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Abstract

®

CrossMark

The purpose of this work is to elaborate the functional integral method in quantum field theory
of Dirac fermions in the Dirac fermion gas of a graphene single layer at vanishing absolute
temperature. The starting point to be assumed as the fundamental principle of the theory is

the explicit expression of the action functional of this system. The efficient mathematical

tool to be used in the study is the generating functional containing the Grassmann parameters

anticommuting with the Dirac fermion field operators.

The analytical expression of the generating functional of free Dirac fermion system is
exactly derived and efficiently used in the study of 2n-point Green functions of free Dirac
fermions. Then the celebrated Hubbard—Stratonovich transformation is applied to rewrite
the functional integral of the interacting system of Dirac fermions in a new form expressing
in terms of a scalar Hermitian quantum field describing the collective excitations in the
interacting Dirac fermion gas and related to the graphene plasmons.

Keywords: functional integral, Dirac fermions, collective excitation, generating functional,

Green functions
Classification numbers: 3.00, 5.15

1. Introduction

The discovery of graphene by Novoselov er al [1-4] has
opened a new period in the development of condensed matter
physics and materials science. Soon after this discovery a
large number of basic and applied research works on graphene
and graphene-based nanostructures has been performed [5, 6].
In the dynamical processes where the spin degree of freedom
of electrons plays no role and therefore can be ignored, elec-
trons can be considered as spinless fermions. In this case the
quantum motion of charge carriers in single-layer graphene
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can be described by 2-component wave function satisfied
Dirac equations in (2 + 1)-dimensional space-time and, there-
fore, they are called Dirac fermions [7].

The frequently applied method for the theoretical study
of interaction processes between Dirac fermions as well as
between Dirac fermions and the electromagnetic field is the
perturbation theory with the use of Green functions. For
example, explicit expressions of 2-point Green functions of
free Dirac fermions can be used in the theoretical study of
the generation of second order harmonics [8], third order har-
monics [9] and high order harmonics [10] in graphene, the
valley-dependent transport in graphene-based lateral quantum
structures [11], the conductivity of gapped graphene [12], the
photon-assited transport in bilayer graphene flakes [13], the
scattering from spin-polarized charged impurities in graphene
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[14], the effects of long range disorder and electronic interac-
tions on the optical properties of graphene quantum dots [15],
Landau level spectroscopy of electron—electron interactions in
graphene [16] etc. The 2-point Green functions of Dirac fer-
mions in graphene were studied in [17-19] by means of the
conventional canonical quantization method of quantum field
theory. However, the most universal and efficient method in
quantum field theory is the functional integral method [20-22].

The purpose of this work is to present the basics of func-
tional integral method in quantum field theory of Dirac fer-
mion system in a graphene single layer. In the subsequent
section 2 the notations and known formula for the physical
quantities of the Dirac fermion system are introduced. In
Particular, the explicit expression of the functional integral of
the interacting system of Dirac fermions is presented. In sec-
tion 3 the functional integral method is applied to the study
of Green function of free Dirac fermion fields. We show that
all they are expressed in terms of functional derivatives of
the generating functional depending on Grassmann variables
anticommuting with the Dirac fermion fields. From explicit
expression of generating functional of free Dirac fermion
field system it is straightforward to derive the formula of all
2n-point Green functions and then to confirm the validity
of the well-known Wick theorem in quantum theory of free
fermion fields. The functional integral of the system of inter-
acting Dirac fermion fields is studied in section 4. By using
the celebrated Hubbard—Stratonovich transformation we dem-
onstrate that the effective action functional of the interacting
system of Dirac fermion field can be expressed in terms of
the Green functions of free Dirac fermion fields and some
quantum scalar field related with the plasmons in graphene
single layer. Thus the mathematical tools for the study of plas-
mons in graphene is constructed. The conclusion and discus-
sions are presented in section 5.

2. Notations and fundamental principles
of the theory

Let us denote x the coordinate vector of a point in the plane
of graphene and x = {x,x09} = {x,t} that of a point in the
(2 + 1)-dimensional space-time. Quantum fields of Dirac fer-
mions with momenta in the neighbours of two inequevalent
Dirac points K and K’ of the first Brillouin zone are described
by two 2-component field operators /X (x) and ¥X'(x). A com-
prehensive review on dynamics of Dirac fermions in graphene
was presented in [7]. In this work the authors showed that

Hamiltonian of corresponding free Dirac fermions are
HK = VFT(*Z'V), (1)
HX = vpr*(—i V).

