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Abstract. We apply the Popov-Fedotov formalism for investigating magnetic properties of
the spin S = 1 Heisenberg antiferomagnetic (HAF) on a Bravais lattice. Mapping spin-1
lattice systems on three-component auxiliary fermions with imaginary chemical potential and
transforming to a local coordinate system allow us to express a sublattice magnetization, free
energy and other thermodynamical quantities in unique forms for different lattice structures
in various magnetically ordered phases. We compare them with the results obtained when the
local constraint is disregarded. A comparison with the case of S = 1/2 is also discussed.

1. Introduction
The fact that spin operators satisfy the non-canonical commutation relations poses a great
difficulty to study theoretically quantum spin systems, because it leads to the absence of Wick
theorem [1], so it is impossible to apply a standard perturbation technique directly for spin
operators. One of the ways to resolve this problem is to represent the spin operators in terms
of the auxiliary Fermi or Bose-operators [1]. However, any representation of spin operators as
a bilinear combination of auxiliary operators makes the Hilbert space for spin operators larger.
As a result, one must remove the spurious unphysical states by imposing some constraint on the
auxiliary operators for each lattice site. In general it is very difficult to treat the local constraint
exactly. One simple common approximation is to replace the local constraint by a so-called global
constraint, where the number of auxiliary particles is taken to be on average for the whole lattice
system. Popov-Fedotov proposed a method for quantum spin systems with S = 1/2 and S = 1
free of the local constraint problem [2], introducing some proper imaginary chemical potential.
They demonstrated that if the usual Fermionic Matsubara frequencies ω = 2π

β

(
n+ 1

2

)
are

replaced by ω = 2π
β

(
n+ 1

4

)
for S = 1/2 and by ω = 2π

β

(
n+ 1

3

)
for S = 1 then the contributions

of the unphysical states cancel each other and give no contribution to the partition function.
Later, the extention of the Popov-Fedotov formalism for arbitrary spin was done by Veits et al
[3]. In fact, this paper is basically of a methodologically nature. The concret calculations then
have been performed for various spin systems with S = 1/2: three dimensional ferromagnetic
Heisenberg model [4], Heisenberg antiferromagnet on a d-dimensional hypercubical [5, 6] and
a triangular [7] lattice. However, many real magnets have spin quantum number S = 1, in
particular the well studied experimentally material NiGaS4. Besides, the spin quantum number
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S can play a considerable role in the various magnetic phenomena. A well-known example of
this kind is the Haldane phase for S = 1/2 one dimensional Heisenberg model, which is absent in
his S = 1/2 counter parts [8]. It is thus of great interest to apply the Popov-Fedotov formalism
to spin systems with S = 1. In this report, we derive the general expressions of a sublattice
magnetization, free energy and other thermodynamical quantities in unique forms for a Bravais
lattice in a magnetically ordered state. The plan of the report is the following. In section II we
introduce the model and the formalism. The mean field approximation is considered in section
III. The fluctuations around a mean-field state are investigated in section IV. The last section
is devoted to conclusion and discussions.

2. Formulation
We consider a general antiferromagnetic Heisenberg Hamiltonian on a Bravais lattice given by:

HS =
∑
ij

Jij ~Si.~Sj (1)

where ~Si denotes the S = 1 spin vector operator. The interaction between the sites are
antiferromagnetic (Jij > 0). In the general frustrated lattice described by Hamiltionan (1) the
classical ground states have long range order, which may be parametrized by some magnetic
ordering vector ~Q [9]. We assume that the spins are planar in the plane Oxz and are described
as follows [9]:

~Si = S
(
~u sin ~Q~ri + ~v cos ~Q~ri

)
(2)

where ~u,~v are two orthonormal unit vectors in the plane Oxz. The vector ~Q defines the relative
orientation of the spins on the lattice, namely an angle between the vectors ~Si and ~Sj is given
by:

θij = θi − θj = ~Q (~ri − ~rj) (3)

Inserting ~Si into Hamiltonian (1) we get the classical energy in terms of the ordering vector ~Q
as folows:

Ecl =
1

2
NS2J

(
~Q
)

(4)

where N is site number of the lattice and J
(
~Q
)

is the Fourier transform of the exchange integral:

J
(
~Q
)

=
1

N

∑
ij

Jije
−i ~Q(~ri−~rj) (5)

The magnetic ordering vector ~Q can be obtained by minimizing (5) with respect to ~Q , i.e by

setting
∂J( ~Q)
∂Qα

= 0, α= x, z.

