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A B S T R A C T

The ionic Hubbard model with spatially alternating interactions, which may be realized by cold atoms in optical
lattices, is studied by mean of the coherent potential approximation. The paramagnetic phase diagram for the
half-filled model at zero temperature is obtained. The possibility of enlarging an intermediate metallic region in
the parameter space is addressed.

1. Introduction

The ionic Hubbard model (IHM) with alternating site energies was
originally proposed to study the neutral-ionic in organic charge-transfer
salts [1]. Later this model have been used for describing various phe-
nomena in correlated electron systems such as the enhanced response
of quasi-one-dimensional ferroelectric perovskites [2], the evolution
of electronic structure in SrRu1−xTixO3 [3], and uncoventional spin-
singlet superconductivity in layered nitrides 𝛽–MNCl [4]. It has been
established that at half-filling the on-site Coulomb interaction can lead
electrons to a localization which yields a Mott insulating state; while
the ionic potential that takes alternating values on neighboring sites
of a bipartite lattice (sublattices A and B) results in a band insulating
phase. Up to now, in most studies, the on-site Coulomb interaction was
supposed to be the same for both types of sites (UA = UB). However, that
is hardly to justify in real situation. In SrRu1−xTixO3, for example, Ti is
a 3d-metal and Ru is a 4d-metal, consequently we have different local
electronic interactions for Ti and Ru sites. Therefore, the IHM with site-
dependent interactions can be regarded as more realistic ionic model
for describing the above phenomena in correlated electron systems.

Another motivation for our investigation of the IHM with alternat-
ing interactions originates from the fact that many of theoretical stud-
ies have revealed the emergence of an intermediate phase between the
band insulator (BI) and the Mott insulator (MI). In one dimension it
was found by the bonization method that a spontaneously dimerized
insulating shows up between the BI and the MI [5,6], which was con-
firmed subsequently in the density matrix renormalization group stud-
ies [7,8]. As to the nature of the intermediate phase in two and higher
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dimensions, there is some controversy: the cellular dynamical mean
filed theory (DMFT) [9] or the variational cluster approach [10] pre-
dicted a bond ordered phase, while a metallic phase was obtained by the
determinant quantum Monte Carlo method [11], the single site DMFT
[12–14] or the coherent potential approximation (CPA) [15]. Here it is
remarkable that in both cases the intermediate phase only occupies a
narrow region in the phase diagram, which cast additional on the inves-
tigation of it properties. By using the IHM with alternating interactions
we can explore the possibility of enlarging the intermediate region in
the parameter space by varying the ratio UB∕UA.

It should be noted that with the achievement of laser cooling tech-
nique the physics of the IHM may find a realization in optical lattices
which can be generated in various geometries, including bipartite lat-
tice with different interactions and potential minima on the sublattices
[16,17]. It provides a cleaner and tunable platform compared with real
materials for probing open questions in the physics of strongly corre-
lated system.

The purpose of this paper is to study the electronic phase diagram
in the half-filled IHM with site-dependent interactions by mean of the
coherent potential approximation. This method is well suited to study
the metal-insulator transitions in the conventional IHM [15]. Assuming
a paramagnetic solution, we focus on the effect which appears due to
UA ≠ UB.

2. Model and solving method

We consider the following IHM with alternating interactions in
dimensions D ≥ 2 on a bipartite lattice (sublattices A and B)
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.H = −t
∑
<ij>𝜎

(
c†i𝜎cj𝜎 + H.c.

)
+ 𝜀A

∑
i∈A

ni + 𝜀B
∑
i∈B

ni +
∑
𝛼,i∈𝛼

U𝛼ni↑ni↓, (1)

where ci𝜎(c
†
i𝜎 ) annihilates (creates) an electron with spin 𝜎 at site i,

ni𝜎 = c†i𝜎ci𝜎 , ni = ni↑ + ni↓ and the sum < ij > is the sum over nearest
neighbor sites of the lattice. U𝛼 is the site-dependent Coulomb repul-
sion in the sublattice 𝛼(= A,B), 𝜀A = Δ, 𝜀B = 0 the ionic energies, and
the energy difference between the two types of sites Δ is chosen as a
positive value. The same model in dimension D = 1, as far as we know,
were first employed to study effects of strong electron correlation on
the electron-lattice interaction [2].

In the alloy-analog approach the many-body Hamiltonian is
replaced by a one-particle Hamiltonian of the form

H̃ =
∑
i∈A𝜎

EA𝜎ni𝜎 +
∑
i∈B𝜎

EB𝜎ni𝜎 − t
∑
<ij>𝜎

(
c†i𝜎cj𝜎 + H.c.

