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Abstract We investigate the decays li → l jγ , with li =
e, μ, τ in a general class of 3-3-1 models with heavy exotic
leptons with arbitrary electric charges. We present full and
exact analytical results keeping external lepton masses. As
a by product, we perform numerical comparisons between
exact results and approximate ones where the external lepton
masses are neglected. As expected, we found that branching
fractions can reach the current experimental limits if mix-
ings and mass differences of the exotic leptons are large
enough. We also found unexpectedly that, depending on the
parameter values, there can be huge destructive interference
between the gauge and Higgs contributions when the gauge
bosons connecting the Standard Model leptons to the exotic
leptons are light enough. This mechanism should be taken
into account when using experimental constraints on the
branching fractions to exclude the parameter space of the
model.

1 Introduction

The discovery of flavor neutrino oscillations (see Ref. [1]
and the references therein) proves that neutrinos are massive.
This leads to an important consequence that the lepton-flavor
number violating decay μ → eγ is non-vanishing, being
proportional to the neutrino masses and the mixing matrix.
Assuming tiny neutrino masses satisfying current experimen-
tal constraints [1], extension of the Standard Model (SM)
with right-handed neutrinos predicts that the branching ratio

a e-mail: ldninh@ifirse.icise.vn

is Br ≈ 10−55, which will be called the SM contribution
from now on. Meanwhile, the current experimental limits
read [1]

Br(μ− → e−γ ) < 4.2 × 10−13,

Br(τ− → e−γ ) < 3.3 × 10−8,

Br(τ− → μ−γ ) < 4.4 × 10−8. (1)

From theoretical side, the processes li → l jγ are loop
induced. Given that the SM contribution is strongly sup-
pressed, they can be good places to look for new physics.
In this paper, we consider a simple extension of the SM
using the local gauge group of SU (3)C ⊗ SU (3)L ⊗U (1)X
(3-3-1) with new exotic leptons. The word exotic here
means that they can have arbitrary electric charges and
arbitrary masses. In this model, the electron (and similarly
for muon and tauon) together with a neutrino and a new
exotic lepton are in a triplet (or anti-triplet) representation
of SU (3)L . In this work, we calculate both neutrino and
exotic-lepton contributions, with special attention to the latter
because the former is numerically suppressed as mentioned
above.

We remark that 3-3-1 model is an active field of research
and has a long history; see Ref. [2] and the references therein.
In this work, we choose a general class of 3-3-1 models,
which are similar to the models presented in Refs. [2–4]
where new heavy leptons are introduced. However, there is
an important difference: instead of fixing the electric charges
of the new leptons to specific values being 0, + 1 or − 1, we
let them be arbitrary. We will then study the dependence of
the li → l jγ branching fractions on this arbitrary charge.
That class of 3-3-1 models has been studied in many works;
see e.g. [5,6]. If we replace the new leptons with charge-
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conjugated partners of the SM leptons, we will have dif-
ferent 3-3-1 models with lepton-number violation; see e.g.
Refs. [7–11]. The decays li → l jγ in these models have
been discussed in Refs. [12,13]; see also the recent review
[14] and the references therein. We do not discuss these types
of models in this work, but rather focus on the case with exotic
leptons.

In the general class of 3-3-1 models here considered, there
is one important parameter usually called β, which together
with X , the new charge corresponding to the group U (1)X ,
define the electric-charge operator. The electric charges of
new particles therefore depend on β. It has been known and
widely accepted that β is one of the most important param-
eters to classify 3-3-1 models.

Recently, new efforts were made using 3-3-1 models to
understand tensions between experimental measurements
and the SM results in B physics; see e.g. [15,16]. Motivated
by this work, we want to use 3-3-1 models to understand the
li → l jγ decays. Since the new leptons are assumed to be
heavy, we expect large branching fractions. However, this
is not totally obvious, because there are two contributions
from gauge and Higgs sectors. Does a destructive interfer-
ence effect occur?

The aim of this paper is manifold. First, we calculate the
full and exact result for li → l jγ partial decay widths for
a general class of 3-3-1 models with arbitrary β. As a by
product, we will perform numerical comparisons between the
exact results (i.e. external lepton masses are kept) and approx-
imate ones where external lepton masses are neglected. We
note that approximate results have been almost exclusively
used in the literature for the SM and many other models.
We found this uncomfortable because the neutrino masses,
which are much smaller than the lepton masses, are kept. We
therefore want to know to what accuracy the approximate
results valid, using the SM with arbitrary neutrino masses
to answer this. As far as we know, this important point has
never been addressed in the literature. We will also perform
numerical studies for 3-3-1 model to see whether destructive
interference effects occur and to see the dependence on β,
gauge boson and Higss masses. To the best of our knowledge,
this is the first study of li → l jγ in 3-3-1 models with exotic
leptons.

The paper is organized as follows. In the next section, we
review the model and calculate the Feynman rules needed
for li → l jγ decays. We then summarize the main calcula-
tion steps and present analytical results in Sect. 3. Numeri-
cal results are discussed in Sect. 4. In Sect. 4.1 we perform
comparisons between the approximate and exact results for
the neutrino contribution. In Sect. 4.2 we present results for
the exotic-lepton contribution. Conclusions are in Sect. 5.

Finally, we provide Appendices A and B to complete the
results of Sect. 3.

2 3-3-1 model with arbitrary β

One important condition we require is that the 3-3-1 model
has to match the SM at the energy of the EW scale, about
250 GeV. This means that the SU (3)L symmetry is valid at a
higher energy scale and is spontaneously broken down to the
SU (2)L symmetry using the Brout–Englert–Higgs mecha-
nism. In order to match the fermion representation of the
SM, the simplest choice is to assign fermions into triplets
and anti-triplets of the SU (3)L group. However, this requires
new fermions. In general, the electric charges of these new
fermions are unkown. They, however, cannot be totally arbi-
trary because of the symmetry and of the matching condition
with the SM. In most general terms, the electric-charge oper-
ator can be written as

Q = T3 + βT8 + X1, (2)

where we have introduced the SU (3) generators T3, T8. Thus,
the charge operator Q depends on two parameters β and X .
With this information, we can write down the lepton rep-
resentation as follows. Left-handed leptons are assigned to
anti-triplets and right-handed leptons to singlets:

L ′
aL =

⎛
⎝

e′
a

−ν′
a

E ′
a

⎞
⎠

L

∼
(

3∗ ,−1

2
+ β

2
√

3

)
, a = 1, 2, 3,

e′
aR ∼ (1 ,−1) , ν′

aR ∼ ( 1 , 0) ,

E ′
aR ∼

(
1 ,−1

2
+

√
3β

2

)
. (3)

The model includes three RH neutrinos ν′
aR and exotic lep-

tons E ′a
L ,R which are much heavier than the normal leptons.

The prime denotes flavor states to be distinguished with mass
eigenstates introduced later. The numbers in the parentheses
are to label the representation of SU (3)L⊗U (1)X group. For
singlets, we have Q = X and hence the electric charges of
the new leptons can be read off from the above information.
The quark sector is not specified here since it is irrelevant to
our present work.

