

i¼1;5;7;8

ΔðiÞW
ðabÞL;R þ

X10
i¼1

ΔðiÞY
ðabÞL;R; ð37Þ

where the analytic forms ofΔðiÞW
ðabÞL;R andΔðiÞY

ðabÞL;R are shown
in the Appendix. They can be calculated using the unitary
gauge with the same techniques given in Refs. [6,22]. We
have crosschecked this with FORM [27].
The divergence cancellation in the total amplitude (37) is

proved analytically in the Appendix, based on the follow-
ing strict equality:

UνðM̂νÞ2Uν†

¼ðUν�M̂νUν†Þ�Uν�M̂νUν†¼Mν�Mν

¼

0
BB@
m�

Dm
T
D 0 m�

DMR

0 m†
DmDþM�

RM
T
R M�

RμX

M†
Rm

T
D μ�XM

T
R M†

RMRþμ�XμX

1
CCA: ð38Þ

In the model under consideration, the divergent parts
coming from the contributions of charged Higgs and heavy
gauge bosons are related to both ðMν�MνÞðaþ3Þðbþ3Þ and
ðMν�MνÞðaþ6Þðbþ6Þ (a; b ≤ 3), which are affected by heavy
neutrino masses. The cancellation in the total divergent part

requires that the physical heavy neutrino masses and Uν

must be the exact values. Hence, approximate forms of the
heavy neutrino masses and neutrino mixing matrix derived
from the ISS mechanism cannot be applied. In contrast, we
checked numerically that these formulas are safely used in
the usual minimal ISS version extended directly from the
SM, because the divergent parts are only involved with the
elements ðMν�MνÞab ¼ ðm�

Dm
T
DÞðabÞ.

Many of the contributions listed in Eq. (37) are sup-
pressed, and hence they can be ignored in our numerical
computation. From now on, we just focus on the decay
h01 → μτ, and hence the simplified notations ΔL;R ≡
Δð23ÞL;R will be used. The decay h01 → eτ has similar
properties, so we do not need to discuss it more explicitly.
We can see that j ΔL

ΔR
j ≃Oðmμ

mτ
Þ. In addition, we prove in the

Appendix that the following combinations are finite:

Δð1þ5ÞW
L;R , Δð7þ8ÞW

L;R , Δð4ÞYH2

L;R , Δð6þ9þ10ÞYH2

L;R , Δð4ÞYH1

L;R , Δð7þ8ÞY
L;R ,

and ðΔð1þ2þ3þ5ÞY
L;R þΔð6þ9þ10ÞYH1

L;R Þ. With mμ;τ≪mW , we

haveBð1Þ
1 þBð2Þ

1 ;Bð2Þ
1 −Bð2Þ

0 ≃0, and henceΔð7þ8ÞW
L;R ;Δð7þ8ÞY

L;R ≃

0. The two contributionsΔ
ð4ÞYH�

1;2
L;R are also suppressed with a

large mH�
2
for about a few TeV.

The four diagrams 4, 6, 9, and 10 in Fig. 1 include
contributions from both charged Higgs bosons. They are
not significantly affected by the SUð3ÞL scale mY , and thus
they may enhance the partial decay widths of the LFVHDs
if charged Higgs masses are small.
The regions of parameter space predicting large branch-

ing ratios for LFVHDs are affected strongly by the current
experimental bound Brðμ → eγÞ < 4.2 × 10−13 [28]. A
very good approximate formula for this decay rate in the
limit mμ, me → 0 is [11]

Brðμ → eγÞ ¼ 12π2

G2
F

jDRj2; ð39Þ

where GF ¼ g2=ð4 ffiffiffi
2

p
m2

WÞ and DR is the one-loop con-
tribution from charged gauge and Higgs boson mediations,

DR ¼ DW
R þDY

R þD
H�

1

R þD
H�

2

R . The analytic forms are

DW
R ¼ −

eg2

32π2m2
W

X9
i¼1

Uν�
aiU

ν
biFðtiWÞ;

DY
R ¼ −

eg2

32π2m2
Y

X9
i¼1

Uν�
ðaþ3ÞiU

ν
ðbþ3ÞiFðtiYÞ;