T being a 2D vector with components

R S

The total action functional of the system of Dirac fermions
in the presence of their Coulomb interaction has following
expression

(LR
~ Jaxa*e [ii - HK] K@)
3)60

+ Jar 7% [ia%) - HK’] W@

—% [a [ @+ 75w e + KWl
< u(x — ) [T 50) + 75 01 [WE) + X1, 3)

where

u(x —y) = 6(xo — ypu(x —y),

u(x—y) = H,

[ax= [ax [ar= [ax [dn [dv,

For simplifying formulae let us introduce 4-component spinor

field
K
Y= (fﬁ,{] @)

and consider 4 X 4 matrix
H® 0
H= , 5
(5] ®)
as the Hamiltonian of this 4-component spinor field. Then the

total action functional of the interacting system of Dirac fer-
mions becomes

1. 71 = [ e o) [i% - H] e
0
S Ja seweue - rowe.  ©

The key mathematical tool of the functional integral method
in quantum field theory of interacting system of Dirac fer-
mions is following functional integral [23]

2 = [IDvIDT explifly: 71}
~ [1y1Dd) exp{i Jardw [ia% - H] zb(X)}

i — _
x exp{ 2 Jax fa Peweoue -7 (y)z/J(y)} -
(7
3. Green functions of free Dirac fermions field

Consider now the case when the Coulomb interaction between
Dirac fermions is neglected. In this case instead of Z¥ we have

Zy = f[DilJ][DilJ]exp{lfdx P (x) [la—xo - H] 111()6)}' ©
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It is the functional of the system of free Dirac fermions. The
statistical average, called also the expectation value, of the

product of n pairs of components ,,(x;) and J (), i=1,
2, ...n, of quantum fields of free Dirac fermions in the ground
state |O> of the Dirac fermion gas at vanishing absolute temper-
ature is determined by formula

(U, 0) -, ()P ) D3, 0D E 500,

- zig Jizn exp{i Jardw [iaixo - H] z/f(x)}

X Yy )Yy (02) -+ U )P 5, 03) - 3, (02) 5,0 ©)

The 2n-point green function of 2n components of free Dirac
fermions are defined as follows:

Galaz...a,,@,,..ﬂzﬂl(xl, X e Xy Yy oo+ Yo yl)

= (Y, 0, 00) o 8y, 6B, (03) - Pps T30 -
(10)
For establishing the functional integral method to the study
of free Dirac fermion Green functional let us introduce
4-component Grassmann variables n(x) and 77(x) anticom-
muting with both free Dirac fermion fields +(x) and ) (x):

{10600, Y0} = (1,00, P00} = {7, (), s}

= {7,(0), ¥} = 0. (1D
By definition they anticommute each with other:
(1.0, 7500} = (1,0 )} = (TG, 7500}
= {7,(0), ;0)} = 0. (12)

The efficient mathematical tool for the study green functions
of free Dirac fermion fields is the generating functional

Z5 o771 = | IDVIDT)
X exp{ifdx (¢ ()nx) + ﬁ(x)w(x)]}

X exp{ fdx P (x) [1— — H] w(x)}

According to the definition (8) we have

(13)

Z§ = 7V10,0]. (14)

All 2n-point Green functions free Dirac fermion fields (10)
can be represented in terms of the functional derivatives of
the functional (13) at n = 77 = 0. For example, 2-point Green
function

Gap(;y) = (Ya®)Ps(), (15)
has following expression
1 6%Z¢m, 7
Goplx;y) = ol 7] (16)

Zg 61, (x)0ns() =7=0

Similarly, 4-point Green functions

G101, 305 2 1) = (Yo ()P0, )P 3, 0)T 500 ), (17)
can be represented as follows
G5, (01> X3 Y2 1)
1 8*Z{n. 7] (18)

oz 07, ()67, ()01 5,(3,)61 5, (1) 77:77:0.