We now discuss gauge and Higgs interactions. There are
totally nine EW gauge bosons, included in the following
covariant derivative:

Dμ ≡ ∂μ − igT aWa
μ − igX XT

9Xμ, (4)

where T 9 = 1/
√

6, g and gX are coupling constants corre-
sponding to the two groups SU (3)L andU (1)X , respectively.
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The matrix WaT a , where T a = λa/2 corresponding to a
triplet representation, can be written as

Wa
μT

a = 1

2

⎛
⎜⎝
W 3

μ + 1√
3
W 8

μ

√
2W+

μ

√
2Y+A

μ√
2W−

μ −W 3
μ + 1√

3
W 8

μ

√
2V+B

μ√
2Y−A

μ

√
2V−B

μ − 2√
3
W 8

μ

⎞
⎟⎠ ,

(5)

where we have defined the mass eigenstates of the charged
gauge bosons as

W±
μ = 1√

2

(
W 1

μ ∓ iW 2
μ

)
,

Y±A
μ = 1√

2

(
W 4

μ ∓ iW 5
μ

)
,

V±B
μ = 1√

2

(
W 6

μ ∓ iW 7
μ

)
. (6)

From Eq. (2), the electric charges of the gauge bosons are
calculated as

A = 1

2
+ β

√
3

2
, B = −1

2
+ β

√
3

2
. (7)

We note that B is also the electric charge of the new leptons
Ea .

To generate masses for gauge bosons and fermions, we
need three scalar triplets. They are defined as

χ =
⎛
⎝

χ+A

χ+B

χ0

⎞
⎠ ∼

(
3 ,

β√
3

)
,

ρ =
⎛
⎝

ρ+
ρ0

ρ−B

⎞
⎠ ∼

(
3 ,

1

2
− β

2
√

3

)

η =
⎛
⎝

η0

η−
η−A

⎞
⎠ ∼

(
3 ,−1

2
− β

2
√

3

)
, (8)

where A, B denote electric charges as defined in Eq. (7).
These Higgses develop vacuum expectation values (VEVs)
defined as

〈χ〉 = 1√
2

⎛
⎝

0
0
u

⎞
⎠ , 〈ρ〉 = 1√

2

⎛
⎝

0
v

0

⎞
⎠ ,

〈η〉 = 1√
2

⎛
⎝

v′
0
0

⎞
⎠ . (9)

The symmetry breaking happens in two steps: SU (3)L ⊗
U (1)X

u−→ SU (2)L ⊗ U (1)Y
v,v′−−→ U (1)Q . It is therefore

reasonable to assume that u > v, v′. After the first step,
five gauge bosons will be massive and the remaining four
massless gauge bosons can be identified with the before-

symmetry-breaking SM gauge bosons. This leads to the fol-
lowing matching condition for the couplings:

g2 = g, g1 = gX
g√

6g2 + β2g2
X

, (10)

where g2 and g1 are the two couplings of the SM correspond-
ing to SU (2)L and U (1)Y , respectively. From this we get the
following important equation, which helps to constrain β:

g2
X

g2 = 6s2
W

1 − (1 + β2)s2
W

, (11)

where the Weinberg mixing angle is defined as tW =
tan θW = g1/g2 and we denote sW = sin θW . Putting in
the value of sW , we get approximately

|β| ≤ √
3, (12)

which will be used in the numerical analysis.
The masses of the charged gauge bosons are

m2
Y±A = g2

4
(u2 + v′2), m2

V±B = g2

4
(u2 + v2),

m2
W± = g2

4
(v2 + v′2). (13)

We now discuss the mixings of leptons. In general, the
mixing between a SM lepton and a new lepton is allowed if
they have the same electric charge. However, since we con-
sider a general class of models with arbitrary β, this mixing
effect will be neglected. This is justified because we will
assume that the new leptons are much heavier than the SM
leptons. Therefore, only generation mixings as in the SM are
allowed. The Yukawa Lagrangian related to these mixings
reads

Lyuk
lepton = −Y e

abL
′
aLη∗e′

bR − Y ν
abL

′
aLρ∗ν′

bR

−Y E
abL

′
aLχ∗E ′

bR + h.c., (14)

where a, b = e, μ, τ are family indices. The corresponding
mass terms are:

Lmass
lepton = −Y e

abv
′

√
2

e′
aLe

′
bR + Y ν

abv√
2

ν′
aLν′

bR

−Y E
abu√

2
E ′

aL E
′
bR + h.c.. (15)

From now on we will work in the basis where the SM
charged leptons are in their mass eigenstates. This can always
be done without loss of generality. We can therefore setY e

ab to
be diagonal and e′ = e in Eqs. (14,15). The transformations
from the flavor states to mass eigenstates are defined as

ν′
aL = UL

abνbL , ν′
aR = UR

abνbR,

E ′
aL = V L

abEbL , E ′
aR = V R

abEbR, (16)

whereUL ,R and V L ,R are 3×3 unitary matrices for the neu-
trinos and new leptons, respectively. The matrixV L , included
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in the vertices of the SM charged leptons and the new leptons,
is similar to the matrix UL = UPMNS.

For the Higgs sector, we assume A, B �= 0,±1, so that
only the following mixings of scalar fields with the same
electric charge are allowed: (χA, ηA), (χB, ρB), (ρ+, η+)

and (χ0, ρ0, η0). The neutral components are expanded as

χ0 = 1√
2

(
u + ξχ + iζχ

)
, 〈ξχ 〉 = 〈ζχ 〉 = 0,

ρ0 = 1√
2

(
v + ξρ + iζρ

)
, 〈ξρ〉 = 〈ζρ〉 = 0,

η0 = 1√
2

(
v′ + ξη + iζη

)
, 〈ξη〉 = 〈ζη〉 = 0. (17)

The ratios between VEVs are used to define three mixing
angles:

s2
v′v = sin2 βv′v = v′2

v2 + v′2 , s2
vu = sin2 βvu = v2

u2 + v2 ,

s2
v′u = sin2 βv′u = v′2

v′2 + u2 . (18)

We will also use the following notation: tv′v = sv′v/cv′v ,
tv′u = sv′u/cv′u .

The scalar potential is

Vh = μ2
1η†η + μ2

2ρ†ρ + μ2
3χ†χ + λ1

(
η†η

)2 + λ2

(
ρ†ρ

)2

+λ3

(
χ†χ

)2

+λ12(η†η)(ρ†ρ) + λ13(η†η)(χ†χ) + λ23(ρ†ρ)(χ†χ)

+λ̃12(η†ρ)(ρ†η) + λ̃13(η†χ)(χ†η) + λ̃23(ρ†χ)(χ†ρ)

+√
2 f

(
εi jkη

iρ jχk + h.c.
)

. (19)

With the above notation, the mass eigenstates are
(

φ±
W

H±
)

=
(
cv′v −sv′v
sv′v cv′v

) (
ρ±
η±

)
, (20)

(
φ±A
Y

H±A

)
=

(
sv′u −cv′u
cv′u sv′u

) (
η±A

χ±A

)
, (21)

(
φ±B
V

H±B

)
=

(
svu −cvu

cvu svu

)(
ρ±B

χ±B

)
, (22)

where φ±
W , φ±A

Y and φ±B
V are the Goldstone bosons of W±,

Y±A andV±B , respectively. The masses of the charged Higgs
bosons are

m2
H± = (v2 + v′2)

(− f u

v′v
+ 1

2
λ̃12

)
,

m2
H±A = (u2 + v′2)

(− f v

v′u
+ 1

2
λ̃13

)
,

m2
H±B = (u2 + v2)

(− f v′

uv
+ 1

2
λ̃23

)
. (23)

The neutral Higgs bosons are not involved in our calculation;
hence they have been ignored. In total, there are six charged

Higgs bosons, one neutral pseudoscalar Higgs and three neu-
tral scalar Higgses. Bosonic particles with electric charges of
±B are not involved in the present calculation. Nevertheless,
their masses and mixing angles are provided above for the
sake of completeness.

