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Abstract. We present an analysis of the antiferromagnetic Heisenberg model on an triangular
lattice with spatially anisotropic J1-J2 exchange interactions. We apply the Popov-Fedotov
method based on introducing an imaginary valued chemical potential to enforce the auxiliary
fermion constraint exactly. The staggered magnetization, magnon spectra, free energy are
computed in one loop approximation and compared using two different constraints: exact and on
average. In the limit of zero temperature the results are identical, whereas at higher temperature
significant differences are found. The comparisons with the results obtained by other methods
are discussed.

1. Introduction
Frustrated quantum antiferromagnets have been much studied in resent years. One of the
challenges is to understanding the interplay between quantum fluctuations and frustration [1,
2]. In this context, the triangular lattice Heisenberg antiferromagnet is a such magnet. The
isotropic S = 1/2 quantum Heisenberg antiferromagnet (HAF ) on the triangular lattice has
been studied for the last few decades by analytical [3, 4] as well as numerical [5 - 7] methods.
It is widely believed that the classical noncollinear 120o spin structure is stable in the quantum
case with the strong reduction of staggered moment [4]. However, there exists no good material
candidate for the pure isotropic triangular lattice HAF . The real magnets have considerable
spatially in-plane anisotropies [8], in particular for Cs2CuCl4 [9, 10] and Cs2CuBr4 [10, 11]
compounds. There are several analytical [12-15] and numerical [16, 17] investigations of the
anisotropic triangular model.

The goal of this report is to study the spin S = 1/2 Heisenberg antiferromagnet on
anisotropic triangular lattice, applying Popov-Fedotov formalism [18] for the semi-fermionic spin
representation. The use of different representations of the spin operators in terms of the auxiliary
Fermi or Bose operators is one basic approach to the investigation of spin systems. However,
the representation of spins as the bilinear canonical operators enlarges the dimensionality of
Hilbert space in which these operators are acting. Thus, one must impose the constraint on the
auxiliary operators to remove the unphysical states from the consideration. The simplest way
to cure the constraint problem is the replacement of the local by a so-called global constraint,
where the number of auxiliary particles is fixed only in the average over all sites. Popov-Fedotov
proposed a new method when the local constraint is taken into account exactly by introducing

http://creativecommons.org/licenses/by/3.0
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Figure 1. Anisotropic triangular lattice

the proper imaginary chemical potential for spin S = 1/2 and S = 1. Later, Veits at al have
extended the Popov-Fedotov trick for arbitrary spin [19]. The Popov-Fedotov formalism then
has been applied for the various spin-1/2 Heisenberg models [20-25].

In this paper we study the Heisenberg antiferromagnet on an anisotropic triangular lattice,
following closely the calculations carried out in [25]. The plan of the paper is the following. In
section II, we introduce the model and the classical phases. In the section III, we present the
results for the sublattice magnetization, the free energy and the specific heat. In the last section
we shall conclude with our results.

2. Model and classical state
The Hamiltonian of the Heisenberg antiferromagnet on an anisotropic triangular lattice is written
as:

H = J1
∑
i

∑
j=i+~δ2,3

~Si.~Sj+J2
∑
i

∑
k=i+~δ1

~Si.~Sk (1)

where ~Si denotes the S = 1 spin vector operator. The first sum runs over all nearest - neighbour
pair along the x−axis with the antiferromagnetic exchange interaction J1(J1 > 0) and the second
sum runs over all other nearest neighbour pairs (See Fig 1.) with the interaction J2(J2 > 0).

The nearest-neighbour bond vectors are given by:

~δ1 = a(1, 0);~δ2 = a

(
−1

2
,

√
3

2

)
;~δ3 = a

(
1

2
,

√
3

2

)
(2)

The bonds J1 and J2 are competing interations and lead to magnetic frustration. Note that
in the limit J1 = 0 the model reduces to decoupled chains, the limit J1 = J2 coresponds to the
isotropic triangular lattice, while in the case J2 = 0 the model becomes topologically equivalent
to the square lattice. In two dimensional frustrated lattice described by Hamiltonian (1) the
classical ground states have long range order, which are the collinear ordering and the spiral
ordering [1, 2]. Both orderings are obtained in the following.