It can be showed that in the general case of the 2n-point Green
function we have formula

Galzxz.“(x,,ﬂ,,..ﬁ’izﬁl(xl, X i Xy Vs oo+ Yoo yl)
_ L 52!128‘3’[77, 77]
24 O 08, 02) . 8T, (50)813,03) - 0, 008500 |
(19)

Now we establish the explicit formula of generating func-
tional (13) in terms of the Grassmann parameters 7(x)
and 77(x). Denote u{fi(x) and uﬁ(x) the 2-component wave
functions of free Dirac fermions with momentum k in the
neighbours of Dirac points K and K’, respectively, and
energies E.(k) = +vpk. They satisfy following 2D Dirac
equations

M(ﬁ)uﬁx) — E.00u5(x) 20)
ox

and

. a ! !

vFT*(—l—)uf x) = Ei(k)ui (x). (21)
ox

Introduce 2 x 2 unit matrix 75 and 2 X 2 matrix functions
SK(x,y) = SK(x, y:x0 — yp) and SK(x,y) = S¥(x,y:x0 — y;)
satisfying following inhomogeneous differential equations
[ 0 Y] ok
i— —vpr| =i || ST (X, y5x0 — ¥p) = 6(x — ) = 6(x—Y)d(x0 — ¥o)To
8x0 ox

and @2)

_ia% v (7183)] SK 05,y %0 — ) = 6z — ) = Sx-Y)3x0 — ).

(23)
They are expressed in terms of the wave functions up (x) and
uf(;(x), o = =, as follows

uka (X)uka (y)+
f Zi w— E, (k) +i0

s [die S CE et oufi (v
o==%
(24)

where uﬁ’f/(x) are the 2-component spinor wave functions of
Dirac fermions in graphene [7], and the functions Cf’K’(k) are
related to the characteristics of the free Dirac fermion gas.
By means of the the same reasoning as those in [23] it can be

/ 1 ; 1
SR yix0 — ) = — f dwe Tetr0 00—
( Y Xo yo) (27‘_)2

(2 @ny

shown that Cf’K’(k) are the occupation numbers nf’K’(k) of
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the Dirac fermions at the quantum states with wave functions

uka (x)

Consider the functional integral (8) of the free Dirac fer-
mion gas. For subsequent calculations let us explicitly rewrite
it as follows:

’

e =z78"7¢" (25)

where
7" = [1vs1 ™)
Lot oli? a2\
X exp{1fdxw x) [1ax0 vF'r( lax)]w (x)},
(26)
2" = [ex 1pe*]

X exp{ifdxtzK/(x) [ié‘ixo - VFT*(_igix)] wK/(x)} .

(27)
Introducing Grassmann parameter 75X (x), 75X (x) and
performing following shift of functional integral variables
YEE () and 95K () ;
K@) = K )+ [dy SR G ymE R (),
G - 5K 0 + f dy 7K S, ), (28)
we obtain other formulae for Zg’ “and Zg’K :
7" = [ieFins*
x exp{ifdx 5w [181)60 - vw(—i%)] wK(x)}
X exp ifdxfdy oK) ii — VFT(fii) SK @, k)
Oxg ox ’
x exp{i f dy f dx TE)SE(y,x) [iaixo - m(fi%)] wK(x)}
. _ .0 .0
X exp{lfdyfdxfdz TX)SX(y, x) |:18_xo - vrr(—la)]

x SK(x, z)nK(z)},

f[DwK][Dq/; ]exp{ fdxw (x) [1— — VpT ( )] q/)k/(x)}
X exp{ifdxfdylﬁkl(x) |:18_x0 - vﬂ'*(—i%)] Skl(x,y)n'(,(y)}
x exp{i f dx f Ay X )SK (3, x) [ia%) - VFT*(fi%):l ¢K’(x)}

. , / .0 .0
X exp{lfdxfdyfdzﬁk MSK(,x) [16—)60 - vrr*(flg)]

(30)

(29)

x SK'(x, z)n”(z)} :

Due to inhomogeneous differential equations (22) and (23)
we have

—k, . 0 0 Y|k K
Jax fayi*w [1 o m( i ax)]s )

= [axd @n e,

K\ K .0 (_i) K K
fdxfdyfdzn 0)S (y,x)|:18x0 wr| i) |55 @ an* @

- f dx f dy TX)SK (v, x)nK (x) (32)

€1y

and similarly

5K 09 )| K’
[fax fave (")[‘axo wer( 18X)]s )

= f de K00 ¥ (), (33)
=K'\ oK' L0 *(;ﬁ) K’ K’

Jav fax faz7¥ns (y,x)[l e (Pl I R TR0

- f dy f dx 78 0)SK (v, )% (0). (34)

It remains to consider third exponential functi on in r.h.s. of
formula (29) which contains the integral

xSE (3, x) [1% - vpr(—l—)] WK

0
fdx[ asK(y LN Fas';(y,x)T]wK(x)
X

(35)

and third exponential function in r.h.s. of formula (30) which
contains the integral

f dxS¥'(y, x) [ii — VFT*(_ii)] K (x)
X0 ox

K’ K’
—fdx[ 3S <yx> 0, B0
ox

r*] PE®). (36

According to formula (24) for SK (v, x) we have

0550w 0550
0x oA

(37)

and

. 0S%(y,x) 1 s 1 1
ivp 222 = — | dwe wO0—x0) dk ul
T ox 27rf 2ny f Uzzi o Bk 10"