D
H�

k
R ¼ −

eg2fk
16π2m2

W

X9
i¼1

�
λL;k�ai λL;kbi

m2
H�

k

×
1 − 6tik þ 3t2ik þ 2t3ik − 6t2ik lnðtikÞ

12ðtik − 1Þ4 þmniλ
L;k�
ai λ0R;kbi

m2
H�

k

×
−1þ t2ik − 2tik lnðtikÞ

2ðtik − 1Þ3
�
; ð40Þ

where
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b¼2; a¼1; tiW≡m2
ni

m2
W
; tiY≡m2

ni

m2
Y
; tik≡ m2

ni

m2
H�

k

;

f1≡1

2
; f2≡c2θ; λ0R;1bi ≡Uν

ðbþ3Þi; λ0R;2bi ≡Uν
bi;

FðxÞ≡−
10−43xþ78x2−49x3þ4x4þ18x3 lnðxÞ

12ðx−1Þ4 : ð41Þ

Because all charged Higgs bosons couple with heavy
neutrinos through the Yukawa coupling matrix hνab, this
matrix is strongly affected by the upper boundOð10−13Þ on
Brðμ → eγÞ. In fact, our numerical investigation shows that
the allowed regions with light charged Higgs masses are
very narrow. The previous investigation in Ref. [8] showed
that the 331ISS model predicts a large Brðμ → eγÞ, where
the allowed regions discussed there were chosen such that
k ∼Oð103Þ and MR ≤ 1 TeV, implying that z ∼Oð1Þ eV.
We checked that our formulas are consistent with these
results. In general, the allowed regions are very strict and
satisfy one of the following conditions. First, the regions have
a small z and large jMRj andmH�

2
, implying k ≫ 1, including

thosemainly discussed in Ref. [8]. Second, the regions allow
for a large mD and small k, but the strong destructive
correlation between the two-loop contributions of charged
gauge and Higgs bosons must happen. These regions were
also considered in Ref. [8], but they were not given much
attention. They arevery interesting because they predict large
branching ratios for LFVHDs and light particles such as new
neutrinos andchargedHiggs bosons,which couldbe foundat
theLHCandplanned colliders [29,30].Hence, our numerical
investigation will focus on this case.

IV. NUMERICAL DISCUSSION ON LFVHDS

A. Setup parameters

To numerically investigate the LFVHDs of the SM-like
Higgs boson, we will use the following well-known
experimental parameters [21]: the mass of the W boson
mW ¼ 80.385 GeV, the charged lepton masses me ¼
5×10−4 GeV, mμ ¼ 0.105 GeV, and mτ ¼ 1.776 GeV,
the SM-like Higgs mass mh0

1
¼ 125.1 GeV, and the gauge

coupling of the SUð2ÞL symmetry g ≃ 0.651.
Combined with the discussion in Sec. II, the independent

parameters are the heavy neutrino mass scale MR ¼
diagðMR;MR;MRÞ, the heavy gauge boson mass mY [con-
sidered as the SUð3ÞL breaking scale], the charged Higgs
boson mass mH�

2
, the characteristic scale of mD defined as

the parameter z, and the two Higgs self-couplings λ1;12.
Other parameters can be calculated in terms of the above

free ones, namely,

v1 ¼ v2 ¼
ffiffiffi
2

p
mW

g
; sθ ¼

mW

mY

ffiffiffi
2

p ; w ¼ 2mY

gcθ
;

f ¼
gcθm2

H�
2

4mY
; m2

H�
1

¼
m2

H�
2

2
ðt2θ þ 1Þ: ð42Þ

Apart from that, the mixing parameter α of the neutral CP-
even Higgs was defined in Eq. (28). The Higgs self-
coupling λ2 is determined as [6]

λ2 ¼
t2θ
2

�m2
h0
1

v1
−
m2

H�
2

2w2

�
þ

�
λ12 −

m2

H�
2

2w2

�2

4λ1 −
m2

h0
1

v2
1

: ð43Þ

In themodel under considerationwith the quark sector given
in Refs. [16,29], only the charged Higgs bosons H�

2 couple
with all SM leptons and quarks. They have been investigated
at the LHC in the direct production pp → tðbÞH�, which
then decay into two final fermion states [31]. But the specific
constraints on them in the framework of the 3-3-1 models
have not been mentioned yet, to the best of our knowledge.
Instead, the lower bounds on their masses have been
discussed recently based on recent data of neutral meson
mixing B0 − B̄0, where a reasonable lower bound ofmH�

