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A B S T R A C T

Within the coherent potential approximation we study the two-dimensional Haldane-Hubbard model, in which
an interplay between topology and correlation effects is realized. The model essentially describes correlated
electrons moving in a honeycomb lattice with zero net magnetic flux. The influence of the next-nearest-neighbor
hopping and electron correlations on the metal-insulator transitions are investigated by monitoring the density
of states at the Fermi level and the energy gap. The topological properties of the insulators is determined by the
Chern number. With a given next-nearest-neighbor hopping, electron correlations drive the system from the
topological Chern insulator to a metal, and then to the topologically trivial Mott insulator.

1. Introduction

Recently, two dimensional honeycomb structure of atoms has been
extensively studied because its properties are of big importance in the
realm of science [1,2]. The already obtained outcome from these
important first steps in understanding the two dimensional materials
showed promising features that could give a new future to silicon in the
electronics industry, thus opening a promising route toward wide-range
applications [3]. Very recently, silicene has been made transistor debut
[4]. This is a significant step towards in realizing silicene application. The
effect when silicene is grown on a substrate such as Ag (111) as suggested
by line-profile scanning tunneling microscopy measurements [2,5], can be
explored using an ionic potential that may remove the linear Dirac
fermion nature of the energy bands near the Dirac points [6]. In two
dimensional materials like graphene or silicene, when the magnetic field
perpendicularly penetrates the lattice, the quantum Hall effect (QHE)
occurs. The QHE is essentially a topological state, which is distinct from
standard symmetry-breaking states. It is interesting to seek materials
which exhibit topological ground state in the absence of the external
magnetic field. In his seminal paper, Haldane proposed a lattice model, in
which the ground state is topological, but the net lattice magnetic flux is
zero [7]. The Haldane model is essentially a tight-binding model of
spinless electrons moving on a honeycomb lattice. It is the first lattice

model which exhibits the topological properties. Since the two-dimen-
sional materials like graphene or silicence have the same lattice structure
as the Haldane model, one may seek the conditions at which these
materials may exhibit topological properties. Recently, the Haldane model
has been experimentally realized by loading ultracold fermionic atoms in
an optical honeycomb lattice, and its ground state is verified to be
topological [8,9]. In real materials electron correlations often play an
important role in the physical properties. However, they are absent in the
Haldane model. It is interesting to study the interplay between topological
properties and electron correlations in two-dimensional systems. The
interplay can be realized by combining the Haldane model and the
Coulomb interaction between electrons. Most studies have introduced
nonlocal nearest neighbor Coulomb repulsion into the Haldane model to
investigate its effects on the topological properties [10,11]. The nonlocal
Coulomb interactions drive the system into topologically trivial charge-
ordered insulator and the transition is of first order [10,11]. However, the
nonlocal interaction is often weaker than the local one. The latter has been
also introduced into the Haldane model with an ionic potential [12] or
without an ionic potential [13–17] to study the local correlation-driven
phase transition in the Chern insulator. When the ionic potential is
present, Vanhala et al. has found a spontaneous symmetry breaking
quantumHall phase, where one of the spin components is in the Hall state
and the other in the band insulating state [12]. When the ionic potential is
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not present, it is established that Chern insulator (CI) is stable against the
Hubbard interaction for U U< C , where the value of UC depends on the
approach being used. However, different approaches lead to different
results regarding what phases are stable for U U> C, and in what order.
Calculations based on the mean-field theories and beyond suggested that
the stable state at large U is the antiferromagnetic state [13–17].
However, these studies still provide different conclusion for intermediate
U.

In this paper, we consider the Haldane-Hubbard model on a
honeycomb lattice when the local interaction U is intermediate and
the ionic potential is absent. We employ the coherent potential
approximation (CPA), which is a successful theory for the Hubbard
model on a honeycomb lattice [6,18]. We investigate the influence of
the next-nearest-neighbor hopping and electron correlation on the
metal-insulator transitions by monitoring the density of states at the
Fermi level and the energy gap. The topological properties of the
insulators is obtained by the Chern number and the phase diagram is
numerically contracted. This paper is organized as follows. The
Haldane-Hubbard model and the coherent potential approximation
are presented in the next section. In Section 3 we discuss our numerical
results. Finally, the paper is concluded and the directions of future
work are in Section 4.