T
X [VFT(—ia%)Mﬁ(X)]
P +
fdk Z CK(k)e iEq(K)(vp— Xo)uk (y)[vm’(fla—)ukn(x)]

(38)

(2 )2

Since
w(—ii)ufﬂ(x) — E,(uf (x).
Ox
w(—ii)uﬁm = E,(K)ug,(y), (39)
dy

we can rewrite relation (38) as follows:
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8SK(y,x) 1 —iw(yp—x 1 ;K/ ! K’
T3 —f dwe 00 J z" = [y n*)
SR T (P Y . —x, | 0 o) ,
* crzi w— Eg(k) 0" ( lay )M"”(Y)uk”(x)+ X exp 1fdx o5 |i— — vFT*(—l—) & (x)
8)6() ox
+ f dk Z CX (e 1EM000— XO)V}:T(*I 0 )uf Yuf x)*. . _x K —K g
e oy e xexp{i ['ax ¥ 0% 0+ 7 o
(40) ! ! !
This result means that X exp{ifdxfdy 7K 008K (x, y)nk (y)} . (47)
iVFLSK(y,x) = VFT(—ii)SK(y, X). 41) Now consider generating functional (13). It can be repre-
ox oy sented as the product
Formula (35) becomes 20,7 = Z‘/’ [0, 7751 Zl/ [77K/ 7X. (48)
f dx SK(y,x) [1— - VFT(—l—)] YK () where
8)60
z" ", 751 = | (DyX DT ¥
= fdx|:1— — VFT(_IE)]SK()),X)wK(x). (42) 0 [77 77 ] f[ ,(/} ][ w ]
) dy

X exp{ifdx T* YK () + @K(X)TIK(x)}

Similarly we have
X exp{ fdx w x) [1— — VFT(—l—):| wk(x)}
X0

fdx SK'(y,x) [1— — VT (—1—)] K (x) )
B fdx [l— — VFT (_li)] SK 00K ). Zy ] f[D¢K] (D"
ay() 6y 4 ’ / —K' ’
“43) x exp{if d 75 K (o) + 2 om (x)}
Using inhomogeneous differential equations (22) and (23), we 9 9
b : . —K' .o “f 9 K'
obtain X exp{1fdx P (x) [1 o VET ( 1ax )] P (x)}.
K SK (v 1) |10 — (_-2) K (50)
fdy fdx T WS70.2) [1 Oxg et Ox v From formulae (46) and (49), it follows that
= Jarrrwurco @Dz K, gk = 2y exp{ —i [ax [dy 7*0s¥ @y ) }
and (51)

P P Similarly, from formulae (47) and (50) we have
Jay [ ax 7805550 [ia_ - m*(—ia—)] e .
X0 X Z(Lf [T]K , 77K]

Tt @) @) =z eXP{ - lf dx f dy 75 0)SK (x, y)nk (y)} © o (52)
Combining above presented results, we rewrite formulae (29)

and (30) as follows: Using relation (48), (51) and (52), finally we obtain explicit

formula of the generating functional (13)

7,5‘)’( _ K 7K
2" = [einz* zg[n,m:zgexp{—i fax [av ﬁ(x)S(x,wn(y)}. (53)

X exp{ f dx ¢ (x) [1— — VFT (1—)] wK(x)} In above presented reasonnings we have shown that 2-point
Green function is expressed in terms of generating func-

% exp{ifdx (7KK (x) + JK(x)nK(x)]} tiqnal Z}f[n, 77] through formula (16). Using formula (53) for
Z{[n, 7], we obtain relation

X exp{ifdxfdy 75K, ynk(y) }, (46) Gop(;y) = iSa5(x, y). (54)
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Similarly, 4-point Green function is expressed in term of
generating functional ZS’[r], 77] through formula (18). Using
expression (53) for Zg’[n, 7] we obtain relation

Gaanrt (1% Y291) = Gay (013 Y1) Gy 5,(023 ¥2) — Gy, (413 ¥2) Gy 8,023 y1)
(55)
which is the well-known Wick theorem for the 4-point Green
function for the free Dirac fermion fields. It is straightforward
to generalize above elaborated calculation method to verify
the validity of the Wick theorem for Dirac fermion fields with
any even positive integer n.

