
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 117.1.172.166

This content was downloaded on 30/07/2017 at 03:35

Please note that terms and conditions apply.

Optimal joint remote state preparation in the presence of various types of noises

View the table of contents for this issue, or go to the journal homepage for more

2017 Adv. Nat. Sci: Nanosci. Nanotechnol. 8 015012

(http://iopscience.iop.org/2043-6262/8/1/015012)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Manipulation of tripartite-to-bipartite entanglement localization under quantum noises and its

application to entanglement distribution

Xin-Wen Wang, Shi-Qing Tang, Ji-Bing Yuan et al.

Deterministic joint remote state preparation of arbitrary two- and three-qubit states

Wang Yuan and Ji Xin

Deterministic joint remote preparation of an arbitrary three-qubit state via

Einstein--Podolsky--Rosen pairs with a passive receiver

Yan Xia, Qing-Qin Chen and Nguyen Ba An

Joint remote preparation of an arbitrary two-qubit state via a generalized seven-qubit brown state

Qing-Qin Chen and Yan Xia

Deterministic joint remote preparation of an arbitrary three-qubit state via EPR pairs

Qing-Qin Chen, Yan Xia and Jie Song

Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled

channels

Chang Li-Wei, Zheng Shi-Hui, Gu Li-Ze et al.

Flexible controlled joint remote preparation of an arbitrary two-qubit state via nonmaximally

entangled quantum channels

Thi Bich Cao, Van Hop Nguyen and Ba An Nguyen

Deterministic Joint Remote Preparation of an Arbitrary Two-Qubit State Using the Cluster State

Wang Ming-Ming, Chen Xiu-Bo and Yang Yi-Xian

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/2043-6262/8/1
http://iopscience.iop.org/2043-6262
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/0953-4075/48/2/025502
http://iopscience.iop.org/article/10.1088/0953-4075/48/2/025502
http://iopscience.iop.org/article/10.1088/1674-1056/22/2/020306
http://iopscience.iop.org/article/10.1088/1751-8113/45/33/335306
http://iopscience.iop.org/article/10.1088/1751-8113/45/33/335306
http://iopscience.iop.org/article/10.1088/1054-660X/26/1/015203
http://iopscience.iop.org/article/10.1088/1751-8113/45/5/055303
http://iopscience.iop.org/article/10.1088/1674-1056/23/9/090307
http://iopscience.iop.org/article/10.1088/1674-1056/23/9/090307
http://iopscience.iop.org/article/10.1088/2043-6262/7/2/025007
http://iopscience.iop.org/article/10.1088/2043-6262/7/2/025007
http://iopscience.iop.org/article/10.1088/0253-6102/59/5/09


1 © 2017 Vietnam Academy of Science & Technology  

1. Introduction

Joint remote state preparation (JRSP) is a global protocol 
[1–3] in which a group of M people, called the preparers, 
remotely cooperate to provide a quantum state ψ  for another 
distant person, called the receiver, in such a way so as to 
meet two following prerequisite conditions: (i) only local 
operations and classical communication are allowed and (ii) 
any individual one or any subgroup of the preparers cannot 
infer the full information encoded in the state ψ . The con-
dition (i) is ensured by sharing among the preparers and the 
receiver a proper multipartite entangled resource. As for the 
condition (ii), the full classical information of ψ  is secretly 
divided into M pieces, each of which is independently given 

to a preparer. Such a secret information splitting makes JRSP 
secure compared to remote state preparation (RSP) protocols 
(see e.g. [4]) in which there is only one preparer who catches 
the entire information about ψ . Technically, JRSP and RSP 
just require single-qubit von Neumann measurements so they 
are less demanding than quantum teleportation [5] that needs 
collective Bell-measurements. Since its introduction a great 
deal of papers on JRSP has been published in diverse aspects 
[6–23]. In its early development, only probabilistic protocols 
were devised [1–3, 6–10, 13–16, 18, 21–24]. Later it turns 
out that JRSP can be made deterministic by adopting adap-
tive measurement strategies [11, 17, 19, 20] (i.e. the preparers 
carry out their measurements in sequence with the outcome of 
an earlier measuring preparer being feed forwarded to a next 
preparer who will make use of it to choose the right basis for 
his/her own measurement). JRSP is also approached to from 
an experimental architecture point of view [25] and, recently, 
a scheme for realizing JRSP of photonic states with linear-
optics devices has been proposed [26].