In principle, there may exist several ordering vector ~Q, minimizing the two-variable function

J
(
~Q
)

. In order to incorporate the fluctuations in a unique way for all possible order phases, we

folow Miyake [10], introducing a local coordinate system on each site i, where the local z axis is
oriented along its classical direction. This transformation reads:

Szi = Sz
′
i cos θi − Sx

′
i sin θi

Sxi = Sz
′
i sin θi − Sx

′
i cos θi

Syi = Sy
′

i .

(6)
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Substituting (6) in (1), we get the following Hamiltonian, which is anisotropic on the spin space:

HS = −1

2

∑
αβ

Jαβij Sαi S
β
j (7)

where: 
Jxxij = Jzzij ≡ Xij = −Jij cos θij
Jyyij ≡ Yij = −Jij
Jzxij = −Jxzij ≡Wij = −Jij sin θij
Jxyij = Jyxij = Jyzij = Jzyij = 0

(8)

The tranformation (6) allows us to introduce only one type of auxiliary particles for all lattice
sites rather than one type for each magnetic sublattice. Following Popov-Fedotov [2], the S = 1
spin vector operators are written in terms of Fermi operators f+

iα, fiα (α = 1, 2, 3)

~Si = f+
iαταβfiβ (α = 1, 2, 3) (9)

where the ~ταβ vector components are S = 1 (3x3) matrices :

Sx =
1√
2

 0 1 0
i 0 1
0 i 0

 ;Sy =
1√
2

=

 0 1 0
−i 0 1
0 −i 0

 ;Sz =

 1 0 0
0 0 0
0 0 −1

 (10)

Here and in the following we put ~ = 1 . The cost of the representation (9) is the extention of
the Hilbert space into unphysical sectors, which have to be eliminated by imposing a constraint
for each site i: ∑

α

f †iαfiα = 1 (11)

As it was shown by Popov-Fedotov [2], this can be done by means of introducing the projection

operator P̂ = eiµN̂F with N̂F =
∑
iα
f+
iαfiα being number operator and µ = i π3β , β = kBT being

the imaginary chemical potential. The partition of a spin system with Hamiltonian Hs can be
expressed in term of Fermi operators as follows:

Z =

(
i√
3

)N
Tr
[
e−β(ĤF−µN̂F

]
(12)

here ĤF is Hamiltonian Hs in the fermionic representation (9). The appearence of the imaginary
chemical potential in (12) results in that the corresponding Matsubara frequencies for Popov-
Fedotov fermions read as:

ωn =
2π

β

(
n+

1

3

)
(13)

The partition fuction Z in (12) can be treated following the standard fuctional integral formalism
similar to the case of S = 1/2 [6, 7]. The main differences are that instead of Pauli (2x2) matrices
and Matsubara frequencies µ = 2π

β

(
n+ 1

4

)
we have to deal with the spin S = 1 (3x3) matrices

(10) and Matsubara frequencies given by (13). The calculations are lenghthy but straightforward,
so we only list here the main steps. Firstly, we express the partition fuction as path integral
over Grassmann variables η̄iα,ηiα and transform the Heisenberg Hamiltonian (7) into bilinear
fermionic expression by introducing a Hubbard Stratonovich decoupling:

Z = i

(
√

3)
N

1
Z0

∫ ∏
i
D [−→ϕi]

∫
D [η̄iα, ηiα] e−S[−→ϕi,η̄iα,ηiα]