2
≥

480 GeV was concerned [29].
The values of λ1;2;12 must satisfy theoretical conditions of

unitarity and the Higgs potential must be bounded from
below, as mentioned in Ref. [6]. The heavy charged gauge
boson mass mY is related to the recent lower constraint of
neutral gauge boson Z0 in this model.
For the above reasons, the default values of the free

parameters chosen for our numerical investigation are as
follows. Without loss of generality, the Higgs self-cou-
plings are fixed as λ1 ¼ 1, λ12 ¼ −1, which also guarantee
that all couplings of the SM-like Higgs boson approach the
SM limit when tθ → 0. The default value mY ¼ 4.5 TeV
satisfies all recent constraints [29,32]. The parameter z
will be considered in the range of the perturbative limit
z < 2

ffiffiffi
π

p
× v1 ≃ 617 GeV; in particular, we will fix

z ¼ 50, 200, 400, 500, and 600 [GeV]. Finally, the charged
Higgs mass mH�

2
will be investigated mainly in the range

of 300 to 5 × 104 GeV, where large values of LFVHDs
may appear.

B. Numerical results

First, we reproduce the regions mentioned in Ref. [8],
whereMRwas chosen to be from hundreds of GeV to 1 TeV,
and the scale ofmD (namely, z) was a few GeV, correspond-
ing to k ≫ 1. As a result, the respective regions of parameter
space always satisfy the experimental bound on Brðμ → eγÞ
with large enough mH�

2
. These regions are shown in

Fig. 2 with fixed z ¼ 1, 5, 10, 100, and 500 GeV. All
allowed regions (i.e., those that satisfy the upper bound
Brðμ→eγÞ<4.2×10−13) give a small Brðh01→μτÞ<
Oð10−9Þ. In general, for larger k we checked numerically
that the values of the branching ratio of LFVHDs will
decrease significantly, and hence we will not discuss
this further.
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With small values of k ¼ 5.5 and 9, the dependence of
both Brðμ → eγÞ and Brðh → μτÞ on mH�

2
with fixed z are

shown in Fig. 3. Most regions of the parameter space are
ruled out by the bound on Brðμ → eγÞ, except for narrow
parts where particular contributions from charged Higgs
and gauge bosons are destructive. This interesting property
of the 331ISS model was indicated previously in Ref. [8].

Furthermore, it predicts allowed regions that give a large
Brðh01 → μτÞ. In particular, the largest values can reach
Oð10−4Þ when k ¼ 5.5 and z ¼ 600 GeV, which is very
close to the perturbative limit. In general, the illustrations in
two Figs. 2 and 3 suggest that this branching ratio is
enhanced significantly for smaller k and larger z, but
changes slowly with the change of large mH�

2
. In contrast,

FIG. 3. Brðμ → eγÞ (upper) and Brðh01 → μτÞ (lower) as functions of mH�
2
with k ¼ 5.5 (left) and k ¼ 9 (right).

FIG. 2. Brðμ → eγÞ (left) and Brðh01 → μτÞ (right) as functions of mH�
2
with k ¼ 500.
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a smallmH�
2
plays a very important role in creating allowed

regions that predict a large LFVHD. Brðμ → eγÞ does not
depend on mH�

2
when it is large enough. Furthermore, the

branching ratio decreases with increasing k and it will go
below the experimental bound if k is large enough.
The allowed regions in Fig. 3 are shown more explicitly

in Fig. 4, corresponding to k ¼ 5.5 and k ¼ 9. Only regions
that give a large Brðh01 → μτÞ are mentioned. They are
bounded between two black curves representing the con-
stant value of Brðμ→ eγÞ×1013¼ 4. Clearly, Brðh01 → μτÞ
is sensitive to z and k, while it changes slowly with
changing values of mH�

2
. In contrast, the suppressed

Brðμ → eγÞ allows narrow regions of the parameter space

where some particular relation between mH�
2
and k and z is

realized. Hence, if these two decay channel are discovered
by experiments, depending on their specific values, a
relation between heavy neutrino and charged Higgs masses
can be determined from the 331ISS framework.
To understand how Brðh01 → μτÞ depends on the SUð3ÞL

breaking scale defined by mY in this work, four allowed
regions corresponding to the four fixed valuesmY ¼ 3, 4, 5,
and 6 TeV are illustrated in Fig. 5. It can be seen that the
branching ratio of LFVHD depends weakly onmY , namely,
it decreases slowly with increasing mY . Hence, studies of
LFV decays will give useful information about heavy
neutrinos and charged Higgs bosons besides the phenom-
enology arising fromheavy gauge bosons discussed inmany