From the above information we can obtain all vertices
needed for the calculation of li → l jγ decays. They are
listed in Table 1.

3 Analytical results

Equipped with the above Feynman rules, we can proceed to
calculate the partial decay width of l1 → l2γ using standard
techniques of one-loop calculation. We have done this in a
careful way, with at least two independent calculations, and
paid special attention to the relative sign between the gauge
and Higgs contributions. This relative sign is very important
because, as we will see in the numerical results, the interfer-
ence term can be positive or negative.

In the literature, the calculation of l1 → l2γ is usually
done by neglecting the external lepton masses. As stated in
the introduction, we found this uneasy because the neutrino
masses, which are much smaller than the lepton masses, are
kept. We therefore want to check the validity of this approx-
imation. To achieve this we have to keep the external lepton
masses.

We have calculated the partial decay width of l1 → l2γ
from scratch without approximation. In the following we
summarize the key points and present exact analytical results.
Results for the SM case are obtained as a special case and
are discussed in Sect. 4.1.

We consider the process

l1(p1) → l2(p2) + γ (q), (24)

where p1 = p2+q and the helicity indices have been omitted
for simplicity. The amplitude reads

M = ελ(q)ū1(p1)�λu2(p2), (25)

where ελ is the photon’s polarization vector, �λ are 4 ×
4 matrices depending on the gamma matrices, external
momenta and coupling constants. After requiring the gen-
eral conditions that the spinors obey the Dirac equations,
qμεμ = 0, and qλū1(p1)�λu2(p2) = 0, we can prove that
the amplitude depends on only two form factors as

M = 2(p1 · ε) [CLū2(p2)PLu1(p1) + CRū2(p2)PRu1(p1)]

−(m1CR + m2CL )ū2(p2)/εPLu1(p1)

−(m1CL + m2CR)ū2(p2)/εPRu1(p1), (26)

123



Eur. Phys. J. C   (2018) 78:128 Page 5 of 14  128 

Table 1 Vertices and couplings for li → l jγ decays in the 3-3-1 model
with arbitrary β and new leptons. All momenta are defined as incoming.
The photon field is denoted as Aμ, a, b = 1, 2, 3 are family indices and

�λμν(p1, p2, p3) = (p1 − p2)νgλμ + (p2 − p3)λgμν + (p3 − p1)μgνλ.
Other notations are defined in the text

Vertex Coupling Vertex Coupling

νaebH+ ig√
2mW

UL∗
ba

(
meb
tv′v

PR + mνa tv′vPL
)

eaνbH− ig√
2mW

UL
ab

(
mea
tv′v

PL + mνb tv′vPR

)

EaebH+A −ig√
2mY

V L∗
ba

(
meb
tv′u

PR + mEa tv′u PL
)

ea EbH−A −ig√
2mY

V L
ab

(
mea
tv′u

PL + mEb tv′u PR

)

νaebW+μ ig√
2
UL∗
ba γμPL eaνbW−μ ig√

2
UL
abγμPL

νaebφ
+
W

−ig√
2mW

UL∗
ba (meb PR − mνa PL ) eaνbφ

−
W

−ig√
2mW

UL
ab(mea PL − mνb PR)

EaebY+Aμ −ig√
2
V L∗
ba γμPL ea EbY−Aμ −ig√

2
V L
abγμPL

Eaebφ
+A
Y

−ig√
2MY

V L∗
ba (meb PR − mEa PL ) ea Ebφ

−A
Y

−ig√
2MY

V L
ab(mea PL − mEb PR)

AλW+μW−ν −ie�λμν(pA, pW+ , pW− ) AλY+AμY−Aν −ieA�λμν(pA, pY+A , pY−A )

AλW±μφ∓
W iemW gλμ AλY±Aμφ∓A

Y −ieAmY gλμ

AμH+H− ie(pH+ − pH− )μ AμH+AH−A ieA(pH+A − pH−A )μ

Aμφ+
Wφ−

W ie(pφ+
W

− pφ−
W

)μ Aμφ+A
Y φ−A

Y ieA(p
φ+A
Y

− p
φ−A
Y

)μ

Aμl̄ala −ieγμ AμEaEa ieBγμ

where CL ,R are called form factors, PL = (1 − γ5)/2, PR =
(1 + γ5)/2. The partial decay width is then written as

�(l1 → l2γ ) = (m2
1 − m2

2)
3

16πm3
1

(
|CL |2 + |CR |2

)
. (27)

This result is well known and has been given in e.g. Ref. [17].
Since we assume that the exotic leptons are much heavier

than the SM leptons, the branching fractions of the dominant
decays of l1 → l2ν̄2ν1 in the 3-3-1 model are the same as
those of the SM. Using the well-known tree-level result of
�(l1 → l2ν̄2ν1) = G2

Fm
5
1/(192π3) (see e.g. [18]), where

GF is the Fermi coupling constant, we write the branching
fraction as

Br(l1 → l2γ ) = 12π2

G2
F

(
|DL |2 + |DR |2

)
Br(l1 → l2ν̄2ν1),

(28)

where GF = g2/(4
√

2m2
W ) and we have defined CL ,R =

m1DL ,R and the approximation m2 � m1 has been used for
the first factor, but not for DL ,R . For later numerical analysis
we will use Br(μ → eν̄eνμ) = 100%, Br(τ → eν̄eντ ) =
17.82% and Br(τ → μν̄μντ ) = 17.39% as given in Ref. [1].
It is noted that DL ∝ O(m2/m1) (since only a left-handed
electron can participate in SU (3)L interactions) and DR ∝
O(1), and hence, in the approximation m2 � m1, we have
Br(l1 → l2γ ) ∝ |DR |2. This point is important to understand
the approximate results discussed in the next sections.

The next step is to calculate DL ,R for the 3-3-1 model
with arbitrary beta presented in the previous section. Rep-
resentative Feynman diagrams are shown in Fig. 1. Using
the Feynman rules in Table 1 and summing over all possible

Feynman diagrams, we obtain the following results:

DL ,R = DνW
L ,R + DνH+

L ,R + DEY
L ,R + DEH A

L ,R , (29)

where

DνW
R = − ieg2

32π2m2
W

3∑
a=1

UL�
i1aU

L
i2a

×
(

2m2
W gνaWW

1 + m2
νa
gνaWW

2 + m2
2g

νaWW
3

)
,

DνW
L = − ieg2m2

32π2m2
Wm1

3∑
a=1

UL�
i1aU

L
i2a

×
(

2m2
W gνaWW

4 + m2
νa
gνaWW

5 + m2
1g

νaWW
6

)
,

DνH+
R = − ieg2

32π2m2
W

3∑
a=1

UL�
i1aU

L
i2a

×
(
m2

νa
t2
v′vh

νa H+H+
1 + m2

2

t2
v′v

hνa H+H+
2 + m2

νa
hνa H+H+

3

)
,

DνH+
L = − ieg2m2

32π2m2
Wm1

3∑
a=1

UL�
i1aU

L
i2a

×
(
m2

1

t2
v′v

hνa H+H+
1 + m2

νa
t2
v′vh

νa H+H+
2 + m2

νa
hνa H+H+

3

)
,

DEY
R = − ieg2

32π2m2
Y

3∑
a=1

V L�
i1a V

L
i2a

×
[
A

(
2m2

Y g
EaYY
1 + m2

Ea
gEaYY

2 + m2
2g

EaYY
3

)