2. Model and formalism

We consider a hybrid of the spin version of the Haldane and
Hubbard models, in which spin-1/2 fermions hop on a lattice according
to Haldane's original tight-binding model, also when two fermions of
opposite spin projection are at the same site they repel each other with
the potential energy U. On a honeycomb lattice, the Hamiltonian reads

∑ ∑

∑ ∑

H t c c H c U n n

n λ ν c c

= − [ + . ] +

−μ + .
i j σ

iσ jσ
i

i i

i
i
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ij iσ jσ
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(1)

Here c c( )iσ iσ
+ is the creation (annihilation) operator for electron with

spin σ at site i, n c c=iσ iσ iσ
+ and n n n= +i i i↑ ↓. t is the hopping parameter

for the nearest neighbor sites. U is the on-site Coulomb repulsion. i j,
and i j, denote the nearest neighbor and next nearest neighbor sites
in the lattice, respectively. λ is the hopping parameter between next
nearest neighbor sites. Parameter ν exp iΦ= ( )ij ij describes the phase of
electrons attained when electrons hop from lattice site i to site j in the
presence of a staggered magnetic flux perpendicularly penetrating the
lattice. Since the honeycomb lattice is bipartite, the penetrating
magnetic flux in each sublattice has opposite value, the total net
magnetic flux is zero. Notice that the staggered magnetic flux does not
affect the nearest neighbor hopping, since the magnetic flux per one
hexagonal unit is zero. When U=0 the proposed model is just the spin
version of the Haldane model. Its ground state is topological except for
Φ π= 0,ij [7]. Without loss of generality, in this paper we consider only
the case Φ = ±ij

π
2 , at which the ground state of the Haldane model is

topological. Therefore, ν i= ±ij depends on the hopping direction
(clockwise or anticlockwise) as shown in Fig. 1. The chemical potential
μ U= /2 so that the average occupancy is 1 (half-filling). When λ = 0,
the Hamiltonian in Eq. (1) is just the standard Hubbard model on a
bipartite lattice, which exhibits the metal-insulator transition for the
homogeneous states, where the inversion symmetry is preserved. In the
other limit, when t = 0, the model described in Eq. (1) is equivalent to
two independent triangular lattices of the Hubbard model. The
triangular lattice is geometrically frustrated; thus, we expect the
homogeneous states are stable at low temperatures. The Haldane-
Hubbard model under consideration breaks time-reversal symmetry,
which leads to the notorious fermion sign problem and precludes the
use of methods based on the quantum Monte-Carlo algorithm. In this
study, we do not consider large values of λ for which topological spin

density waves, chiral topological orders, and exotic kinds of magnetic
order have been suggested [19–21]. Also, we will consider only the
repulsive local interaction so that it does not support topological
superfluids to appear [22].

In the alloy-analogue approach, the many-body Hamiltonian (1) is
replaced by a one-particle Hamiltonian with disorder which is of the
form

∑ ∑
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Here the disorder potential has been defined to include the chemical
potential, which is given by

⎧⎨⎩E
n

μ U n
=

−μ with probability 1 − ,
− + with probability ,α σ

ασ

ασ
,

where, α = A, B and nασ is the average occupation for spin σ in the α-
sublattice. The Green function of the Hamiltonian (2) has to be
averaged over all possible configurations of the random potential,
which can be considered to be due to alloy constituents. The averaging
cannot be performed exactly. To deal with this problem, we use the
CPA that introduces a simplified effective medium corresponding to a

local (k
→

independent) complex and energy-dependent single-site self-
energy or coherent potential Σασ that replaces Eασ on each sublattice
α = A, B in Hamiltonian (2)
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It is straightforward to obtain the lattice Green function

∑
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where the integral is over the first Brillouin zone with the volume Ω.

Here we have used the notations γ e= ∑k R
ik R→ ⎯→⎯
→⎯→⎯

, ξ i ν e= ∑k δ δ
ik δ→ →
→→

,

with R
⎯→⎯

is the nearest-neighbor vector and δ
→

is the next nearest-
neighbor vector in the honeycomb lattice.

The self-consistent condition of the CPA requires that the lattice
Green function must coincide with the conditional Green function, i.e.,

Fig. 1. The sign structure of the next nearest neighbor hopping term in the honeycomb
lattice.
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F ω G ω( ) = ( ),ασ ασ (4)

where the conditional Green function is determined for each α-
sublattice as follows

G ω
F ω n
F ω Σ ω μ

F ω n
F ω Σ ω μ U

( ) =
( )(1 − )

1 + ( )( ( ) + )

+
( )

1 + ( )( ( ) + − )
.

ασ
ασ ασ

ασ ασ

ασ ασ

ασ ασ (5)

So far, for determining the Green function we have obtained a closed
system of equations, which can be solved numerically by simple
iterations.