Z0 =
∫ ∏

i
D [−→ϕi] e−So[

−→ϕi]
(14)
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S [−→ϕi, η̄iα, ηiα] = So [−→ϕi] + S1 [−→ϕi, η̄iα, ηiα]

So [−→ϕi] =
β∫
0

dτ

{∑
ijλγ

(
J−1

)λγ
ij
ϕλi (τ)ϕγj (τ)

}

S1 [−→ϕi, η̄iα, ηiα] =
β∫
0

dτ

{∑
iα
η̄iα(τ) (∂τ − µ) ηiα(τ) +

∑
i,α,λ

η̄iα(τ)τλαβηiβ(τ)ϕλi (τ)

} (15)

where τ is an imaginary time and ~ϕi stands for the auxiliary Bose field, which plays the role of
the staggered magnetization. Then we perform integration over the Grassmann variables to get:

Z =

(
i√
3

)N 1

Z0

∫
D [−→ϕi] e−Seff [~ϕi] (16)

where the effective action Seff [~ϕi] is given by:

Seff [~ϕi] = So [~ϕi]− ln det K̂i (17)

The matrix Ki in the frequency representation reads:

K̂i (ω1, ω2) =

(
−iω1 −

iπ

3β

)
δω1,ω2 Î +

1

2
~τ ~ϕi (ω1 − ω2) (18)

where Î is (3x3) unit matrix.

Decomposing the matrix K̂ into nonperturbation and perturbation parts:

K̂ = K̂o + M̂ (19)

and expanding Tr
(

ln K̂
)

in a Taylor series:

Tr
(

ln K̂
)

= Tr
(

ln K̂o

)
+ Tr

∞∑
n=1

(−1)n+1

n

(
K̂−1
o M̂

)n
(20)

We can calculate the partition function in a given order of M̂ . The explicit forms of K̂o and
M̂ depend on the way of decomposing the Hubbard Stratonovich auxilary field ~ϕi . In the
following we set:

~ϕi (Ω) = ~ϕio (Ω = 0) + δ~ϕ (Ω) (21)

where ~ϕio is the mean field part and δ~ϕ (Ω) is the fluctuation part of the auxilary field ~ϕi (Ω) .
Substituting (21) in (18), the expression (19) gives:

K̂o =
(
iω1Î + ~τ ~ϕio

)
δω1ω2δij

M̂ = ~τδ~ϕi (ω1 − ω2) δij = ~τδ~ϕi (Ω) δij

(22)

In order to calculate the sublattice magnetization we add a local magnetic field ~Bi to Hamiltonian
(7) and let ~Bi = 0 at the end of final calculations. Then at the one-loop approximation one
derives the effective action as follows:

Seff = S(0)
eff

+ S(1)
eff

+ S(2)
eff

(23)

S(0)
eff

=
1

2

∑
ijλν

(
ϕλio +Bλ

i

) (
J−1

)λν
ij

(
ϕγjo +Bν

j

)
− ln det K̂o (24)
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S(1)
eff

= 1
2

∑
ijλν

[(
J−1

)λν
ij

(
ϕλio +Bλ

i

)
δϕνj (0) + δϕλi (0)

(
ϕνjo +Bν

j

) (
J−1

)λν
ij

]
− Tr

(
K̂−1
o M̂

) (25)

S(2)
eff

=
1

2

∑
ijλγ,Ω

(
J−1

)γλ
ij
δϕλi (−Ω) δϕγj (−Ω) +

1

2
Tr
(
K̂−1
o M̂

)2
(26)

The mean field ϕαio is chosen by minimizing the effective action in the application of the least
action principle.