In the classical limit of S = ∞, we assume that the spins are planar in the plane Oxz and
are described by some magnetic ordering vector ~Q as follows:

~Si = S
(
~u sin ~Q~ri + ~v cos ~Q~ri

)
(3)

where ~u,~v are two orthonormal unit vectors in the plane Oxz. The vector ~Q defines the relative
orientation of the spins on the lattice, namely an angle between the vectors ~Si and ~Sj is given
by:

θij = θi − θj = ~Q (~ri − ~rj) (4)
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Inserting ~Si into Hamiltonian (1) we get the classical energy in terms of the ordering vector
~Q as folows:

Ecl =
1

2
NS2J

(
~Q
)

(5)

where N is site number of the lattice and J
(
~Q
)

is the Fourier transform of the exchange integral:

J
(
~Q
)

=
∑
~δ1

J~δ1cos
(
~Q~δ1

)
= 2J1

(
αcosQx + 2cos

Qx

2
cos

√
3

2
Qy

)
(6)

where α = J2
J1

and we let the lattice a = 1.

By minimizing the classical energy (5) with respect to the vector ~Q, we find two kinds ordered
phases:

i) Collinear Neel state is characterized by ~Q =
(

0, 2π√
3

)
for the region 0 ≤ α ≤ 1

2 .

ii) Incommensurate spiral state with ~Q =
(
2cos−1

(
− 1

2α

)
, 0
)
,where θ = arccos

(
− 1

2α

)
. For

α = 1 we have a triangular lattice which corresponds to the 120ospin structure.
In the following we study the influence of the fluctuations on the classical state by means of

Popov-Fedotov functional integral method, applying the calculations done in [25].

3. The resuls
3.1. Mean-field approximation
Working in the local coordinate system and parametrizing the classical state by ordering vector,
one is able to express in a unique form the results for both the Neel and the spiral state. We
introduce notations for λ, γx (~p) , γy (~p) , γω (~p):

a) For Neel state: 0 ≤ α ≤ 1
2 ,

λ = 2(2− α)J1 (7)
γx (~p) = 1

α−2

(
α cos px − 2 cos px2 cos

√
3
2 py

)
γy (~p) = 1

α−2

(
α cos px + 2 cos px2 cos

√
3
2 py

)
γω (~p) = 0

(8)

b) For the spiral state: α > 1
2 ,

λ = 2J1(α+
1

2α
) =

J1
α

(2α2 + 1) (9)
γx (~p) = 1

2α2+1

[(
2α2 − 1

)
cos px + 2 cos px2 cos

√
3
2 py

]
γy (~p) = − 2α

2α2+1

(
α cos px + 2 cos px2 cos

√
3
2 py

)
γω (~p) = −

√
4α2−1
2α2+1

(
sin px − 2 sin px

2 cos
√
3
2 py

) (10)

The sublattice magnetization per site in the mean field approximation reads:

mo =
1

2
tanh (βλmo) (11)

In the case of average constraint, instead of equation (11) one has:

m̃o =
1

2
tanh

(
βλm̃o

2

)
(12)
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Figure 2. Temperature dependence of mean field magnetization mo (for exact constraint: full
line, from right to left) and m̃o (for: average constraint: dashed line, from right to left) for Neel
state with α = 0, α = 0.4, α = 0.5 .

Figure 3. Temperature dependence of mean field magnetization mo (for exact constraint: full
line, from left to right) and m̃o (for: average constraint: dashed line, from left to right) for
incommensurate spiral phase with α = 0.75, α = 1, α = 2.

Accordingly, the equations result in different critical temperature:

exact-constraint : TC = λ
2

average-constraint : TCo = λ
4

(13)

From (13) we see the critical temperature for the case of exact constraint is higher than
for average constraint is higher than for average constraint TC

TCo
= 2. This is due to thermal

fluctuations into unphysical spinless states when constraint is treated globaly, which reduce
the magnetic moment. Howerver, at zero temperature both constraint methods give the same
result. In Fig 2 and Fig 3 we plot the temperature dependence of the mean field sublattice
magnetization for Neel and Spiral states, respectively. Fig 2 and Fig 3 show the difference of
the results for the case of exact constraint and average one.