)
, (2)

where the random potential E𝛼𝜎 takes the values 𝜀
(𝜈)
𝛼 (𝜈 = 1, 2) with the

probabilities p(𝜈)𝛼𝜎

E𝛼𝜎 =

{
𝜀𝛼 = 𝜀(1)𝛼 , p(1)𝛼𝜎 = 1 − n𝛼−𝜎,

𝜀𝛼 + U𝛼 = 𝜀(2)𝛼 , p(2)𝛼𝜎 = n𝛼−𝜎 .
(3)

The mean occupation numbers nA−𝜎 and nB−𝜎 must be determined
self-consistently. We focus on the paramagnetic case, for which nA𝜎 =
nA−𝜎 = nA∕2, nB𝜎 = nB−𝜎 = nB∕2 and all the one-electron quantities
become spin-independent. The structure of a bipartite lattice leads to
a local Green function of the form

G𝛼(𝜔) = (𝜔 − Σ𝛼) ∫
𝜌0(E)dE

(𝜔 − ΣA)(𝜔 − ΣB) − E2 , (4)

where 𝛼 = A(B) and 𝛼 = B(A), Σ𝛼 is the self-energy for 𝛼–sublattice,
𝜌0(E) is the density of states (DOS) for non-interacting electrons. By
employing Hubbard’s semi-elliptic DOS 𝜌0(E) =

2
𝜋W2

√
W2 − E2 with W

being the half-width of the band, the local Green function is then given
by [18]

G𝛼(𝜔) =
2

W2

{
𝜔 − Σ𝛼 −

[
(𝜔 − Σ𝛼)2 − 𝜔 − Σ𝛼

𝜔 − Σ𝛼

W2
]1∕2

}
. (5)

The CPA demands that the scattering matrix vanishes on average over
all possible disorder configurations. This is equivalent to

G𝛼(𝜔) =
2∑

𝜈=1
p(𝜈)𝛼 G(𝜈)

𝛼 (𝜔), (6)

where

G(𝜈)
𝛼
(𝜔) = G𝛼(𝜔)

1 − (𝜀(𝜈)𝛼 − Σ𝛼(𝜔))G𝛼 (𝜔)
. (7)

The equations (5)–(7) must now be solved with nA + nB = 2, where at
zero temperature n𝛼 = −2∕𝜋 ∫ EF

−∞ ℑG𝛼(𝜔)d𝜔 with EF the Fermi energy.
From the self-consistent CPA solution one can determine the local one-
particle DOS 𝜌A∕B(𝜔), the occupation numbers nA,nB and the double
occupancy dA, dB as functions of the model parameters Δ,UA and UB.
A metal is distinguished from an insulator by a finite total DOS at the
Fermi level 𝜌(EF ) = 𝜌A(EF) + 𝜌B(EF ).

3. Results and discussion

Before numerical solving the equations (5)–(7), let us briefly con-
sider limiting case. In the model with uniform interaction, setting
UA = UB = U and shifting the one-electron energy by −U∕2, we repro-
duce the CPA equation for the Green function in the conventional IHM
[15] in which the metallic phase of the system can be found between BI
and MI phases. In addition, the metallic region is sandwiched between
Uc1(Δ) and Uc2(Δ), where Δ < Uc1(Δ) < Uc2(Δ) <

√
Δ2 + W2, keeping in

Fig. 1. Local DOS for the A-sublattice (dashed lines) and for the B-sublattice (solid lines)
for various values of UB, for r = 3.0 and Δ = 0.5. Energy 𝜔 − EF and parameters Δ,UB are
in energy unit set by W = 1.

mind that in the present paper the energy difference between the two
types of sites is Δ.

We turn now to present our numerical results. Through this work
we set W as the unit of the energy and denote r = UB∕UA. Fig. 1 shows
the local DOS for each type of sites 𝜌A(𝜔) and 𝜌B(𝜔) for r = 3,Δ = 0.5
and four values of UB. The general appearance of the DOS displays
four structures. Two of these structures are mainly composed of A-states
(dashed lines) and the other two of B-states (solid lines). The two struc-
tures of 𝛼−states can be interpreted as a lower Hubbard (LHB) and an
upper Hubbard band (UHB) separated by U𝛼 . For UB = 0.45 and 2.0,
corresponding to the band insulating and Mott insulating phases, the
DOS show a gap around the Fermi level EF . In contrast, the DOS at EF for
UB = 0.70 and 1.50 are nonzero, which indicate a metallic phase. For
comparison, the results for the same parameters for the conventional
IHM (r = 1.0) are plotted in Fig. 2. The curves for UB = 0.45, 0.70 are
similar to that of r = 3, indicating that for relatively small values of UB
the effect of alternating interactions is small. On the other hand, for
UB = 1.50 two of A-states are separated at r = 1.0 (UA = 1.5) while its
splitting does not occur at r = 3.0 (UA = 0.5), the total DOS has four
structures and the Fermi level lays in the gap, so the system becomes
the insulator. For UB = 2.0 the system is the MI with the gap, which is
much larger then the those of r = 3.0.