Setting δϕ±j (ω) = δϕxj (ω)±δϕyj (ω) , the partition function can be decomposed into a product
of three terms:

Z = ZMF .Zzz.Z+− (27)

where ZMF is the mean field contribution, Zzz and Z+− are the fluctuation contributions for
the longitudinal part δϕz (ω) and the transverse parts δϕ+ (ω) , δϕ− (ω) . Consequently, the free
energy may be written in the following way:

F = FMF + δFzz + δF+− (28)

3. Mean field approximation
Minimizing the efective action according the least action principle, we derive the mean field
equations for the auxiliary fields ϕαio :

δSeff

δϕαi

∣∣∣∣
δϕαi =0

= 0 (29)

From Eqs. (23) - (26) and (29) we get:∑
β,j

(
J−1

)αβ
ij

(
ϕβjo +Bβ

j

)
δΩ,0 +Kα

1i (Ω) = 0 (30)

Where Kα
1i (Ω) is defined as follows:∑

i,α,Ω

Kα
1i (Ω) δϕαi (Ω) = −Tr

(
K̂−1

0 M̂
)

(31)

From the definition of a magnetization per site i:

mα
i = − ∂F

∂Bα
i

= − 1

β

∂

∂Bα
i

Z (32)

one can find the relation between the local magnetization mα
i and the auxiliary field ϕαi . In

particular, from (25) and (32), the mean field magnetization mα
io related to the auxiliary field

ϕio as follows:

ϕαio +Bα
i = −

∑
jβ

mβ
joJ

βα
ji (33)

From (30) and (33), we obtain:
mα
io = Kα

1i (34)
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Because we are working in the local coordinates with the classical magnetization pointing along
the z-axis, thus, in the mean field approximation:{

mα
io = mioδα,z

ϕαio = ϕioδα,z
(35)

Taking into account Eqs. (35), from (31) we get:

Kα
1i (Ω) = 2

∑
i,ω

ϕio

(iω)2 − ϕ2
io

δα,zδΩ,0 (36)

For a Bravais lattice, all the sites are equivalent, so: ϕio = ϕo;mio = mo . The sum over the
modified Matsubara frequencies can be carried out by the contour integration trick and gives:

Kα
1i (Ω) = ∆ (ϕo) δα,zδΩ,0 (37)

with ∆ (ϕo) being:

∆ (ϕo) = − 2shβϕo
1 + 2coshβϕo

(38)

Together with Eqs. (33) and (34), it leads to the following equation for the mean-field
magnetization:

mo = ∆ (λmo) (39)

where:
λ = −J

(
~Q
)

(40)

Note that in the case of everage projection (µ = 0) , the sum over the fermionic Matsubara
frequencies in (36) gives:

Kα
1i (Ω) = −thβϕo

2
(41)

Then instead of Eq. (39) one has:

m̃o = −th
(
βλm̃o

2

)
(42)

Accordingly the equations (39) and (42) result in different critical temperature:

exact-constraint : TC = 2λ
3

average-constraint : T̃C = λ
2

(43)

From (43) we obtains: TC
T̃C

= 4
3 for S = 1, while for the case of S = 1/2 one has TC

T̃C
= 2 [5-7].

In both cases of S = 1/2 and S = 1 the critical temperature for the case of exact constraint is
higher than for average one. This is due to thermal fluctuations into unphysical spinless states
in the case of global constraint, which reduce the magnetic moment. In the case of spin S = 1/2
the number of physical states in the Fock space of the auxiliary fermion Nph = 2 (one particle
states), while two states are unphysical (the vacuum and the two-particle states): Nun = 2.
Assuming TC ∼ 1

Nph
; T̃C ∼ 1

Nph+Nun
, it results in the ratio TC

T̃C
= 2 for S = 1/2 . For the case

of spin S = 1, two states are unphysical (the vacuum and the three-particle states): Nun =
2. Due to the particle-hole symmetry of the spin Hamiltonian the three one-particle and three
two-particle states are physical: Nph = 6. Thus, one has for the S = 1 case: TC

T̃C
= 4

3 . However,

at zero temperature both constraint methods give the same result:

lim
T→0K

mo = lim
T→0K

m̃o = 1 (44)
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Free energy in mean-field approximation can be expressed in terms of the magnetization in the
following way, letting the fictive magnetic field B = 0:

For exact constraint (µ = iπ/3β) :

FMF =
Nλm2

o

2
− 2

β
ln (2coshβλmo + 1) (45)

For global constraint (µ = 0) :