The mean field free energy per site can be expressed in term of the magnetization moas
follows:

FMF

N
=

1

2
λm2

o −
1

β
ln

(
2cosh

βλmo

2

)
(14)

In the case of average projection instead of (14) one has:

FMF

N
=

1

2
λm̃2

o −
2

β
ln

(
2cosh

βλm̃o

2

)
(15)

Again, at T = 0K, the Eqs. (14) and (15) lead to the same result.
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3.2. Fluctuation contributions
In one loop approximation we obtain the fluctuation contributions to the longitudinal δmzz and
transerve δm+− parts for the magnetization as follows:

δmzz = − 1

2N

∑
~p

Bo
Ao

(16)

δm+− = − 1

2N

∑
~p

coth
βE(~p)

2

[
∆moλω(~p) +

1− 1
2
γx(~p)+γy(~p)

6J

ω(~p)

]
+

1

2
coth

βλmo

2
(1 + λ∆mo)

(17)
where:

Ao = 1 + βλCo

(
γx(~p) +

γ2w(~p)

γx(~p)− 1

)
(18)

Bo = βλ

(
γx(~p) +

γ2w(~p)

γx(~p)− 1
Do +

γ2w(~p)

(γx(~p)− 1)2
Co
mo

)
(19)

Co and Do is given by:

Co = −1

4

(
1−m2

o

)
(20)

Do = mo∆mo (21)

∆mo = − βCo
1 + βλCo

(22)

The magnon energy reads:{
E(~p) = λm0ω(~p)
ω2(~p) = (1− γx (~p)) (1− γy (~p))

(23)

Note that in the equations (16), (17) an in the following the sums run over the whole Brillouin
zone. The contributions of the longitudinal and transverse fluctuations to the free per site are
given by:

δFzz =
1

2β

∑
~p

lnA0 (24)

δF+− =
1

β

∑
~p

ln
shβE(~p)

2

shβλm0

2

(25)

Where the single occupancy condition is disregarded, on the equations from (23) to (25) the
following replacement should be done:

mo → m̃o (26)

It is easy to check that at zero temperature limit it does not matter whether the constraint
is treated exactly or on the average the magnetization and the free energy are the same for
both cases of the constraint conditions. Taking the limit of zero temperature T → 0K for the
above equation we get the same sublattice magnetization and the ground state energy obtained
in linear spin wave approximation by mean of Holstein- Primakov representation [12-15].

On the contrary, at finite temperature the exact constraint lead to the different values of the
thermodynamical quantities, e.g., the magnetization, the internal energy, the specific heat...Fig
4 and Fig 5 show the difference in the finite temperature properties of the two methods of
treating the constraint conditions for both ordered states.
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Figure 4. Temperature dependence of specific heat (for exact constraint: full line, from right
to left and for average constraint: dashed line, from right to left) for collinear phase with
α = 0, α = 0.4, α = 0.5 .

Figure 5. Temperature dependence of specific heat (for exact constraint: full line, from left
to right and for average constraint: dashed line, from left to right) for incommensurate spiral
phase with α = 0.75, α = 1, α = 2 .

4. Conclusion
We get the ground state properties of the spatially anisotropic triangular magnets consistent
with the results obtained by mean of other linear spin wave theories [12-15]. This confirms the
fact that at the zero temperature the Popov-Fedotov approach does not improve the results
when the constraint on slave particle is treated approximately.

At the finite temperatures the exact projection onto physical Hilbert space gives significant
differences in comparison with average projection. This is due to thermal fluctuation of slave
fermions into unphysical spinless state. At the parameter range of interest, our results agree
with results of numerical investigstions [16, 17].

It would be interesting to see how to extend the method used here to study the spin-liquid
region and for spin quantum number S > 1/2.
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