+ B
(

2m2
Y g

Y Ea Ea
7 + m2

Ea
gY Ea Ea

8 + m2
2g

Y Ea Ea
9

)]
,

DEY
L = − ieg2m2

32π2m2
Ym1

3∑
a=1

V L�
i1a V

L
i2a

×
[
A

(
2m2

Y g
EaYY
4 + m2

Ea
gEaYY

5 + m2
1g

EaYY
6

)

+ B
(

2m2
Y g

Y Ea Ea
10 + m2

Ea
gY Ea Ea

11 + m2
1g

Y Ea Ea
12

)]
,
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Fig. 1 Representative Feynman
diagrams contributing to
l1 → l2γ decays. There are two
groups: the neutrino
contribution (a,d) and the
exotic-lepton contribution
(b,c,e,f)

(a) (b) (c)

(d) (e) (f)

DEH A

R = − ieg2

32π2m2
Y

3∑
a=1

V L�
i1a V

L
i2a

×
[
A

(
m2

Ea
t2
v′uh

Ea H AH A

1 + m2
2

t2
v′u

hEa H AH A

2 + m2
Ea
hEa H AH A

3

)

+ B

(
m2

Ea
t2
v′uh

H AEa Ea
4 + m2

2

t2
v′u

hH AEa Ea
5 + m2

Ea
hH AEa Ea

6

)]
,

DEH A

L = − ieg2m2

32π2m2
Ym1

3∑
a=1

V L�
i1a V

L
i2a

×
[
A

(
m2

1

t2
v′u

hEa H AH A

1 + m2
Ea
t2
v′uh

Ea H AH A

2 + m2
Ea
hEa H AH A

3

)

+ B

(
m2

1

t2
v′u

hH AEa Ea
4 + m2

Ea
t2
v′uh

H AEa Ea
5 + m2

Ea
hH AEa Ea

6

)]
,

(30)

where the loop functions hi and gi are simple linear com-
binations of Passarino–Veltman one-loop 3-point functions
as given in Appendix A. The above writing is inspired by
Lavoura [17]. Our results have been checked by three dif-
ferent calculations using (i) the unitary gauge, (ii)the ’t
Hooft–Feynman gauge, and (iii) the general formulas of
Ref. [17]. We have classified the results into neutrino and
exotic-lepton groups. Each of these groups includes Higgs
and gauge contributions. In the ’t Hooft–Feynman gauge, the
gauge contribution includes gauge–gauge, Goldstone–gauge
and Goldstone–Goldstone diagrams. We have used FORM
[19,20] to calculate the amplitudes.

The results can be further simplified if mEa � mY and
mEa � mHA with a = 1, 2, 3 as presented in Appendix B.

Finally, we make an important remark on the dependence
on coupling constants. From Eq. (30) we have DL ,R ∝ eg2.
Using Eq. (28) and noticing thatGF = g2/(4

√
2m2

W ), we get
Br(l1 → l2γ ) ∝ e2, being independent of g or sW . Clearly,
the coupling constant e = √

4πα should be calculated in
the low-energy limit for the processes at hand. Therefore, we
will use α(0) as input parameter in our numerical analyses.

4 Numerical results

Input parameters are specified as follows. We use, according
to Ref. [1],

α(0) = 1/137.035999679, mW = 80.385 GeV,

me = 0.5109989461 MeV, mμ = 105.6583745 MeV,

mτ = 1776.86 MeV,

�m2
21 = 7.53 × 10−5 eV2, �m2

32 = 2.45 × 10−3 eV2,

sin2(θ12) = 0.307, sin2(θ13) = 0.021, sin2(θ23) = 0.51.

(31)

The neutrino mixing matrix is assumed to be real and is cal-
culated from the above mixing angles as

UL =
⎛
⎝

c12c13 s12c13 s13
−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13
s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

⎞
⎠ ,

(32)

where ci j = cos θi j , si j = sin θi j with i, j = 1, 2, 3.

4.1 Neutrino contribution: approximate vs. exact

The approximate results calculated by neglecting the external
lepton masses have been exclusively used in the literature.
However, the justification is not totally obvious to us because
the neutrino masses, which are much smaller than the lepton
masses, are kept. We therefore here present compact formulas
for the exact results (i.e. m1 and m2 kept) and perform a
numerical comparison with the approximate ones.

The SM result includes only the W contribution and is
given by DνW

L ,R . Using the formulas in Appendix A we write
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the result in terms of scalar one-loop integrals A0, B0 and
C0, which are also calculated in Appendix A. We obtain

DνW
R = − ieg2

64π2m4
W t1(t1 − t2)2

3∑
a=1

UL�
i1aU

L
i2a{(t1 − t2)

(ta − t1 + 2)[A0(m
2
W ) − A0(m

2
νa

)]
+ m2

W

[
t2
a (2t1 − t2) − ta(2t

2
1 − 2t1 + t2) + t2

1

(4 + t2) − 5t1t2 − 4t1 + 2t2] B(1)
0

− m2
W t1

[
t2
a − ta(t1 + t2 − 1)

+t1t2 − 4t2 + 3t1 − 2] B(2)
0

− 2m4
W t1(t1 − t2)(ta + t2 − 2t1 + 2)C0

− m2
W t1(t1 − t2)(ta − t2 + 2)},

DνW
L = − ieg2m2

64π2m4
Wm1t2(t1 − t2)2

3∑
a=1

UL�
i1aU

L
i2a{(t2 − t1)

(ta − t2 + 2)[A0(m
2
W ) − A0(m

2
νa

)]
+ m2

W

[
t2
a (2t2 − t1) − ta(2t

2
2 − 2t2 + t1)

+t2
2 (4 + t1) − 5t1t2 − 4t2 + 2t1

]
B(2)

0

− m2
W t2

[
t2
a − ta(t1 + t2 − 1) + t1t2 − 4t1 + 3t2 − 2

]
B(1)

0

− 2m4
W t2(t2 − t1)(ta + t1 − 2t2 + 2)C0

− m2
W t2(t2 − t1)(ta − t1 + 2)}, (33)

where ti = m2
i /m

2
W , ta = m2

νa
/m2

W , B(i)
0 = B0(m2

i ,m
2
W ,m2

νa
)

with i = 1, 2 and C0 = C0(m2
1, 0,m2

2,m
2
νa

,m2
W ,m2

W ).
In the limit of m1 = m2 = 0 we have DL = 0 and

D
appr
R = ieg2

128π2m2
W

3∑
a=1

UL�
i1a

U L
i2a

×
[

10 − 43ta + 78t2a − 49t3a + 18t3a log(ta) + 4t4a
3(ta − 1)4

]
.

(34)

This result was first obtained in Ref. [21] and has been
widely used for any values of neutrino masses. We may won-
der whether this is justified for the case of mνa � m1 or
mνa ≈ m1. This is the reason we perform a numerical com-
parison here between the exact result and the approximate
one with m1 = m2 = 0 for many values of mν1 from zero to
1016 GeV. The motivation is of purely mathematical nature
and we ignore the physical constraints on the neutrino masses
here. The results are shown in Table 2 and Fig. 2. We have
used Eq. (28) to calculate the branching fractions for both
cases. We see that the difference is less than permil level for
μ → eγ and τ → eγ and is at the permil level for τ → μγ .
This result is independent of neutrino masses.