FIG. 4. Density plots of Brðh01 → μτÞ and contour plots of Brðμ → eγÞ (black curves) as functions ofmH�
2
and z, with k ¼ 5.5 (upper)

and k ¼ 9 (lower).
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earlier works. More interestingly, this may happen at large
SUð3ÞL scales which the LHC cannot detect at present.

V. CONCLUSION

The 331ISS models seem to be the most interesting
among the well-known 331 models because of their rich
phenomenology, as indicated in many recent works. This
work addressed a more attractive property, namely, the
LFVHDs of the SM-like Higgs boson which are being
investigated at the LHC. Assuming the absence of the tree-
level decays h01 → eaeb and ej → eiγ (j > i), the analytical
formulas at the one-loop level to calculate these decay rates
in the 331ISS model have been introduced. The divergent
cancellation in the total decay amplitudes of h01 → eaeb was

shown explicitly. From the numerical investigation, we
have indicated that the Brðh01 → μτÞ predicted by the
331ISS model can reach large values of Oð10−5Þ. They
are even very close to 10−4, for example, in the special case
with k ¼ 5.5 and z ≃ 600 GeV, which is close to the
perturbative limit of the lepton Yukawa couplings. This
value is larger than that predicted by the simplest ISS
version extended directly from the SM [17]. New charged
Higgs bosons may give large contributions to both of the
decay rates Brðμ → eγÞ and Brðh01 → μτÞ, leading to either
constructive or destructive correlations with those from the
charged gauge bosons. As a by-product, the recent exper-
imental bound on Brðμ → eγÞ rules out most of the regions
of parameter space with small k and large z, except the

FIG. 5. Density plots of Brðh01 → μτÞ and contour plots of Brðμ → eγÞ (black curves) as functions of mH�
2
and z, with k ¼ 5.5, z

around 500 GeV, and different mY .
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narrow regions arising from the destructive correlations
between contributions of charged Higgs and gauge
bosons. We have shown numerically that only these regions
give a large Brðh01 → μτÞ > 10−5 when 400 GeV < z <
600 GeV and k ≤ 9 in the case where the Majorana mass
matrixMR is proportional to the identity one. Furthermore,
these large values of Brðh01 → μτÞ depend weakly on the
masses of the heavy charged gauge bosons, but they require
the heavy neutrino mass scaleMR andmH�

2
to be a few TeV,

which can be detected at current colliders. Besides,
Brðh01 → τeÞ has the same result. In conclusion, large
branching ratios of the LFV processes like h01 → μτ; eτ
will support the 331ISS model and may rule out the original
331RHNmodel containing only very light exotic neutrinos.
Additionally, many properties of heavy neutrinos and
charged Higgs bosons in the 331ISS framework may be
determined independently at the SUð3ÞL scale.

ACKNOWLEDGMENTS

This research is funded by the Vietnam National
Foundation for Science and Technology Development
(NAFOSTED) under Grant No. 103.01-2015.33.

APPENDIX: FORM FACTORS OF LFVHDs IN
THE UNITARY GAUGE

In this appendix we list all analytic formulas of one-
loop contributions to LFVHDs defined in Eq. (37). They
are written in terms of Passarino-Veltman functions that
were defined thoroughly in Refs. [6,22]. Using the
notations D0¼ k2−M2

0þ iδ, D1 ¼ ðk − p1Þ2 −M2
1 þ iδ,

and D2 ¼ ðkþ p2Þ2 −M2
2 þ iδ, where δ is an infinitesi-

mal positive real quantity, the one-loop integrals and
Passarino-Veltman functions needed in this work are

BðiÞ
0;μ ≡ ð2πμÞ4−D

iπ2

Z
dDkf1; kμg

D0Di
; Bð12Þ

0 ≡ ð2πμÞ4−D
iπ2

Z
dDk
D1D2

;