Fig. 2. Local DOS for the A-sublattice (dashed lines) and for the B-sublattice (solid lines)
for the same values of UB as in Fig. 1, for r = 1.0 and Δ = 0.5.
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The phase diagram Δ − UB at zero temperature for the system for
r = 0.5,1.0,2.0 and 3.0 is shown in Fig. 3. It can be seen that the phase
boundary between the BI and metallic phases is almost independent on
r and approaches the line UB = Δ. This result can be understood as fol-
lows: Because Δ was chosen to be positive, the upper Hubbard band of
A is always nearly empty. Consequently, when Δ is fixed and local inter-
action UB is switched on and gradually increased, the hopping of elec-
trons from the upper Hubbard band of B to the lower Hubbard band of
A occurs when these bands begin to overlap, i. e. when UB approaches
to Δ. Therefore, the system undergoes a transition from the BI to the
metallic state for UB ≈ Δ, independent on UA, i. e. on r. On the other
hand, the phase boundary for the metal and MI is significantly depen-
dent on r in weak-coupling regime, but again approaches the strong
coupling line UB = Δ as Δ is increased. This is due to the effect of split-
ting band of A-states. For small UA (larger r) two structures of A-states
are not separated (Compare Figs. 1 and 2, for the same UB = 1.50),
therefore the transition from metal to Mott insulator is significantly
delayed resulting in a larger critical value for UB. It is interesting to
note that the enlargement of the metallic regime has also been found in
the conventional IHM by using CPA with including intersite spatial cor-
relations [19] as well as in the bilayer IHM [20]. We note that for Δ = 0
this behavior is agreement with the results of both Saitou et al. [21] and
Le et al. [22] for the Hubbard model with site-dependent interactions,
where according to their studies the critical interactions for the metal
to MI transition are given by UAUB = const, hence the critical value for
UB increases with increasing r.

To clarify the nature of phase transitions and the insulating states we
calculate the staggered charge density nB − nA and double occupancy
d𝛼 = < n𝛼↑n𝛼↓ > with 𝛼 being A and B. These quantities are plotted in
Figs. 4 and 5 for r = 3, Δ = 0.5 and 2.0. For small UB, only B sites are
occupied and A sites are almost empty, correlation effects are weak in
the occupied B band, so nB − nA and dB are large, dA is small. The corre-
sponding insulating state is clearly a band insulator. As UB is increased,
the double occupancy rapidly decreases for B sites. For larger UB, both
types of site are strongly correlated with almost zero double occupancy
and the charge density approaches zero. Therefore, the insulating state
is a Mott insulator. Like the conventional IHM, in the IHM with site-
dependent interactions, the density charge curves change in slopes just
after UB = Δ for both values of Δ. As noted in Ref. [19], these indicate
the BI to the metal transition which is dominated by the charge den-
sity wave. On the other hand, the MIT is governed by the Hubbard U𝛼

Fig. 3. T = 0 phase diagram of the IHM with site-dependent interactions for different val-
ues of r. MI, M and BI denote Mott insulator, metal and band insulator, respectively. The
phase boundary between BI and metal is almost independent on r and approaches the line
UB = Δ for Δ > 0.5, whereas the phase boundary between metal and MI is significantly
dependent on r in weak-coupling regime.

Fig. 4. Staggered charge density nB − nA as a function of UB for Δ = 0.5 and 2.0. Like the
conventional IHM, in the IHM with r = 3.0, the density charge curves change in slopes
just after UB = Δ for both values of Δ. In CPA the phase transitions are clearly continuous.

Fig. 5. Double occupancies dA and dB in the IHM with r = 3.0 as a function of UB for
Δ = 0.5 and 2.0.

and so the curves smoothly change with no inflection point at the MIT.
As in the conventional IHM, the phase transitions in the IHM with site
dependent interactions at zero temperature are clearly continuous.

4. Conclusions

We have studied the paramagnetic phase diagram in the half-filled
ionic Hubbard model with site-dependent interactions for the Bethe
lattice in the limit of infinite dimensions by means of the coherent
potential approximation. As noted in Ref. [23], for the Bethe lattice of
connectivity z ≥ 3 this approximation is good, at least in a qualitative
sense. Therefore, is it reasonable to believe our calculation is applica-
ble to the IHM in dimensions D ≥ 2. We found that while the critical
value UBc1 for transition from BI to metal is almost independent on the
ratio r

(
= UB∕UA

)
, the critical value UBc2 for transition from metal to

MI throughout of the range Δ increases with increasing r. Therefore,
in the systems with r ≫ 1 the metallic region significantly enlarges in
comparison with that of the conventional ionic Hubbard model (r = 1).
The nature of phase transitions and the insulating states are clarified by
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calculating the staggered charge density and the double occupancy.
We hope that our investigation of the IHM with site-dependent

interactions provides an useful step towards understanding the metal-
insulator transitions in real systems with ionic potentials. This deserves
further theoretical and experimental investigations.
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