We now take into account the charged Higgs contribution.
There are two additional parameters tv′v and mH± (see the
DνH+

L ,R terms in Eq. (30)). We have calculated the difference
between the exact and approximate results for four cases of
tv′v = 1/50 or 50 (we choose these exotic values so that the

effect of tv′v is large) and mH± = 70 or 700 GeV. The result
is very similar to the SM case: the difference is below permil
level for μ → eγ and τ → eγ and is at the permil level for
τ → μγ . For the absolute value of Br(μ → eγ ) the result
is 5 × 10−49 for tv′v = 50 and mH± = 70 GeV and getting
smaller for lower values of tv′v and/or higher values of mH± .

We make a technical remark here. Due to the huge hier-
archy among the neutrino, charged leptons and W boson
masses, the numerical calculation of the exact result is
non-trivial because of numerical cancellation. To obtain the
μ → eγ results in Table 2 we have used Mathematica 9 with
at least 62 precision digits for mν1 = 10−13 GeV and about
180 precision digits for mν1 = 1016 GeV.

4.2 Exotic-lepton contribution

In this numerical study we investigate the exotic-lepton con-
tribution, to see how large the branching fractions can reach,
what can be the dominant effects and dependence on the
parameter β, mY and mHA . We will also show the gauge–
Higgs interference effects.

In the previous section we have shown that the neutrino
contribution is well below the current experimental limit.
We will therefore neglect the neutrino contribution includ-
ing interference effects with exotic leptons in the following.
The external lepton masses will be neglected as justified in
Sect. 4.1.

In the following we choose a benchmark point, which
is a typical scenario where the SU (3)L symmetry-breaking
energy scale is much larger than the SM energy scale, i.e.
mY A � mW . If not otherwise stated, the value is chosen as

mY A = 2 TeV. (35)

From Eq. (18) we have

1 + ct2v′u = m2
Y A

m2
W

(
1 + ct2v′v

)
, (36)

where ctv′u = 1/tv′u = u/v′, ctv′v = 1/tv′v = v/v′. For the
case of mY A � mW , we get

ct2v′u ≈ m2
Y A

m2
W

(
1 + ct2v′v

)
� 1. (37)

This means that the terms proportional to tv′u in DEH A

R in
Eq. (30) can be safely neglected and the branching fractions
are almost independent of tv′v . We note that terms propor-
tional to ctv′u are suppressed because they are also propor-
tional to the external lepton masses. We will therefore set
tv′v = 1 in the following. As a side note, for the choice of
v′ = v there is another good justification: it makes the param-
eter ρ = m2

W /(m2
Z cos2 θW ) with θW being the weak-mixing

angle close to unity, as pointed out in Ref. [22] where the
same scalar potential is used.
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Table 2 Exact (i.e. m1 and m2 are kept in DL ,R) and approximate (i.e.
m1 = m2 = 0) branching fractions of l1 → l2γ at various hypothet-
ical values of mν1 . Other two neutrino masses are fixed at tiny val-
ues calculated using mν1 = 0 and the current known values of �m2

21
and �m2

32 specified in the text, namely mν2 ≈ 8.678 × 10−3 eV and

mν3 ≈ 5.025 × 10−2 eV. The neutrino mixing matrix is assumed being
real and is calculated from three known mixing angles θ12, θ13 and θ23 as
given in the text. For the sake of comparison we set Br(l1 → l2ν̄2ν1) = 1
for all three channels. The difference between exact and approximate
results is defined as: diff = (appr − exact)/exact

mν1 [GeV] Method μ → eγ τ → eγ τ → μγ

0 exact Br. 4.0969 × 10−55 2.6800 × 10−55 76.705 × 10−55

appr. Br. 4.0968 × 10−55 2.6780 × 10−55 76.377 × 10−55

diff − 2.6 × 10−5 − 7.6 × 10−4 − 4.3 × 10−3

10−13 exact Br. 4.0968 × 10−55 2.6801 × 10−55 76.705 × 10−55

appr. Br. 4.0967 × 10−55 2.6780 × 10−55 76.377 × 10−55

diff − 2.6 × 10−5 − 7.6 × 10−4 − 4.3 × 10−3

10−1 exact Br. 7.9502 × 10−17 3.4303 × 10−17 1.1400 × 10−17

appr. Br. 7.9500 × 10−17 3.4277 × 10−17 1.1351 × 10−17

diff − 2.6 × 10−5 − 7.6 × 10−4 − 4.3 × 10−3

102 exact Br. 1.3590 × 10−5 0.58619 × 10−5 0.19481 × 10−5

appr. Br. 1.3590 × 10−5 0.58593 × 10−5 0.19404 × 10−5

diff − 2.5 × 10−5 − 4.4 × 10−4 − 4.0 × 10−3

1016 exact Br. 1.3278 × 10−4 0.57261 × 10−4 0.19030 × 10−4

appr. Br. 1.3278 × 10−4 0.57249 × 10−4 0.18959 × 10−4

diff − 2.4 × 10−5 − 2.2 × 10−4 − 3.7 × 10−3

Fig. 2 Exact branching fraction (left) and difference between exact and approximate results (right) as functions of mν1 , which we deliberately
chose from very small to very large values. All input parameters and definitions are as in the caption of Table 2

Other parameters related to the exotic leptons are unknown.
We choose, as an example, the following default values for
the remaining input parameters:

β = 1/
√

3, mHA = 3 TeV,

mE1 = 700 GeV, mE2 = 800 GeV, mE3 = 1 TeV,

θ E
12 = π/6, θ E

13 = π/3, θ E
23 = π/4. (38)

The mixing matrix V L is calculated from three mixing angles
θ E

12, θ E
13, and θ E

23 as in the case of neutrinos. The values of the
exotic-lepton masses are chosen within the unitary bound of

mEi < 16mY A as derived from the partial wave unitarity of
the Ei Ēi → Ei Ēi scattering [23].

A few remarks on the above default input-parameter
choice are appropriate here. Concerning gauge bosons, the
best ATLAS/CMS limits for 3-3-1 models with exotic leptons
are summarized in Table 3. We note that, in almost all cases,
the contributions from exotic leptons to the Z ′ total width are
neglected, except for the case of Ref. [24] wheremF = 1 TeV
is assumed for all exotic fermions. When those contribu-
tions are properly taken into account, the bound on mZ ′ will
get weaker, because the branching fractions of Z ′ → l+l−
with l = e, μ will decrease. Therefore, the default choice
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Table 3 Summary of lower bounds onmZ ′ for 3-3-1 models with exotic
leptons obtained using ATLAS or CMS data at 7 and 8 TeV. Exotic
fermion contributions to the Z ′ total width are neglected, except for
Ref. [24] where mF = 1 TeV is assumed for all exotic fermions. In

the last column we have derived the bound on mY A using the rela-

tion mY A ≈ mZ ′
√

3[1 − (1 + β2)s2
W ]/(2cW ) obtained using v, v′ � u

approximation [6] and s2
W = 0.231

β Data Channel Bound on mZ ′ Ref. Bound on mY A

− 2/
√

3 CMS8 with 20.6 fb−1 di-muon � 3.2 TeV [25] � 2.1 TeV

− 1/
√

3 CMS7&8 di-lepton � 2.5 TeV [24] � 2.1 TeV

− 1/
√

3 ATLAS8 di-lepton � 2.89 TeV [26] � 2.4 TeV

Table 4 Branching fractions of l1 → l2γ at various values of β, mY A . Other parameters are fixed as given in the text