C0;μ ≡ C0;μðM0;M1;M2Þ ¼
1

iπ2

Z
d4kf1; kμg
D0D1D2

; BðiÞ
μ ¼ BðiÞ

1 piμ; Cμ ¼ C1p1μ þ C2p2μ;

where i ¼ 1, 2. In addition,D ¼ 4 − 2ϵ ≤ 4 is the dimension of the integral,M0,M1,M2 are masses of virtual particles in the
loop, and μ is an arbitrary mass parameter introduced via dimensional regularization [33]. The external momenta of the final
leptons shown in Fig. 1 satisfy p2

1 ¼ m2
a; p2

2 ¼ m2
b and ðp1 þ p2Þ2 ¼ m2

h0
1

, wheremh0
1
is the SM-like Higgs boson mass, and

ma;b are leptonmasses. In the limitma;b ≃ 0, the analytic formulas forBðiÞ
0;1; B

ð12Þ
0 ; C0, andC1;2 were shown in Refs. [6,22,34],

and hence we will not repeat them here. These functions are used for our numerical investigation. We stress that they were
checked numerically to be well consistent with the exact results computed using LOOPTOOLS [35], as reported in Ref. [36].
The analytic expressions for ΔðiÞW

L;R ≡ ΔðiÞW
ðabÞL;R, where i implies the diagram (i) in Fig. 1, are

Δð1ÞW
L ¼ g3cαma

64π2m3
W

X9
i¼1

Uν�
aiU

ν
bifm2

niðBð1Þ
1 − Bð1Þ

0 − Bð2Þ
0 Þ −m2

bB
ð2Þ
1 þ ð2m2

W þm2
h0
1

Þm2
niC0

− ½2m2
Wð2m2

W þm2
ni þm2

a −m2
bÞ þm2

nim
2
h0
1

�C1 þ ½2m2
Wðm2

a −m2
h0
1

Þ þm2
bm

2
h0
1

�C2g;

Δð1ÞW
R ¼ g3cαmb

64π2m3
W

X9
i¼1

Uν�
aiU

ν
bif−m2

niðBð2Þ
1 þ Bð1Þ

0 þ Bð2Þ
0 Þ þm2

aB
ð1Þ
1 þ ð2m2

W þm2
h0
1

Þm2
niC0

− ½2m2
Wðm2

b −m2
hÞ þm2

am2
h0
1

�C1 þ ½2m2
Wð2m2

W þm2
ni −m2

a þm2
bÞ þm2

nim
2
h0
1

�C2g;

Δð5ÞW
L ¼ g3cαma

64π2m3
W

X9
i;j¼1

Uν�
aiU

ν
bjfλ0�ij mnj ½Bð12Þ

0 −m2
WC0 þ ð2m2

W þm2
ni −m2

aÞC1� þ λ0ijmni ½Bð1Þ
1 þ ð2m2

W þm2
nj −m2

bÞC1�g;

Δð5ÞW
R ¼ g3cαmb

64π2m3
W

X9
i¼1

Uν�
aiU

ν
bjfλ0ijmni ½Bð12Þ

0 −m2
WC0 − ð2m2

W þm2
nj −m2

bÞC2� − λ0�ij mnj ½Bð2Þ
1 þ ð2m2

W þm2
ni −m2

aÞC2�g;

Δð7þ8ÞW
L ¼ g3mam2

bcα
64π2m3

Wðm2
a −m2

bÞ
X9
i¼1

Uν�
aiU

ν
bi½2m2

niðBð1Þ
0 − Bð2Þ

0 Þ − ð2m2
W þm2

niÞðBð1Þ
1 þ Bð2Þ

1 Þ −m2
aB

ð1Þ
1 −m2

bB
ð1Þ
2 �;

Δð7þ8ÞW
R ¼ ma

mb
Δð7þ8ÞW

L : ðA1Þ

Defining ΔðiÞY
L;R ¼ ΔðiÞYH�

1

ðabÞL;R þ ΔðiÞYH�
2

ðabÞL;R with i ¼ 4, 6, 9, 10, the analytic expressions for ΔðiÞY
L;R ≡ ΔðiÞY

ðabÞL;R are
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Δð1ÞY
L ¼−

g3mað
ffiffiffi
2

p
sαcθ−cαsθÞ

64
ffiffiffi
2

p
π2m3

Y

X9
i¼1

Uν�
ðaþ3ÞiU

ν
ðbþ3Þifm2

niðBð1Þ
1 −Bð1Þ

0 −Bð2Þ
0 Þ−m2

bB
ð2Þ
1

þð2m2
Yþm2

h0
1

Þm2
niC0− ½2m2

Yð2m2
Yþm2

niþm2
a−m2

bÞþm2
nim

2
h0
1

�C1þ½2m2
Yðm2

a−m2
h0
1

Þþm2
bm

2
h0
1

�C2g;