Advances in Natural Sciences: Nanoscience and Nanotechnology

Optimal joint remote state preparation in the 
presence of various types of noises

Van Hop Nguyen1, Thi Bich Cao2 and Ba An Nguyen2

1 Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, 
Vietnam
2 Center for Theoretical Physics, Institute of Physics, Vietnam Academy of Science and Technology,  
18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

E-mail: nban@iop.vast.vn

Received 19 September 2016
Accepted for publication 10 December 2016
Published 2 March 2017

Abstract
A main obstacle faced by any quantum information processing protocol is the noise that 
degrades the desired coherence/entanglement. In this work we study by means of Kraus 
operators the effect of four typical types of noises on the quality of joint remote state 
preparation of a single-qubit state using a three-qubit Greenberger–Horne–Zeilinger-type state 
as the initial quantum channel. Assuming that two of the three involved qubits independently 
suffer a type of noise, we derive analytical expressions not only for the optimal averaged 
fidelities but also for the boundaries in phase space of the domains in which the joint remote 
state preparation protocol outperforms the classical one. Detailed discussion is given for each 
of the total 16 noisy scenarios. We also provide physical interpretation for the obtained results 
and outline possible future topics.

Keywords: joint remote state preparation, four noise types, Kraus operators,  
optimal averaged fidelity
Classification numbers: 3.00, 3.01

V H Nguyen et al

015012

ANSNCK

© 2017 Vietnam Academy of Science & Technology

8

Adv. Nat. Sci.: Nanosci. Nanotechnol.

ANSN

2043-6254

10.1088/2043-6254/aa5980

Paper

1

Advances in Natural Sciences: Nanoscience and Nanotechnology

IOP

Original content from this work may be used under the terms 
of the Creative Commons Attribution 3.0 licence. Any further 

distribution of this work must maintain attribution to the author(s) and the title 
of the work, journal citation and DOI.

2017

2043-6254/17/015012+10$33.00

https://doi.org/10.1088/2043-6254/aa5980Adv. Nat. Sci.: Nanosci. Nanotechnol. 8 (2017) 015012 (10pp)

mailto:nban@iop.vast.vn
http://crossmark.crossref.org/dialog/?doi=10.1088/2043-6254/aa5980&domain=pdf&date_stamp=2017-03-02
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
https://doi.org/10.1088/2043-6254/aa5980


V H Nguyen et al

2

Like other quantum tasks, JRSP suffers a serious problem 
under the name decoherence caused by unavoidable interac-
tions with surrounding noisy environments during the prelimi-
nary stage of entanglement distribution that make an intended 
quantum channel pure state become mixed one with lesser 
degree of entanglement. If the source of quantum resources 
is generous, special procedures can be applied to distill a 
desired state from an ensemble of decohered states, provided 
that fidelity of the decohered states with respect to the desired 
state is not too low (namely, not smaller than 1/2) [27–31]. 
However, distillation procedures consume a heavy overheads 
in both quantum resource/technology and time. A possible 
way out of the situation is to directly employ the decohered 
state. In this perspective, studying the effect of noises is truly 
necessary to optimize the performance of a given quantum 
protocol. A few authors already devoted their interest to 
noisy JRSP using different kinds of shared quantum channels 
through Lindblad master equations within the framework of 
Markov-Born approximations [32–35]. In this work, moti-
vated by the study in [36] for noisy quantum teleportation, 
we shall resort to the apparatus of Kraus operators to investi-
gate similar issues but with respect to JRSP. A particular new 
result compared with previous works is that besides analytical 
expressions for the optimal averaged fidelities we also derive 
expressions in terms of noise strengths for the boundaries of 
the domains in which quality of the JRSP protocol is better 
than that achievable by any classical means. Note that very 
recently the authors of [37] have used the same mathematical 
apparatus to deal with the same topic but with simpler noisy 
scenarios, so their results are contained in ours as particular 
cases.

We structure our paper in four sections. In the next section, 
section 2, we shall for clarity present the general formalism 
of the =M 2 JRSP of a single-qubit state in density matrix 
language. Section 3 will analyze in detail various scenarios 
of four standard noise types acting on two of the three qubits 
of concern. Each scenario has its own consequences which 
will be elucidated in due places in section 3. The final con-
clusion section, section  4, will summarize our results with 
physical interpretations and briefly list on what could be done 
subsequently.