FMF =
Nλm̃2

o

2
− 2

β
ln

(
2cosh

βλm̃o

2

)
(46)

4. Fluctuation contributions
Due to the Eq. (30), the first order fluctuation contributions vanish: S(1)

eff = 0. The effective
action in the second order of fluctuation (26) may be rewriten in the form:

S
(2)
eff =

1

2

∑
ijαβ

Dαβ
ij (Ω)δϕαi (−Ω) δϕβj (Ω) (47)

where:
Dαβ
ij (Ω) =

(
J−1

)αβ
ij

(Ω) +Kαβ
2ij (Ω) (48)

In the local coordinates in the mean field approximation we have ϕ±io = 0, ϕzio = ϕo for every

site i, therefore the kernel Kαβ
2ij (Ω) has only three nonzero components:

Kzz
2ij (Ω) =

∑
ω

1∑
k=−1

k2

(iω + kϕo) (iω + Ω + kϕo)
δij (49)

K+−
2ij (Ω) =

1

4

∑
ω

0∑
k=−1

2− k(k + 1)

(iω + kϕo) (iω + Ω + (k + 1)ϕo)
δij (50)

K+−
2ij (Ω) =

1

4

∑
ω

1∑
k=0

2− k(k − 1)

(iω + kϕo) (iω + Ω + (k − 1)ϕo)
δij (51)

Summing over the modified Matsubara frequencies, by mean of contour integration method,the
above eqs give:

Kzz
2ij (Ω) = −1

3

(
4− 3∆2 (ϕo)−

√
4− 3∆2 (ϕo)

)
δΩ,0δij (52)

K+−
2ij (Ω) =

(
K+−

2ij

)∗
(Ω) =

β

2

∆ (ϕo)

ϕo + iΩ
δij (53)

The fluctuation corrections to the partition function Zfl are quadratic in the field variable
δϕ+

i , δϕ
−
i , δϕ

z
i and can be carried out:

Zfl =

∫
D [δ~ϕ] e−Seff [δ~ϕ] =

[
det D̂ij

]−1/2
= Zo

[
det
(
Î + ĴijK̂2ij

)]−1/2
(54)
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The components of the exchange matrix Ĵij may be given in the terms of Xij , Yij ,Wij as follows:
J++
ij = J−−ij = Xij − Yij
J+−
ij = J−+

ij = Xij+Yij
Jzzij = Xij

J+z
ij = J−zij = −Jz+ij = −Jz−ij = −Wij

(55)

After Fourier the components of the exchange interaction in (55) read:
X (~p) = −1

2

(
J
(
~p− ~Q

)
+ J

(
~p+ ~Q

))
Y (~p) = −J (~p)

W (~p) = −1
2

(
J
(
~p+ ~Q

)
− J

(
~p− ~Q

)) (56)

From the Eqs. (52) (54) and (56) we obtain the fluctuation contributions to the free energy:

δFzz =
1

2β

∑
~p∈BZ

lnA (~p) (57)

δF+− =
1

β

∑
~p∈BZ

ln
shβE(~p)

2

shβ|ϕ0|
2

(58)

where:

A(~p) = 1 +X (~p)Kzz
2 +

moK
zz
2 W 2 (~p)

ϕo +moX (~p)
(59)

E(~p) =
√

(ϕo +moX (~p)) (ϕo +moY (~p)) (60)

In the Eqs. (59) (60), the mean field auxiliary field ϕo in the presence of the fictive magnetic
field B is related to the magnetization mo as follows:

ϕo = −B − λ (mo +B∆mo) (61)

where:

∆mo = − βKzz
2 (−λmo)

1 + βλKzz
2 (−λmo)

(62)

Taking the derivative of the free energy (57) (58) with respect to the fictive magnetic field, we
obtain the fluctuation contributions to the longitudinal δmzz and transerve δm+− parts for the
magnetization as follows:

δmzz = − 1

2N

∑
~p∈BZ

Bo (~p)

Ao (~p)
(63)

δmzz = − 1

2N

∑
~p∈BZ

Bo (~p)