β μ → eγ τ → eγ τ → μγ mY A [TeV] μ → eγ τ → eγ τ → μγ

0 2.51 × 10−13 1.94 × 10−14 1.57 × 10−16 0.5 1.79 × 10−9 1.44 × 10−10 1.69 × 10−12

1/
√

3 1.49 × 10−12 1.33 × 10−13 3.10 × 10−15 1 6.62 × 10−11 5.66 × 10−12 1.03 × 10−13

− 1/
√

3 4.95 × 10−12 4.14 × 10−13 6.52 × 10−15 1.5 7.38 × 10−12 6.49 × 10−13 1.41 × 10−14

√
3 2.18 × 10−11 1.88 × 10−12 3.69 × 10−14 2 1.49 × 10−12 1.33 × 10−13 3.10 × 10−15

− √
3 3.21 × 10−11 2.73 × 10−12 4.72 × 10−14 3 1.64 × 10−13 1.47 × 10−14 3.61 × 10−16

0

5.0 10 9

1.0 10 8

1.5 10 8

0

2. 10 11

4. 10 11

6. 10 11

Fig. 3 Density plot of μ → eγ branching fraction as a function of β and mY (left) and of β and mHA (right). Other parameters are fixed as given
in the text

in Eq. (35) may be acceptable. However, one should keep
in mind that, strictly speaking, the ATLAS/CMS bound on
mZ ′ is unknown for our present numerical analysis, because
it depends on the masses and electric charges of the exotic
fermions (i.e. leptons and quarks) which have not been prop-
erly taken into account. We will therefore relax the constraint
on mY A , varying it from 0.5 to 3 TeV for some plots. In this
context, it is noted that, using LEP II data, the authors of
Ref. [15] obtained mZ ′ � 1 TeV for β = ±1/

√
3, 2/

√
3,

leading to mY A � 0.7 TeV. Phenomenological constraints
on the masses of exotic Higgs bosons H A and of the exotic

leptons and their mixing angles are much more difficult to
obtain and do not exist to the best of our knowledge.

With those difficulties in mind, we decided to choose the
above default input parameters in a fairly random way follow-
ing a few general principles: (i) u � v, v′ (i.e. the SU (3)L
breaking scale is much larger than that of SU (2)L ), (ii) the
exotic leptons are heavy and satisfy the unitary bound, (iii)
and their mixing angles are large. We note that the choice of
heavy masses are in agreement with the negative results of
collider searches for physics beyond the SM. Large mixing
angles are motivated by the PMNS matrix of the neutrino sec-
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Fig. 4 li → l jγ branching fractions as functions of mY (left column) and of mHA (right column) for various values of β: 0 (top row), 1/
√

3
(middle row) and

√
3 (bottom row). Other parameters are fixed as given in the text

tor and the fact that we want to have large branching fractions
close to the experimental limits.

In the following tables and plots, if not otherwise stated,
the above default values are used. Differently from Sect. 4.1,
we will use the true values of Br(l1 → l2ν̄2ν1) as given in

the text below Eq. (28) so that one can compare the results
in this section with current experimental limits.

In Table 4 we present the l1 → l2γ branching fractions for
various values of β, mY A . We observe the following features:
the branching fractions are smallest at β = 0 and increase
with |β|. The results exhibit a clear asymmetry under the
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Fig. 5 Branching fraction of μ → eγ as a function of mY (left) and of β (right). Gauge (blue), Higgs (brown) and interference (red) contributions
are also separately shown. Total branching fractions are the black lines. Other parameters are fixed as given in the text

transformation of β → −β, or in other words, they depend
on the sign of β. The right table shows a strong dependence
on mY A . As expected, the branching fractions are large when
mY A is small. With the choice of exotic-lepton masses and
mixing angles as given in Eq. (38), the branching fraction
is largest for μ → eγ and smallest for τ → μγ . With this
setup, we see that the branching fractions of τ → eγ and
τ → μγ all satisfy the current experimental constraints for
all values of β andmY A in Table 4. For the decay of μ → eγ ,
only the cases of β = 0 or mY A = 3 TeV are below the
experimental limit of 4.2 × 10−13.

We now focus on the decay μ → eγ and discuss two
density plots to see the dependence on β, mY and mHA . In
Fig. 3 we show the density plot of Br(μ → eγ ) as a function
of β and mY (left) and of β and mHA (right). We observe
from the left plot, consistently with Table 4, the branching
fraction are smallest when β is around zero or when mY

is large. From the right plot, we see a similar dependence
on β, but the dependence on mHA is much weaker than on
mY . From those two plots, we conclude that large branching
fraction occurs at large |β|, small mY and small mHA .

In a series of six plots in Fig. 4 we would like to show
again the dependence on β, mY and mHA , but with two-
dimensional plots this time and for all three decays. We see
clearly that the case of β = 0 is special and different from
the other cases of β = 1/

√
3,

√
3. For β = 0, the branching

fractions of all three decays have a deep minimum when
mY or mHA reach special values. The minimum positions
are at low energies and are different for different decays,
suggesting that they depend on the mixing angles. Together
with Fig. 3 we conclude that a deep minimum occurs when |β|
is small enough. This has a very important phenomenological
consequence: for small values of |β|, branching fraction can
be very small even at small values of mY and mHA . This

means that, contrary to naive expectation, there can be small
values of mY and mHA escaping the exclusion limit obtained
using the experimental constraints on Br(li → l jγ ), if |β| is
small enough.

To understand the minimum occurring when β is around
zero we have to study the dependence of the branching frac-
tion on β. This is shown in Fig. 5 (right). On the left plot we
display again the dependence on mY for the special case of
β = 0. This time, differently from Fig. 4 (top-left), we focus
on the low-energy region of mY ∈ [0.5, 1] TeV and gauge,
Higgs and interference contributions are also plotted. The left
plot shows that the interference is strongly destructive and
there is a spectacular cancellation between the sum of gauge
and Higgs contributions and the interference term, leaving a
very small branching ratio. The β dependence plot also shows
a negative interference effect when β ∈ [0.035 : 0.26] for our
default choice of input parameters. The insert in Fig. 5 (right)
shows that the interference line crosses the zero branching
fraction line when the gauge contribution (blue line) van-
ishes and when the Higgs term (brown line) vanishes. One
should note that the gauge or Higgs contributions are non-
negative. Overall, Fig. 5 shows that destructive interference
effect tends to occur when |β| and mY are small.

5 Conclusions

In this paper, we have provided full and exact analytical
results for the li → l jγ partial decay widths for a general
class of 3-3-1 models with exotic leptons and with arbitrary
β. As a by product, we performed numerical comparisons
between exact results (i.e. external lepton masses are kept)
and approximate ones where mi = m j = 0. We conclude
that, for either extremely light neutrinos or very heavy lep-
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tons, the difference between exact and approximate results is
less than permil level for μ → eγ and τ → eγ and is at the
permil level for τ → μγ . Therefore, unsurprisingly, approx-
imation results widely used in the literature are excellently
justified.

Concerning the exotic-lepton contribution, we found huge
destructive interference between the gauge and Higgs contri-
butions. This can happen when |β| and mY are small enough.
This has an interesting consequence: the branching fractions
can be small even for small mY . Therefore, this destructive
interference mechanism must be taken into account when
using experimental constraints on Br(li → l jγ ) to exclude
parameter space. This in particular means that if one takes
into account only the gauge contribution then the results can
be completely off. It is likely that this destructive interfer-
ence mechanism also occurs in b → sγ and other similar
processes.

