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A B S T R A C T

We study the half-filled mass-imbalanced Hubbard model with spatially alternating interactions on an optical
bipartite lattice by means of the dynamical mean-field theory. The Mott transition is investigated via the spin-
dependent density of states and double occupancies. The phase diagrams for the homogeneous phases at zero
temperature are constructed numerically. The boundary between metallic and insulating phases at zero
temperature is analytically derived within the dynamical mean field theory using the equation of motion
approach as the impurity solver. We found that the metallic region is reduced with increasing interaction
anisotropy or mass imbalance. Our results are closely relevant to current researches in ultracold fermion
experiments and can be verified through experimental observations.

1. Introduction

The Mott metal-insulator transition (MIT), a fundamental problem
in condensed matter physics, is often studied within the Hubbard
model (HM) [1] and its simplified version, the Falikov - Kimball model
(FKM) [2]. These models describe itinerant electrons moving on a
lattice and subjected to on-site repulsive interaction. When the on-site
Coulomb interaction is strong enough, it essentially leads electrons to a
localization, which yields the Mott insulating state. In condensed
matter physics, the HM is just a simplified modeling of real materials.
However, in real materials, the corresponding model parameters are
hardly tuned in order to observe the MIT. With the achievement of
laser cooling technique, optical lattices of ultracold neutral atoms can
be established and they can simulate the HM [3,4]. The simulation of
the HM allows us to easily control and tune the model parameters [5].
Actually, the MIT was observed in an optical lattice which simulates the
HM [3,4]. The quantum simulations by the optical lattices not only
allow us to experimentally explore the physical properties of the
simulated models but they also can create novel model features. For
instance, by varying the parameters of lasers being used, one can
separately vary the hopping parameter of each spin component in the
HM. As a result, this creates a mass imbalance between the spin
components in the HM [6–12]. The mass imbalance strongly affects the

MIT. In particular, with mass imbalance, the lighter particles are more
affected by correlations than the heavy ones and the critical interaction
value of the MIT monotonically decreases with the growing of mass
imbalance [13–18]. The HM with a mass imbalance is the natural
connection between the HM and FKM. It is usually referred as the
asymmetric Hubbard model (AHM) [19]. In addition to the mass
imbalance, the quantum simulation of the HM also allows us to make a
spatial modulation of the local interaction [20]. This gives rise to
interest in studying the correlation effect of the site dependence of the
local interaction [21–23]. The simplest form of the spatial modulation
of the local interaction is an alternating of the local interaction in the
lattice. In general, the local interaction can be repulsive or attractive at
each sublattice sites. The repulsive interaction favors the antiferro-
magnetic state, while the attractive one favors the superfluid state. At
half filling, due to the particle-hole symmetry, the repulsive and the
attractive interactions are equivalent [21,22]. However, when the local
interaction at the two penetrating sublattices has different signs, at half
filling the antiferromagnetic and the superfluid states are not realized.
Instead of these states, a MIT occurs [21,22]. It is interesting to study
the effect of the mass imbalance on this MIT.

In this work, we study the Mott transition in the Hubbard model in
the presence of both the mass imbalance and the spatial alternating of
the local interaction by means of the dynamical mean-field theory
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(DMFT) [24]. The phase boundary between metallic and insulating
phases at zero temperature is analytically derived within the dynamical
mean field theory using the equation of motion approach as the
impurity solver. We found that the metallic region is reduced with
increasing interaction anisotropy or mass imbalance. We reveal the
nature of the Mott states via the spin-dependent density of states
(DOS) and the double occupancies for each sublattices as a function of
the local interactions strengths. Our results are closely relevant to
current researches in ultracold fermion experiments and can be verified
through experimental observations [25,26].

The structure of the paper is as follows. In Section 2 we present the
model and its dynamical mean-field theory. In Section 3 we present
and discuss the numerical results of the ground state in paramagnetic
states. Finally, the conclusions are presented in Section 4.