Δð1ÞY
R ¼−

g3mbð
ffiffiffi
2

p
sαcθ−cαsθÞ

64
ffiffiffi
2

p
π2m3

Y

X9
i¼1

Uν�
ðaþ3ÞiU

ν
ðbþ3Þif−m2

niðBð2Þ
1 þBð1Þ

0 þBð2Þ
0 Þþm2

aB
ð1Þ
1

þð2m2
Yþm2

h0
1

Þm2
niC0− ½2m2

Yðm2
b−m2

h0
1

Þþm2
am2

h0
1

�C1þ½2m2
Yð2m2

Yþm2
ni−m2

aþm2
bÞþm2

nim
2
h0
1

�C2g;

Δð2ÞY
L ¼g3macθðcαcθþ

ffiffiffi
2

p
sαsθÞ

64π2mWm2
Y

X9
i¼1

Uν�
ðaþ3ÞifλL;1bi mni ½Bð1Þ

0 −Bð1Þ
1 þðm2

Yþm2
H�

1

−m2
h0
1

ÞC0þðm2
Y−m2

H�
1

þm2
h0
1

ÞC1�

þλR;1bi mb½2m2
YC1−ðm2

Yþm2
H�

1

−m2
h0
1

ÞC2�g;

Δð2ÞY
R ¼g3cθðcαcθþ

ffiffiffi
2

p
sαsθÞ

64π2mWm2
Y

X9
i¼1

Uν�
ðaþ3ÞifλL;1bi mbmni ½−2m2

YC0−ðm2
Y−m2

H�
1

þm2
h0
1

ÞC2�

þλR;1bi ½−m2
niB

ð1Þ
0 þm2

aB
ð1Þ
1 þm2

niðm2
Y−m2

H�
1

þm2
h0
1

ÞC0

þ½2m2
Yðm2

h0
1

−m2
bÞ−m2

aðm2
Y−m2

H�
1

þm2
h0
1

Þ�C1þ2m2
bm

2
YC2�g;

Δð3ÞY
L ¼g3cθðcαcθþ

ffiffiffi
2

p
sαsθÞ

64π2mWm2
Y

X9
i¼1

Uν
ðbþ3ÞifλL;1�ai mamni ½−2m2

YC0þðm2
Y−m2

H�
1

þm2
h0
1

ÞC1�

þλR;1�ai ½−m2
niB

ð2Þ
0 −m2

bB
ð2Þ
1 þm2

niðm2
Y−m2

H�
1

þm2
h0
1

ÞC0

−2m2
am2

YC1− ½2m2
Yðm2

h0
1

−m2
aÞ−m2

bðm2
Y−m2

H�
1

þm2
h0
1

Þ�C2�g;

Δð3ÞY
R ¼g3mbcθðcαcθþ

ffiffiffi
2

p
sαsθÞ

64π2mWm2
Y

X9
i¼1

Uν
ðbþ3Þi×fλL;1�ai mni ½Bð2Þ

0 þBð2Þ
1

þðm2
Yþm2

H�
1

−m2
h0
1

ÞC0−ðm2
Y−m2

H�
1

þm2
h0
1

ÞC2�þλR;1�ai ma½ðm2
Yþm2

H�
1

−m2
h0
1

ÞC1−2m2
YC2�g;

Δð4ÞYH�
k

L ¼ g2λ�Hk
fk

16π2m2
W

X9
i¼1

½−λR;k�ai λL;kbi mniC0−λL;k�ai λL;kbi maC1þλR;k�ai λR;kbi mbC2�;

Δð4ÞYH�
k

R ¼ g2λ�Hk
fk

16π2m2
W

X9
i¼1

½−λL;k�ai λR;kbi mniC0−λR;k�ai λR;kbi maC1þλL;k�ai λL;kbi mbC2�;