4. Functional integral of the interacting system
of Dirac fermion fields

In this section we study the functional integral (7) of the
system of Dirac fermion fields in the presence of the mutual
Coulomb interaction between Dirac fermions. The last factor
in expression (7) of functional integral Z¥ of the interacting
system of Dirac fermion fields contain a bilinear expression

[ax [ayFmuveue - »Teee)

of the density 1 (x)¢(x) of Dirac fermions. Let us linearize
the factor

exp{ = J & [ad@ieus - »Feu }

in functional integral (7) with respect to the Dirac fermion
density ) (x)1(x). For this purpose we introduce a Hermitian
scalar field ¢(x) and the functional integral

¢ = i —_ .
Zj f (D] eXp{ 5 f dx f dy@(ou(x y)<p(y)} (56)
By shifting the functional integration variable

o(x) = p(x) — P ()PY(x),

we rewrite Zg in another form

(57)

Z = [1De) exp { > [ [ et - yyew) }
xexp{ —i [ar [avput — 0w |

<exp{ 3 far [avicoveouts - nieuo | -

(58)
From this formula it follows the famous Hubbard—Stratonovich
transformation

exo{ -1 [ar [odevwut—nFowm ]

1 i
= Z_g f [De] eXP{ 3 f dx f dyp(o)u(x — y)so(y)}

xexp{ —i [ax [ dyewue - »Fowm |

(59)
Using this transformation we rewrite the functional integral
ZY of the interacting Dirac fermions in the form linearized
with respect to the Dirac fermion density

oo 1 i .
Zv= Ze f (D] exp{ 5 f dx f dy@(xu(x y)w(y)}

x [yl D7) exp{i [axiw [ia% —H] wm}

x expy —i [ dx | dyd ()P)ux — y)e) 1 -
{-ifof P
Note that the expression

exp{ i [ar [ eoveouts - ye0) }

is linear with respect to the Dirac fermion density % (x)t)(x).

In terms of the statistical average (9) of the products of
components of Dirac fermion quantum fields we have fol-
lowing new expression of the functional integral Z¥ deter-
mined by formula (60)

zy i
Z f [Dy] exp { ) f dx f dyp@)ux — y)p(y) }

X <exp{ - ifdxfdxq;(x)w(x)u(x — () }> .

VAR

(61)
Expanding the exponential function
expf i [r [avFEveout - x)ee]
into  functional power series of the function
P () Y@)u(x — x")p(x’), we obtain
<exp{ =i ar f @B oopeoute - e } >
=142 F®[y] (62)

n=1

where

Pt = ([~ far farFwvwnt - p] ) -

(63)
Explicit expressions of functional F™[¢] can be derived by
means of the method presented in [23]. As the result we obtain
following result

1+ > F®[pl=exp(il [¢] }

(64)
n=1
with
Ilel= 3 1"[e] , (65)
n=1
1001 = — [dx [ @Epe)ut - )¢, (66)

1P[p] = % f dxf dx’ f dyf dy"Sa(x, ¥)S5a(y, Vulx — x")

X u(y =y e, (67)
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19[p] = %fdxfdx’fdyfdy’fdzfdz’ 05X, y)

X Sgy (¥, 2)Sya(z, X
X u(x — xu(y — yu(z — 2o e e)

(68)
and so on, S(x, y) being 4 x 4 matrices of the form
SK(x,y) 0
S(x,y) = , . 69
Y ( 0 SK(.y) 69)

The Hermitian scalar field ¢(x) describes collective excitation
in the interacting system of Dirac fermions, called also the
Dirac fermion gas in graphene. This scalar field p(x) is related
to the quantum fields of plasmons in graphene. The study of
relationship between (x) and quantum fields of plasmons in
graphene is a very interesting scientific subject which would
be done in the future.

5. Conclusion and discussions

In this work we have presented the basics of functional int-
egral method for the study of interacting system of Dirac
fermion gas in a graphene single layer. The fundamental prin-
ciple of the theory is the assumption on the explicit expres-
sion of the action functional of the system. The efficient
mathematical tool for the study is the generating functional
containing Grassmann parameters anticommuting with Dirac
fermion quantum fields. Explicit expression of the generating
functional of free Dirac fermion fields was established and
used for the study of 2n-point Green functions of free Dirac
fermions. The celebrated Hubbard—Stratonovich transforma-
tion was applied to express the functional integral of the inter-
acting Dirac fermion system in terms of a Hermitian scalar
field describing collective excitation in this system and related
with graphene plasmons.
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