2. Model and its dynamical mean-field theory

We consider the following asymmetric Hubbard model with spa-
tially modulated interaction on a bipartite lattice
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where c c( )iσ iσ
+ annihilates (creates) a fermion with spin σ at site i,

n c c=iσ iσ iσ
+ and n n n= +i i i↑ ↓. We denote A and B the two penetrating

sublattices. Uα is the site-dependent local interaction in the sublattice α
α A B( = , ). Here, for simplicity we only consider the alternating
interaction. tσ is the nearest-neighbor hopping parameter for spin σ
and μσ is the chemical potential, which is chosen so that the average
occupancy is 1 (half-filling). The mass imbalance is introduced via
r t t= /↓ ↑. When r ≠ 1 the SU (2) symmetry in both the spin space and the
time-reversal symmetry are broken. When UA=UB the model (1) is
reduced to the asymmetric Hubbard model [13–18]. In the mass
balanced case, i.e. r=1, the model under consideration is reduced to the
typical Hubbard model with site-dependent interactions [21–23]. The
model described by the Hamiltonian in Eq. (1) can be simulated by
loading two-component fermionic atoms into an optical lattice [3,4].

We investigate the proposed model by using the DMFT. Within the
DMFT the self energy is a local function of frequency. This approxima-
tion becomes exact in the limit of lattices with an infinite coordination.
However, for lattices with finite coordinations, self energy is a local
function of frequency is just an approximation. The self energy is self-
consistently determined from a single impurity embedded in an
effective medium. This single correlated impurity is described by the
Anderson model
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where dσ and dσ
+ are the impurity operators with spin σ and εαkσ is the

energy of conduction electrons hybridized with the impurity by Vαkσ .
The effective parameters εαkσ and Vαkσ enter the hybridization function
as
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The impurity Green function is mapped onto the on-site Green function
of the original lattice model in Eq. (1) by
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where ξ ω ω μ Σ ω( ) = + + − ( )ασ σ
U

ασ2
α with Σ ω( )ασ is the local self-

energy for the sublattice α. For the Bethe lattice with an infinite
coordination number
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and the self-consistent condition is given by
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Here G ω( )ασ is the local Green function of the fermions with spin σ and
G ασ0 are the bare Green functions of the associated quantum impurity
problem for the sublattices α.

In order to calculate the Green function of the single impurity
Anderson model we make use of the equation of motion method [27].
Decoupling the equations of motion of the single impurity Anderson
model (2) to the second order, one yields the following approximation
for the impurity Green function:
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in which the function Πiασ reads
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where F z f z F z f z F z( ) = ( ), ( ) = 1 − ( ), ( ) = 11 2 3 , with f z( ) = (exp( ) + 1)z
T

−1 being

the Fermi distribution function; ∫n dz f z ρ z= ( ) ( )ασ ασ and

Γ z ImΔ z iη( ) = − ( + )ασ π ασ
1 , where η is a positive infinitesimal number.

Our study is restricted to the paramagnetic case at half-filling:
μ μ= = 0↑ ↓ and n n= = 1/2α α↑ ↓ . Due to the particle-hole symmetry, it
follows that
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Inputting these conditions (10) into Eq. (8), one easily obtains
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Eqs. (4), (6), (7) and (11) form a closed set of algebraic equations for
G ω σ α A B( )( = ↑ , ↓ ; = , )ασ . In homogeneous interaction system
UA=UB, the Eqs. (11) reproduce the results in [16,17], which are exact
in the Falikov-Kimball limit r=0 and are known as the (full) Hubbard
III approximation of the Hubbard model in the limit r=1.