Besides, we found that the gauge and Higgs contributions
can be of similar size. Dependences on β, mY and mHA have
been shown. We observe that the branching fractions are very
sensitive to β and mY . They also depend on mHA , but to a
lesser extent. The dependence on β is interesting: the branch-
ing fractions are largest for |β| = √

3 and smallest around
zero.
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Appendix A: One-loop integrals

In this appendix we provide all loop functions introduced in
Eq. (30). We have

hLHH
1 = C1([p2

i ],m2
L ,m2

H ,m2
H ) + C11(· · · ) + C12(· · · ),

hLHH
2 = C2([p2

i ],m2
L ,m2

H ,m2
H ) + C22(· · · ) + C12(· · · ),

hLHH
3 = −C0([p2

i ],m2
L ,m2

H ,m2
H ) − C1(· · · ) − C2(· · · ),

hHLL
4 = C1([p2

i ],m2
H ,m2

L ,m2
L) + C11(· · · ) + C12(· · · ),

hHLL
5 = C2([p2

i ],m2
H ,m2

L ,m2
L) + C22(· · · ) + C12(· · · ),

hHLL
6 = C1([p2

i ],m2
H ,m2

L ,m2
L) + C2(· · · ),

gLGG
1 = −C2([p2

i ],m2
L ,m2

G ,m2
G) + C11(· · · ) + C12(· · · ),

gLGG
2 = C0([p2

i ],m2
L ,m2

G ,m2
G) + 2C1(· · · ) + C2(· · · )

+ C11(· · · ) + C12(· · · ),
gLGG

3 = C2([p2
i ],m2

L ,m2
G ,m2

G) + C22(· · · ) + C12(· · · ),
gLGG

4 = −C1([p2
i ],m2

L ,m2
G,m2

G) + C22(· · · ) + C12(· · · ),
gLGG

5 = C0([p2
i ],m2

L ,m2
G ,m2

G) + C1(· · · ) + 2C2(· · · )
+ C22(· · · ) + C12(· · · )),

gLGG
6 = C1([p2

i ],m2
L ,m2

G ,m2
G) + C11(· · · ) + C12(· · · ),

gGLL
7 = C0([p2

i ],m2
G ,m2

L ,m2
L) + 2C1(· · · ) + C2(· · · )

+ C11(· · · ) + C12(· · · ),
gGLL

8 = −C2([p2
i ],m2

G,m2
L ,m2

L) + C11(· · · ) + C12(· · · ),
gGLL

9 = C2([p2
i ],m2

G ,m2
L ,m2

L) + C22(· · · ) + C12(· · · ),
gGLL

10 = C0([p2
i ],m2

G ,m2
L ,m2

L) + C1(· · · ) + 2C2(· · · )
+ C22(· · · ) + C12(· · · ),

gGLL
11 = −C1([p2

i ],m2
G,m2

L ,m2
L) + C22(· · · ) + C12(· · · ),

gGLL
12 = C1([p2

i ],m2
G ,m2

L ,m2
L) + C11(· · · ) + C12(· · · ),

(A1)

where [p2
i ] = m2

1, 0,m2
2 related to external momenta and

occurring in all functions, the notation (· · · ) means that the
same list of arguments as in the first term should be used.
The masses of particles in the loop are written explicitly in
the argument list and there is an one-to-one correspondence
between those masses and the upper index of the hi (h stands
for Higgs) and gi (g for gauge) functions.

Using Passarino–Veltman techniques [27], the results for
Ci ...([p2

i ],m2
F ,m2

B,m2
B) read

C1 = (m2
1 + m2

2)B(1)
0

(m2
1 − m2

2)2
− 2m2

2B(2)
0

(m2
1 − m2

2)2
− B(0)

0

m2
1 − m2

2

+ k2C0

m2
1 − m2

2

,

C2 = (m2
1 + m2

2)B(2)
0

(m2
1 − m2

2)2
− 2m2

1B(1)
0

(m2
1 − m2

2)2
+ B(0)

0

m2
1 − m2

2

− k1C0

m2
1 − m2

2

,

C11 =
[
k1(3m4

1 − m4
2 + 4m2

1m
2
2) − 4m6

1 + 4m4
2m

2
1

]
B(1)

0

2m2
1(m2

1 − m2
2)3

− 3m2
2k2B(2)

0

(m2
1 − m2

2)3
− [k1 + k2 + 2(m2

2 − m2
1)]B(0)

0

2(m2
1 − m2

2)2

+
(
k2

2 + 2m2
Bm

2
2

)
C0

(m2
1 − m2

2)2

− (m2
1 + m2

2)[A0(m2
B) − A0(m2

F )]
2m2

1(m2
1 − m2

2)2
+ m2

2

(m2
1 − m2

2)2
,

C22 =
[
k2(−3m4

2 + m4
1 − 4m2

1m
2
2) + 4m6

2 − 4m4
1m

2
2

]
B(2)

0

2m2
2(m2

1 − m2
2)3
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+ 3m2
1k1B(1)

0

(m2
1 − m2

2)3
− [k1 + k2 + 2(m2

1 − m2
2)]B(0)

0

2(m2
1 − m2

2)2

+
(
k2

1 + 2m2
Bm

2
1

)
C0

(m2
1 − m2

2)2

− (m2
1 + m2

2)[A0(m2
B) − A0(m2

F )]
2m2

2(m2
1 − m2

2)2
+ m2

1

(m2
1 − m2

2)2
,

C12 = −
[
k2(5m2

1 + m2
2) + m4

1 − m4
2

]
B(1)

0

2(m2
1 − m2

2)3

+
[
k1(5m2

2 + m2
1) + m4

2 − m4
1

]
B(2)

0

2(m2
1 − m2

2)3

+ (2m2
B − 2m2

F + m2
1 + m2

2)B(0)
0

2(m2
1 − m2

2)2

−
[
k1k2 + m2

B(m2
1 + m2

2)
]

C0

(m2
1 − m2

2)2

+ [A0(m2
B) − A0(m2

F )]
(m2

1 − m2
2)2

− m2
1 + m2

2

2(m2
1 − m2

2)2
, (A2)

where B(0)
0 = B0(0,m2

B,m2
B), B(i)

0 = B0(m2
i ,m

2
B,m2

F ),
and ki = m2

B − m2
F + m2

i with i = 1, 2.
The Passarino–Veltman functions in Eq. (A1) and Eq. (A2)

are defined from the standard one-loop functions as

A0(m
2) = (2πμ)4−D

iπ2

∫
dDk

k2 − m2 + iε
,

B0(p
2,m2

F ,m2
B ) = (2πμ)4−D

iπ2

×
∫

dDk

(k2 − m2
F + iε)

[
(k + p)2 − m2

B + iε
] ,

C0,μ,μν = (2πμ)4−D

iπ2

×
∫

dDk(1, kμ, kμkν)

(k2 − m2
F + iε)

[
(k + p1)2 − m2

B + iε
] [

(k + p2)2 − m2
B + iε

] ,

Cμ = p1μC1 + p2μC2,

Cμν = gμνC00 + p1μ p1νC11 + p2μ p2νC22 + (p1μ p2ν + p2μ p1ν )C12,

(A3)

where μ is an arbitrary mass parameter introduced via dimen-
sional regularization [28].