3. Results and discussions

We solve numerically the self-consistent equations (4)–(5) to
determine the self-energy and the Green function by simple iterations.
The algorithm is similar to that presented in Ref. [18] as follows. Begin
with an initial self-energy guess for all frequencies Σ ω( )ασ , one obtains
the frequency dependent Green function F ω( )ασ by taking the summa-

tion over k
→

in the first Brillouin zone. Substituting the self-energy
Σ ω( )ασ and the lattice Green function F ω( )ασ were calculated in the
previous step to Eq. (5) one calculates the conditional Green function
G ω( )ασ . Finally, a new self energy Σ ω( )ασ is determined by

Σ ω Σ ω
F ω G ω

( ) = ( ) + 1
( )

− 1
( )

,ασ ασ
ασ ασ (6)

which is equivalent to Eq. (4). This procedure is iterated until
convergence is reached. In actual numerical calculations, an analytical
continuation ω ω iη→ + needs to be performed, where η is a positive
infinitesimal number. In numerical calculations, we take t=1 as the
energy unit, therefore η should be a finite small one in a range from
10−3 to 10−2 to make the iterations converges. The smaller η, the more
computational CPU time is required. If η is too small, the convergence
is even never reached. The effect due to finite η is to broaden the
density of states when the self-energy Σ ω( )ασ is real. This effect can be
neglected if the imaginary part of the self-energy is large enough. When
the transition point is approached, the effect causes a small artificial
peak at the Fermi level. In order to obtain a sharp picture for the
density of states, which is particularly important to determine the
critical value UC for the semimetal-insulator transition, we use the
spline extrapolation to reach the η → 0 limit.

We have done the numerical calculations for a number of values of
the next nearest neighbor hopping λ and the local interaction strength
U. It turns out that the groundstate is a homogeneous paramagnetic,
i.e., n n n n= = = =A A B B↑ ↓ ↑ ↓

1
2 . In the noninteracting limit U → 0, the

problem can be solved exactly. This results is crucial since it will shed
the light for the numerical calculation for intermediate interaction
strength U. Therefore, in the following, we will firstly discuss the results
for the case U=0 and then the results for finite U.

When U=0, the k
→
-dependent energy spectra reads

E k λξ t γ(
→

) = ± (2 ) + 4σ k k±
1
2

→ 2 2
→2 . Because γ k

→ and ξ k
→ are spin independent,

the degeneracy of upper and lower bands is 2. The energy gap can be

easily determined by minimum of λξ t γ(2 ) + 4k k
→ 2 2

→2 . If λ = 0, the system

is semimetal with pseudogap is 0 since the two bands touching at the
K( , )Π

a
Π

a
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2
3 3

point of the hexagonal Brillouin zone, where a is the lattice

constant of the honeycomb lattice. For intermediate λ, the two bands are
separated resulting in an insulating state of the system. When

λ0 < ≤ 3 /9, the gap of the system is found at the K point that equals
to λ6 3 . In contrast, when λ > 3 /9, the gap equals 2 is found at the
M( , )Π

a
Π

a
2
3

2
3 3

point, which is independent of λ. The exact values of the gap

in the noninteracting limit will be used to check the numerical calculations
for the gap for the intermediate values of the local interaction U.

Now, for a given value of λ, we will increase the local interaction U.
The results for different value of λ is qualitatively the same but

quantitatively different. When the local interaction is small enough,
U U< C1 the system is a topologically nontrivial band insulator. If U is
intermediate,U U U< <C C1 2 the system is metallic. For large enough U,
U U> C2, the strong local correlation drives the system into a topolo-
gically trivial Mott insulator.

In the following, we will discuss results for λ = 0.2 in detail. Fig. 2
presents the density of states (DOS) for various values of U. Fig. 3 shows
the DOS at the Fermi level as a function of the onsite Coulomb interaction
U. When U increases, it appears two transitions. Firstly, the correlations
drive the system from band insulator phase to metallic phase, then from
metallic phase to Mott insulator phase. By extrapolating the density of
states at the Fermi level for the metallic state, U t3.0 < / < 3.7 as showed
in Fig. 3, we obtain that metallic phase vanished at U t≈ 2.75C1 and
U t≈ 3.8C2 , respectively. However, since the DOS at the Fermi level is quite
small, it is better to determine the transition points from the gap data in
the insulating phase. Fig. 4 presents the insulating gap as a function of the
onsite Coulomb repulsion, where the numerical results are plotted by
filled cycles and the solid line is obtained by the spline method. In order to
calculate the gap, one can introduce a small fictitious temperature and
find the chemical potential μ± for the filling n = 1 ± ϵ. The small positive ϵ
is chosen so that the numerically calculated gap μ μ−+ − is in good
agreement with the known results in the noninteracting case U=0 as
discussed above. By extrapolating the data for U t/ < 2.5 and U t/ > 4, we
obtain that the gap is vanished U t≈ 2.83C1 and U t≈ 3.88C2 . If one could
reduce the values of the positive number η in the analytical continuation
ω ω iη→ + , the critical values determined by the two methods would be

Fig. 2. The density of states for various values of U (t=1, λ=0.2).