In order to study the MIT in the system with alternating interac-
tions, we calculate the spin-dependent DOSs for each sublattice

Iρ ω G ω π( ) = − ( )/ασ ασ , DOSs at the Fermi level ρ (0)ασ and double
occupancy D n n= < >α α α↑ ↓ . We then construct the phase diagrams
for the homogeneous phases at T = 0 K.
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3. Results and discussions

In this section, we present and discuss results of the self-consistent
DMFT Eqs. (4), (6), (7) and (11). The systems of equations are solved
numerically by simple interactions to determine the self-energy Σ ω( )ασ
and the Green function G ω( )ασ . The algorithm is as follows: start with
an initial self-energy guess Σ ω( )ασ , we obtain the lattice Green function
G ω( )ασ from Eq. (4). Inputting the self-energy and the lattice Green
function calculated in the previous step into Eqs. (6), (7) and (11), we
can calculate a new Green function G ω( )ασ . Finally, a new self-energy
Σ ω( )ασ is determined by using the Dyson equation

Σ ω G ω G ω( ) = ( ) − ( ).ασ ασ ασ0
−1 −1 (12)

This procedure is iterated until convergence is reached. In actual
numerical calculations, we replace the real frequency by the complex
one ω ω iη→ + , where η is a positive infinitesimal number. If η is too
small the convergence is never reached. Thus, ηmust take a finite small
value (should be in range from 10−3 to 10−2) to make the iterations
converge. After that, we use the spline extrapolation to reach the limit
η → 0 to get sharp pictures for the density of states, which is important
to determine the critical value of the local interactions for the metal-
insulator transition. In the mass balanced case, it has been reported
that the groundstate is magnetically ordered in the repulsive model
(U > 0α ) whereas the superfluid state is stabilized in the attractive
model (U < 0α ) [22]. Restricting our discussion to the paramagnetic
sector, in the following we focus on the case with the signs of
interactions are different from each other (U U < 0A B ). Due to the
particle-hole symmetry as mentioned earlier, we can assumed that
U > 0A ,U < 0B . Hereafter, we set U U= > 0A andU U γ= − /B A with γ > 0
(called spatial modulation parameter). Under this condition, a para-
magnetic groundstate is expected and a Mott metal-insulator transition
is possible when the interactions are turned on and gradually increas-
ing. We set D t= 2 ↑ as the energy unit and r t t= /↓ ↑, which goes from the
Falikov-Kimball limit r=0 to the symmetric case r=1, as the mass
imbalanced parameter.

First, in order to show how the mass imbalance affects the stability
of the normal metallic states, we plot the spin-dependent density of
states for each sublattice with U D= 1.5 and γ = 0.8 for different values
of r in Fig. 1. We plotted the density of states of a metallic state, a state
right at the MIT, and an insulating state. Here, the symmetry of the
DOS reflects particle-hole symmetry in the half-filled system. When
r=1.0, the DOSs for both spin species in the sublattices A and B at the

Fermi level ω( = 0) are nonzero, which indicates that system is in a
metallic state. In contrast, when r=0.4, the DOSs for both spin species
in the sublattices A and B at the Fermi level show a gap around ω = 0,
indicating an insulating phase. The Mott transition in the system
occurs at rC=0.94. Because the DOSs at the Fermi level indicates the
conduction properties of the system, we calculate these values and
show them in Fig. 2. One can see that both ρ (0)ασ simultaneously vanish
at the Mott transition. We note that because of the continuous nature of
the transition, identifying the precise value of the critical asymmetric
parameter is difficult. In the case of γ = 1.0, 0.9, and 0.8 by using a
simple spline extrapolation from the data in the metallic phase we
obtain rC=0.73, 0.83, and 0.94 respectively. It means that, when U is
fixed, the smaller spatial modulation parameter γ, the easier the mass
imbalanced system is driven from a metallic state to the Mott phase.

Then, we discuss how the spatial modulation in the interactions
affects the stability of the normal metallic states. In Fig. 3, we plot the
spin-dependent density of states for each sublattice with U D= 1.5 and
r=0.8 for different values of γ. We plotted the density of states of a
metallic state, a state right at the MIT, and an insulating state. The
particle-hole symmetry in the half-filled system is clearly seen. When

Fig. 1. Spin-dependent density of states for the sublattices for U D= 1.5 , spatial
modulation parameter γ = 0.8 and various values of the mass imbalanced parameter r.