The scalar functions A0, B0, C0 can be calculated using
the techniques of [29]. We have

A0(m
2) = m2

(
CUV − log(m2) + 1

)
,

B0(0,m2,m2) = CUV − log(m2),

B0(p
2,m2

B ,m2
F ) = CUV − log(m2

B ) + 2

−
∑
σ=±

(1 − 1

xσ

) log (1 − xσ ) ,

C0(p
2
1 , 0, p2

2,m2
F ,m2

B ,m2
B ) = 1

p2
1 − p2

2

2∑
i=1

∑
σ=±

(−1)iLi2(yiσ ), (A4)

where CUV = 2/(4 − D) − γE + log(4πμ2) with γE being
Euler’s constant and xσ and yiσ are the roots of the following
equations:

m2
Bx

2 − (m2
B − m2

F + p2)x + p2 + iε = 0,

m2
B y

2
i − (m2

B − m2
F + p2

i )yi + p2
i + iε = 0. (A5)

For the case of p2
1 > 0 and p2

2 = 0 we have

B0(0,m2
B,m2

F ) = CUV − log(m2
B) + 1

+ m2
F

m2
B − m2

F

log

(
m2

F

m2
B

)
,

C0(p
2
1, 0, 0,m2

F ,m2
B,m2

B)

= 1

p2
1

[
Li2

(
1 − m2

F

m2
B

)
−

∑
σ=±

Li2(y1σ )

]
. (A6)

Results for the case of p2
1 = p2

2 = 0 have been provided in
Ref. [17]. We finally note that the C functions in Eq. (A2)
are independent of the auxiliary parameter CUV , meaning
that the final results are UV finite. The function B(0)

0 is above
given for the sake of completeness. The final results are inde-
pendent of it.

Appendix B: Approximate results

Here we provide results for the case of small exotic-lepton
masses, i.e. mEa � mY and mEa � mHA . Furthermore,
the numerical facts of mνa � mW and the approximation
m1 = m2 = 0 is used as justified in Sect. 4.1. We therefore
neglect all DL here. For the neutrino case, we have

DνW
R = − ieg2

32π2m2
W

3∑
a=1

UL�
i1aU

L
i2a

(
m2

νa

4m2
W

)
,

DνH+
R = − ieg2

32π2m2
W

(
t2
v′v + 6

) 3∑
a=1

UL�
i1aU

L
i2a

(
m2

νa

12m2
H+

)
.

(B1)

For the exotic-lepton case

DEY
R = − ieg2

32π2m2
Y

(3
√

3β − 1)

3∑
a=1

V L�
i1a V

L
i2a

(
m2

Ea

8m2
Y

)
,

DEH A

R = − ieg2

32π2m2
Y

3∑
a=1

V L�
i1a V

L
i2a

(
m2

Ea

12m2
H A

)[
β
√

3 + 1

2

(
t2
v′u + 6

)

+ β
√

3 − 1

2

(
2t2

v′u − 18 − 12 log
m2

Ea

m2
H A

)]
. (B2)

123



 128 Page 14 of 14 Eur. Phys. J. C   (2018) 78:128 

References

1. Particle Data Group, C. Patrignani et al. Chin. Phys. C 40, 100001
(2016)

2. M. Singer, J.W.F. Valle, J. Schechter, Phys. Rev. D 22, 738 (1980)
3. V. Pleitez, M.D. Tonasse, Phys. Rev. D 48, 2353 (1993).

arXiv:hep-ph/9301232
4. M. Ozer, Phys. Rev. D 54, 1143 (1996)
5. R.A. Diaz, R. Martinez, F. Ochoa, Phys. Rev. D 72, 035018 (2005).

arXiv:hep-ph/0411263
6. A.J. Buras, F. De Fazio, J. Girrbach, M.V. Carlucci, JHEP 02, 023

(2013). 1211.1237
7. J.W.F. Valle, M. Singer, Phys. Rev. D 28, 540 (1983)
8. F. Pisano, V. Pleitez, Phys. Rev. D 46, 410 (1992).

arXiv:hep-ph/9206242
9. R. Foot, O.F. Hernandez, F. Pisano, V. Pleitez, Phys. Rev. D 47,

4158 (1993). arXiv:hep-ph/9207264
10. P.H. Frampton, Phys. Rev. Lett. 69, 2889 (1992)
11. R. Foot, H.N. Long, T.A. Tran, Phys. Rev. D 50, 34 (1994).

arXiv:hep-ph/9402243
12. S.M. Boucenna, J.W.F. Valle, A. Vicente, Phys. Rev. D 92, 053001

(2015). arXiv:1502.07546
13. A. C. B. Machado, J. Montao, V. Pleitez, (2016). arXiv:1604.08539
14. M. Lindner, M. Platscher, F. S. Queiroz 1610, 06587 (2016)

15. A.J. Buras, F. De Fazio, J. Girrbach, JHEP 02, 112 (2014).
arXiv:1311.6729

16. A.J. Buras, F. De Fazio, JHEP 08, 115 (2016). arXiv:1604.02344
17. L. Lavoura, Eur. Phys. J. C 29, 191 (2003). arXiv:hep-ph/0302221
18. D. Griffiths, Introduction to elementary particles (2008)
19. J. A. M. Vermaseren, (2000). arXiv:math-ph/0010025
20. J. Kuipers, T. Ueda, J.A.M. Vermaseren, J. Vollinga, Comput. Phys.

Commun. 184, 1453 (2013). arXiv:1203.6543
21. T.P. Cheng, L.-F. Li, Phys. Rev. Lett. 45, 1908 (1980)
22. L.T. Hue, L.D. Ninh, Mod. Phys. Lett. A 31, 1650062 (2016).

arXiv:1510.00302
23. M.S. Chanowitz, M.A. Furman, I. Hinchliffe, Phys. Lett. 78B, 285

(1978)
24. Y.A. Coutinho, V. Salustino Guimares, A.A. Nepomuceno, Phys.

Rev. D 87, 115014 (2013). arXiv:1304.7907
25. F. Richard (2013). arXiv:1312.2467
26. C. Salazar, R.H. Benavides, W.A. Ponce, E. Rojas, JHEP 07, 096

(2015). arXiv:1503.03519
27. G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)
28. G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B 44, 189 (1972)
29. G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B 153, 365 (1979)

123

http://arxiv.org/abs/hep-ph/9301232
http://arxiv.org/abs/hep-ph/0411263
http://arxiv.org/abs/hep-ph/9206242
http://arxiv.org/abs/hep-ph/9207264
http://arxiv.org/abs/hep-ph/9402243
http://arxiv.org/abs/1502.07546
http://arxiv.org/abs/1604.08539
http://arxiv.org/abs/1311.6729
http://arxiv.org/abs/1604.02344
http://arxiv.org/abs/hep-ph/0302221
http://arxiv.org/abs/math-ph/0010025
http://arxiv.org/abs/1203.6543
http://arxiv.org/abs/1510.00302
http://arxiv.org/abs/1304.7907
http://arxiv.org/abs/1312.2467
http://arxiv.org/abs/1503.03519

	Exact one-loop results for li toljγ in 3-3-1 models
	Abstract 
	1 Introduction
	2 3-3-1 model with arbitrary β
	3 Analytical results
	4 Numerical results
	4.1 Neutrino contribution: approximate vs. exact
	4.2 Exotic-lepton contribution

	5 Conclusions
	Acknowledgements
	Appendix A: One-loop integrals
	Appendix B: Approximate results
	References