Δð5ÞY
L ¼ g3cαma

64π2mWm2
Y

X9
i;j¼1

Uν�
ðaþ3ÞiU

ν
ðbþ3Þjfλ0�ij mnj ½Bð12Þ

0 −m2
YC0þð2m2

Yþm2
ni−m2

aÞC1�þλ0ijmni ½Bð1Þ
1 þð2m2

Yþm2
nj−m2

bÞC1�g;

Δð5ÞY
R ¼ g3cαmb

64π2mWm2
Y

X9
i;j¼1

Uν�
ðaþ3ÞiU

ν
ðbþ3Þjfλ0ijmni ½Bð12Þ

0 −m2
YC0−ð2m2

Yþm2
nj−m2

bÞC2�−λ0�ij mnj ½Bð2Þ
1 þð2m2

Yþm2
ni−m2

aÞC2�g;

Δð6ÞYH�
k

L ¼−
g3cαfk
32π2m3

W

X9
i;j¼1

fλ0�ij ½λR;k�ai λL;kbj ðBð12Þ
0 þm2

H�
k
C0−m2

aC1þm2
bC2ÞþλR;k�ai λR;kbj mbmnjC2−λL;k�ai λL;kbj mamniC1�

þλ0ij½λR;k�ai λL;kbj mnimnjC0þλR;k�ai λR;kbj mnimbðC0þC2ÞþλL;k�ai λL;kbj mamnjðC0−C1ÞþλL;k�ai λR;kbj mambðC0−C1þC2Þ�g;

Δð6ÞYH�
k

R ¼−
g3cαfk
32π2m3

W

X9
i;j¼1

fλ0ij½λL;k�ai λR;kbj ðBð12Þ
0 þm2

H�
k
C0−m2

aC1þm2
bC2ÞþλL;k�ai λL;kbj mbmnjC2−λR;k�ai λR;kbj mamniC1�

þλ0�ij ½λL;k�ai λR;kbj mnimnjC0þλL;k�ai λL;kbj mnimbðC0þC2Þ
þλR;k�ai λR;kbj mamnjðC0−C1ÞþλR;k�ai λL;kbj mambðC0−C1þC2Þ�g;
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Δð7þ8ÞY
L ¼ g3mam2

bcα
64π2mWm2

Yðm2
a−m2

bÞ
X9
i¼1

Uν�
ðaþ3ÞiU

ν
ðbþ3Þi½2m2

niðBð1Þ
0 −Bð2Þ

0 Þ− ð2m2
Y þm2

niÞðBð1Þ
1 þBð2Þ

1 Þ−m2
aB

ð1Þ
1 −m2

bB
ð2Þ
1 �;

Δð7þ8ÞY
R ¼ma

mb
Δð7þ8ÞY

L ;

Δð9þ10ÞYH�
k

L ¼−
g3cαfk

32π2m3
Wðm2

a−m2
bÞ
X9
i¼1

½mambmniλ
L;k�
ai λR;kbi ðBð1Þ

0 −Bð2Þ
0 Þþmniλ

R;k�
ai λL;kbi ðm2

bB
ð1Þ
0 −m2

aB
ð2Þ
0 Þ

þmambðλL;k�ai λL;kbi mbþλR;k�ai λR;kbi maÞðBð1Þ
1 þBð2Þ

1 Þ�;

Δð9þ10ÞYH�
k

R ¼−
g3cαfk

32π2m3
Wðm2

a−m2
bÞ
X9
i¼1

½mambmniλ
R;k�
ai λL;kbi ðBð1Þ

0 −Bð2Þ
0 Þþmniλ

L;k�
ai λR;kbi ðm2

bB
ð1Þ
0 −m2

aB
ð2Þ
0 Þ

þmambðλR;k�ai λR;kbi mbþλL;k�ai λL;kbi maÞðBð1Þ
1 þBð2Þ

1 Þ�; ðA2Þ

where f1 ¼ c2θ and f2 ¼ 1=2. The details to derive the expressions in Eq. (A2) are the same as those shown in Refs. [6,22],

and hence we do not present them in this work. We note that the scalar functionsΔð1ÞW
L;R andΔð1;2;3ÞY