Top panel: a metallic state for r=1.0; Middle panel: MIT occurs at rC=0.94; Bottom
panel: an insulator state for r=0.4 (the half bandwidth with spin up D t= 2 = 1↑ ).

Fig. 2. DOSs at the Fermi level as a function of the mass imbalanced parameter r for
U D= 1.5 and various values of the spatial modulation parameter γ.

Fig. 3. Spin-dependent density of states for the sublattices for U D= 1.5 , r=0.8 and
various values of the spatial modulation parameter γ. Top panel: a metallic state for
γ = 1.0; Middle panel: MIT occurs at γ = 0.926C ; Bottom panel: an insulator state for

r=0.4 (the half bandwidth with spin up D t= 2 = 1↑ ).

D.-A. Le et al. Physica B 532 (2018) 204–209

206



γ = 1.0, the DOSs for both spin species in the sublattices A and B at the
Fermi level ω( = 0) are finite, which indicates that system is metallic. In
contrast, when γ = 0.4, the DOSs for both spin species in the sublattices
A and B at the Fermi level show a gap around ω = 0, indicating an
insulating phase. The Mott transition in the system occurs at γ = 0.926C .
In order to find the critical value of the spatial modulation parameter
γC, we show the DOSs at the Fermi level as a function of the spatial
modulation parameter γ for U D= 1.5 and various values of r in Fig. 4.
One can see that both ρ (0)ασ simultaneously vanish at the Mott
transition. In the case of r=1.0, 0.9, and 0.8 by using a simple spline
extrapolation from the data in the metallic phase we obtain γ = 0.75C ,
0.83, and 0.926 respectively. It means that, when U is fixed, the smaller
mass-imbalanced parameter r, the more symmetric interaction must be
to drive the system from a metallic state to the Mott phase. Similar to
the mass balanced case [21,22], the Mott transition at zero temperature
in the mass-imbalanced system is continuous.

Next, in order to establish a link between the behavior of the model
and the physical observable accessible in cold atom systems on optical
lattices, we calculate the double occupation n n< >↑ ↓ . The numerical
results are plotted in Fig. 5 for γ = 0.5 and various values of r. As in Ref.
[14], in the noninteracting case (U=0), the double occupation is 0.25,

and it quickly decreases when U increases. A metal is characterized by a
linear decrease in the double occupation with increasing interaction U
while in the insulating region, at a larger value of the interaction, the
double occupation remains small and weakly depends on U. As one
might expect, at smaller values of r, the double occupation more
rapidly decreases, and the value of the critical interaction is reduced.

We now present the critical spatial modulation interaction γ r U( , )C
for the half-filled model as a function of the mass imbalanced
parameter r for different values of local interaction U D D= 1.0 , 1.5
and D2.0 in Fig. 6. The more U increases, the more the metallic region
is reduced as a results of strong correlation. In the Falikov-Kimball
limit r=0, it is seen that γ r U( = 0, )C equals to U2. This relation holds
for any values of U. When γ → 0, i.e. the interaction in the B-sublattice
is infinitely negative, there is no doubly occupancied state in the A-
sublattice and there is no singly occupancied states in the B-sublattice.
In the latter the empty state and the doubly occupancied state are
randomly distributed with a probability of 1/2, whereas in the former
the spin ↑ state and the spin ↓ state are randomly distributed with a
probability of 1/2. Therefore, in the γ → 0 limit the system is insulating
for whatever values of the mass imbalanced parameter r, i.e. the
transition line γ r U( , )C never crosses the horizontal axis.

Fig. 4. Spin-dependent density of states at the Fermi level as a function of the mass
imbalanced parameter r for U D= 1.5 and various values of the spatial modulation
parameter γ.

Fig. 5. Double occupation n n< >↑ ↓ as a function of U for γ = 0.5 and different fixed values

of r.