Fig. 3. The density of states at the Fermi level as a function of the onsite Coulomb
repulsion. The critical values obtained by extrapolating t U t3.0 < < 3.7 data is also
indicated (t=1, λ=0.2).
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the same. Unlike the first method, the second one is not very sensitive
with the choice of η because the imaginary part of the self-energy in the
insulating phase is quite large. In order to construct the phase diagram, we
will use critical values UC1 and UC2 calculated by the second method.

Next we analyze the topological properties of the two obtained
insulating phases for small and large values of U. Because when U=0
the system is a Chern insulator, and the region of small values of U
adiabatically connects with U=0, one can expect that the first insulating
phase is a Chern insulator. In this region, the DOS clearly shows two
separated subbands with an energy gap in between. The separation of
two subbands increases with increasing U. However, the energy gap,
decreases with increasing U. While electron correlations force the two
subbands to separate, they actually also reduce the energy gap of the
Chern insulator. At the critical value UC1 the gap closes, and the system
turns into metallic phase. We will verify the topology of the first
insulating phase by calculating directly the Chern number C, that is
calculated via the Green's function at zero frequency [23,24]

∫∑C
π

σ d k= 1
2

,
σ

σxy
2

(7)

where = ∂ − ∂σij i σj j σi, i k σν k σν= − ∑ ′ 〈
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|∂ |
→

〉σi ν ki
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⎞
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⎟⎟G k σ i

λξ Σ i tγ

tγ λξ Σ i
(
→
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− − ( 0 ) −

− * − ( 0 )
,k Aσ k

k k Bσ

−1 → + →

→ → +
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with positive eigenvalues. In numerical calculations we use the efficient
method of discretization of the Brillouin zone to calculate the Chern
number in Eq. (7) [25]. Indeed, we obtain the Chern number C=2 when
U U< C1. The first insulator-metal transition is also the topological phase
transition. The gap closes at the same point where the Chern number stops
to be quantized. The metallic phase, where the DOS is finite at the Fermi
energy, occurs for U ran from UC1 up to UC2. At UC2 the gap opens again.
For large values of U, the DOS also shows two separated subbands with an
energy gap in between. The separation of two subbands as well as the
energy gap increase with increasing U. We obtained that the system is in
the Mott state with the Chern number C=0. The second insulator-metal
transition is not topological phase transition.

By performing the same procedure for other values of λ, the full
phase diagram of the system has been obtained within the CPA and it is
shown in Fig. 5. It is obtained that the for small U the system is
topological band insulator whereas for large U the system is topologi-
cally trivial Mott insulator. That result is in good agreement with the

calculation of the Haldane-Falicov-Kimball model within the dynami-
cal mean-field theory (DMFT) [17]. However, we do not find the charge
ordered states at low temperatures. This is the known discrepancy
between the Hubbard and the Falicov-Kimball models. Also, we do not
find the antiferromagnetic state for large U as reported in [15,16]. For
intermediate values of the local interaction, U U U< <C C1 2 we found a
metallic state as in [17] that differs with what found by strong U
approach [15,16]. The Hamiltonian (1) under consideration breaks
time-reversal symmetry, which leads to the notorious fermion sign
problem and precludes the use of methods based on the quantum
Monte-Carlo algorithm. Therefore, at the moment, the exact answer to
the phase in the intermediate U region is not available. Our results
serve as a complementary information for future study.

4. Conclusions

We have applied the coherent potential approximation to study a
two-dimensional Haldane-Hubbard model on a honeycomb lattice. Our
calculated critical values are indeed in good agreement with results in
the Haldane-Falicov-Kimball model within the DMFT [17]. The study
here is restricted for small and intermediate value of the local
interaction U and can be extended to take in to account the ionic
potential that described the effects of the ionic potential induced by the
Ag substrate on silicene. With the introduction of the ionic potential,
the system loses its Dirac fermion characteristics with the effect of the
substrate as a consequence of the symmetry breaking induced by a
charge density wave [6,12,13]. In this case, the problem becomes more
realistic but at the same time more complex and thus goes beyond the
scope of the present paper. We leave this problem for future study.
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