L;R include parts that do not
depend on mni , and therefore they vanish because of the Glashow-Iliopoulos-Maiani mechanism. They are ignored in
Eqs. (A1) and (A2).
The divergent cancellation in the total ΔL;R is shown as follows. The divergent parts only contain B functions:

divBð1Þ
0 ¼ divBð2Þ

0 ¼ divBð12Þ
0 ¼ 2divBð1Þ

1 ¼ −2 divBð2Þ
1 ¼ Δϵ. Ignoring the common factor of g3=ð64π2m3

WÞ and using
1=mY ¼ ffiffiffi

2
p

sθ=mW , the divergent parts of ΔL derived from Eq. (A2) are

div½Δð1ÞW
L � ¼ maΔϵ ×

�
−
3cα
2

�X9
i¼1

Uν�
aiU

ν
bim

2
ni ;

div½Δð5ÞW
L � ¼ maΔϵ × cα

X9
i;j¼1

Uν�
aiU

ν
bj

�
λ0�ij mnj þ

1

2
λ0ijmni

�
;

div½Δð7þ8ÞW
L � ¼ div½Δð4ÞY

L � ¼ div½Δð7þ8ÞY
L � ¼ 0;

div½Δð1ÞY
L � ¼ maΔϵ × 3s3θð

ffiffiffi
2

p
sαcθ − cαsθÞ

X9
i¼1

Uν�
ðaþ3ÞiU

ν
ðbþ3Þim

2
ni ;

div½Δð2ÞY
L � ¼ maΔϵ × s2θcθðcαcθ þ

ffiffiffi
2

p
sαsθÞ

X9
i¼1

Uν�
ðaþ3Þiλ

L;1
bi mni ;

div½Δð3ÞY
L � ¼ maΔϵ × ½−2s2θcθðcαcθ þ

ffiffiffi
2

p
sαsθÞ�

X9
i¼1

Uν�
ðaþ3ÞiU

ν
ðbþ3Þim

2
ni ;

div½Δð5ÞY
L � ¼ maΔϵ × 2s2θcα

X9
i;j¼1

Uν�
ðaþ3ÞiU

ν
ðbþ3Þj

�
λ0�ij mnj þ

1

2
λ0ijmni

�
;

div½Δð6ÞYH�
1

L � ¼ maΔϵ × ð−2cαc2θÞ
X9
i;j¼1

Uν�
ðaþ3Þiλ

0�
ij λ

L;1
bj ;

div½Δð6ÞYH�
2

L � ¼ maΔϵ × ð−cαÞ
X9
i;j¼1

Uν�
aiλ

0�
ij λ

L;2
bj ;

div½Δð9þ10ÞYH�
1

L � ¼ maΔϵ × ð2cαc2θÞ
X9
i¼1

Uν�
ðaþ3Þiλ

L;1
bi mni ;

div½Δð9þ10ÞYH�
2

L � ¼ maΔϵ × cα
X9
i¼1

Uν�
aiλ

L;2
bi mni : ðA3Þ
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Using the equalities Mν ¼ Uν�M̂νUν† and Eq. (38), we can prove that

div½Δð1ÞW
L;R � ∼

X9
i¼1

Uν�
aiU

ν
bim

2
ni ¼ ½UνðM̂νÞ2Uν†�ba ¼ ðm�
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ν
ðbþ3Þim

2
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DmDÞba þ t2θðM�
RM

T
RÞba ¼ −ðm†
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0
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p
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DmDÞba; ðA4Þ

where we have used the antisymmetric property of mD: mT
D ¼ −mD. From this, it can be seen that

div½Δð1ÞW
L � þ div½Δð5ÞW

L � ¼ div½Δð6ÞYH�
2

L � þ div½Δð9þ10ÞYH�
2

L � ¼ 0. The sum of the remaining divergent parts is

div½Δð1þ2þ3þ5ÞY
L þ Δð6þ9þ10ÞYH�

1

L � ∼ ðm†
DmDÞbaf

ffiffiffi
2

p
sαs2θcθð3 − 1 − 2Þ þ cα½s2θð−3s2θ − c2θ − 2c2θ þ 3Þ þ 2s2θ − 2s2θ�g

þ ðM�
RM

T
RÞba½

ffiffiffi
2

p
sα

s2θ
cθ

ð3c2θ þ s2θ − 2c2θ − 3þ 2Þ þ cαs2θð−3s2θ þ s2θ − 2c2θ þ 2Þ�

¼ 0: ðA5Þ

Finally, the proof of the divergent cancellation in ΔR is exactly the same as that in ΔL.
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