Fig. 6. The critical spatial modulation interaction γC for the half-filled model as a
function of the mass imbalanced parameter r for different values of local interaction
U D D= 1.0 , 1.5 and D2.0 .

Fig. 7. The critical interaction UC for the half-filled model as a function of the mass
imbalanced parameter r for different values of spatial modulation interaction γ = 1.0, 0.8
and 0.6.
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In Fig. 7, we show the critical interaction UC for the half-filled
model as a function of the mass imbalanced parameter r for different
values of spatial modulation interaction γ = 1.0, 0.8 and 0.6. For
homogeneous interactions, we reproduce results in Ref. [16,17] where

U t t t t t t= [2( + + + + 14 )]C ↑
2

↓
2

↑
4

↓
4

↑
2

↓
2

1
2 . In the Falikov-Kimball limit

r=0, U r γ( = 0, )C equals to γ . It is seen that the dependent of
U r γ( , )C on r for different fixed values of γ are similar. At fixed γ, the
critical value for the Mott transition increases monotonically with
increasing r. We found that the metallic region is reduced with
increasing interaction anisotropy (decreasing γ).

The above results are summarized into the phase diagram in Fig. 8.
For the mass balanced case (r=1), our results are in good agreement
with those obtained from DMFT with NGR method [22]. In addition,
the more asymmetric the system (r = t

t
↓

↑
decreases), the more the

metallic region reduces. It is easily understood since at fixed D or t↑, the
more asymmetric the system, the stronger different the bare mass of
the two component, the easier it is to localize the system.

Within the dynamical mean field theory, the critical value of the
Mott transition in the half-filled mass-imbalanced Hubbard model with
site-dependent interactions can be obtained analytically by using the
equation of motion approach as the impurity solver. From Eqs. (11), at
the Fermi level ω = 0, one has
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Due to the particle-hole symmetry, it follows that G (0)ασ are pure
imaginary at the Fermi level ω = 0, i.e. G iρ(0) = − (0)ασ ασ . The metallic
state ceases to exist when the density of states at the Fermi level
ρ (0) → 0ασ asU U→α αC . By neglecting second order terms in (13)–(16),
we end up with a set of linear homogeneous equations for ρ (0)ασ that
has a non-trivial solution if and only if
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The above expression for the critical values is equivalent with

U U t t t t t t| | = 2( + + + + 14 ).A B ↑
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(18)

The expression (18) is our main result. In the case of the usual
asymmetric Hubbard model UA=UB, we reproduce results in Ref.
[16,17]. The condition for the existence of the metallic state (17)
shows that the metallic state in the two sublattices must appear and
disappear at the same time, i.e.only a single Mott transition occurs
when two kind of interactions with different spin are switched on and
gradually increases. As in the mass balanced case [21,22] the Mott
transition at zero temperature in the mass-imbalanced system is
continuous. This is basically the same as the transition between a band
insulator and a correlated normal metal, which falls into the
I M− 2 → − 4 universality class [28].

4. Conclusions

In summary, we have used the equation of motion approach as an
impurity solver for the dynamical mean field theory to investigate the
Mott metal-insulator transition in the asymmetric Hubbard model with
site-dependent interactions at half-filling and zero temperature. The
technique has been implemented directly on the real-frequency axis,
which turns out to be computationally efficient. In addition, it allows an
explicit expression for the critical interaction in the system to be
obtained as a function of model parameters. We also numerically
computed the spin-dependent density of states at the Fermi level and
the double occupation that may permit the experimental identification
of this remarkable physical behavior. We clarify how mass imbalance
and the spatial modulated interaction affect the stability of the normal
metallic state. Similar to the mass balanced case, the Mott transition at
zero temperature in the mass-imbalanced system is continuous. Our
results here are closely relevant to current researches in ultracold
fermion experiments and can be verified through experimental ob-
servations. With a suitable decoupling scheme, this approach can also
be applied to the asymmetric Hubbard model with site-dependent
interactions at half-filling for charge and spin orders. This is left to a
future work.
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