Ao (~p)
(64)

where:

Ao(~p) = 1 + βCo

(
X(~p) +

W 2(~p)

X(~p)− λ

)
(65)

Bo(~p) = β

(
X(~p) +

W 2(~p)

X(~p)− λ

)
Do + β

W 2(~p)Co

mo(λ−X(~p))2 (66)
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Co and Do is given by:

Co = −1

3

(
4− 3m2

o −
√

4− 3m2
o

)
(67)

Do = mo∆mo

(
2− 1√

4− 3m2
o

)
(68)

The magnon energy reads: {
E(~p) = λm0ω(~p)

ω2(~p) =
(

1− X(~p)
λ

)(
1− Y (~p)

λ

)
(69)

When the single occupancy condition is disregarded the following replacement should be done
on the equations from (57) to (69):{

mo → m̃o

Kzz
2 → K̃zz

2 = −1
2

(
1− m̃2

o

) (70)

Using the following relations:

U =

(
∂βF

∂β

)
(71)

Cv = −β2

(
2
∂F

∂β
+ β

∂2F

∂β2

)
(72)

it is straightforward to derive explicit expressions for internal energy U and specific heat Cv
from the Eqs. (45), (57), (58), putting the fictive magnetic field B = 0.

5. Conclusions and Discussions
In this paper we have obtained the explicit expressions for the free energy of antiferromagnetic
Heisenberg model with S = 1 on a Bravais lattice by means of Popov-Fedotov formalism.
Working in a local coordinates and parametrizing a magnetically ordered phase by a magnetic
ordering vector ~Q , we have derived the general equations of a sublattice magnetization and
free energy in unique forms for any Bravais lattice and any magnetically ordered state. For a
particular model, one need to find the ordering vectors ~Q , the quantities X (~p) , Y (~p) ,W (~p) and
then one can apply directly the Eqs.(45), (57), (58). It is easy to check that at zero temperature
limit it does not matter whether the constraint is treated exactly or average. The magnetization
and the free energy are the same, as for the case S = 1/2. However, at finite temperature the
exact local constraint gives a significant effect. As an example we consider the antiferromagnetic
Heisenberg model on D-dimensional hypercubic and triangular lattice with nearest - neighbour
bonds.

The Fourier transform of the exchange interactions are given respectively as follows:

JHC (~p) = 2J

D∑
k=1

cos ~px (73)

JTRL (~p) = 2J

(
cos ~px + 2 cos

~px
2

cos

√
3

2
~py

)
(74)

Minimizing JHC (~p) and JTRL (~p) with respect to ~p , we find that the classical state is
described by ordering vectors QHC = (π, π) for the D-dimensional hypercubic lattice and

QTRL = 2π
(

1
3 ,

1√
3

)
for the triangular lattice. According to the Eqs. (40) and (56), we obtain:



10

1234567890

41st Vietnam National Conference on Theoretical Physics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 865 (2017) 012015  doi :10.1088/1742-6596/865/1/012015

For the hypercubic lattice:{
λHC = 2JD
XHC (~p) = −YHC (~p) = JHC (~p)

(75)

For the triangular lattice:{
λTRL = 3J
XTRL (~p) = −1

2YTRL (~p) = 3
2J (~p)

(76)

Subtituting Eqs. (75) and (76) in the Eqs. in Section III, we obtain the magnetization and the
free energy for Neel state in the hypercubic lattice and for 120o spin structure in the triangular
lattice, taking into account the local constraint condition in one loop approximation. The
obtained expressions have a similar structure as for the case S = 1/2 [5-7]. Taking limit of
zero temperature T → 0K for the obtained equations, we get the same ground state energy
and sublattice magnetization derived in linear spin wave approximation by means of Holstein
Primakov representation [7].

The results of this report could be applied for investigating anisotropic Heisenberg models
beyond a nearest-neighbour bonds. It would be also interesting to extend the above results for
the case of arbitrary quantum spin number S and for a non-Bravais lattice. It is left for a future.
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