2. General formalism

Consider a case when there are two preparers (Alice and Bob) 
and what to be remotely prepared is a single-qubit state of the 
most general form

ψ =
ϑ

+
ϑ ϕcos

2
0 sin

2
e 1 ,i (1)

with [ ]πϑ ∈ 0,  and [ ]ϕ π∈ 0, 2 . Alice knows only ϑ, while 
Bob knows only ϕ, so neither of them knows ψ . The 
quantum channel shared beforehand among the two preparers 
and the receiver (Charlie) is in general an entangled mixed 
state ρ123, with qubit 1 (2, 3) held by Alice (Bob, Charlie). The 
joint remote preparation of ψ  begins with Alice who mea-
sures qubit 1 in the basis { }=u k; 0, 1k 1

,

= ϑ
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

u

u
U

0

1
,

0 1

1 1

1

1

( ) (2)

with ( )ϑU  a specific unitary operator depending on ϑ and on the 
initial condition. If her measurement outcome is k (i.e. uk 1

 is 
found), qubit 1 is disentangled from ρ123 but Bob’s and Charlie’s 
qubits remain entangled with their state being in the form

( )
( )ρ
ρ

=
u u

P
,k k k

k23
1 123 1 (3)

where

( )( ) ρ=P Tr u uk
k k23 1 123 1 (4)

is the probability of Alice’s obtaining the outcome k. Next, 
conditioned on Alice’s announced measurement outcome, 

Bob measures qubit 2 in the basis { }( ) =v l; 0, 1 ,l
k

2

( )
( )

( )
( ) ϕ=

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛
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⎞

⎠
⎟⎟

v

v
V
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1
,

k

k
k

0 2

1 2

2

2

 (5)

where ( )( ) ϕV k  is a specific unitary operator depending not only 

on ϕ but also on k. If Bob finds ( )vl
k

2
 (i.e. his outcome is l 

which should also be publicly announced), state ( )ρ k
23  becomes 

separable: →( ) ( ) ( ) ( )ρ ρ⊗v v ,k
l
k

l
k kl

23 2 3  with

( )
( )

( )ρ
ρ

=
v v

P
,kl l

k k
l
k

kl3

2 23 2 (6)

where

ρ=P Tr v vkl
l
k k

l
k

3 2 23 2( )( ) ( ) ( ) ( )
 (7)

is the probability of Bob’s obtaining the outcome l. Finally, 
after collecting the measurement outcomes k and l announced 

by Alice and Bob, Charlie applies on ( )ρ k
23  a suitable unitary 

operator ( )R kl  to obtain the state

( )( ) ( ) ( ) ( )ρ ρ= +� R R ,kl kl kl kl
3 (8)

whose fidelity in comparison with the desired state ψ  in 
equation (1) is determined by

( ) ( )ψ ρ ψ= �F .kl kl (9)

Averaging over the four possible measurement outcomes 
yields

( ) ( ) ( )∑∑=
= =

F P P F .
k l

k kl kl

0

1

0

1

 (10)

Generally, F depends on the quantum channel and the state 
to-be-prepared, so to have a state-independent fidelity we fur-
ther average over all the possible parameters of the input state. 
Assuming a uniform distribution, the state-independent aver-
aged fidelity F  can be calculated following the formula

∫ ∫π
ϕ= ϑ ϑ

π π
F F

1

4
d sin d ,

0 0

2
 (11)

whose dependence on the quantum channel however remains.
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3. Effects of noises

It is ideal if there are no noises and the initial quantum channel 
is a pure maximally entangled state which is not unique but 
may be Einstein–Podolski–Rosen (EPR) states [2, 3, 6, 11–13, 
17, 20], Greenberger–Horne–Zeilinger (GHZ) state [1–3, 6–8, 
15, 19], W state [9, 10, 14] or others [16, 18, 21–24]. In case 
it is the GHZ state = +Q 0 0 0 1 1 1 2

123 123
( ) /  [38], the 

unitary operators in equations (2) and (5) are chosen as

( )ϑ =

ϑ ϑ

ϑ
−

ϑ

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

U
cos

2
sin

2

sin
2

cos
2

 (12)

and

( ) ( )
( )

( )
( )

( )
ϕ =

−
−

ϕ ϕ

ϕ ϕ

− − −

− − − −

⎛

⎝
⎜

⎞

⎠
⎟V

1

2

1 e e

e 1 e
.k

k k k

k k k

i i 1

i 1 i 1 (13)

Then, ( ) =R X Zkl k l, with X  =  {{0, 1}, {1, 0}} and Z  =  {{1, 0},  
{0, −1}} being the well-known Pauli matrices. This results in 

( ) =F 1kl  for any k, l, ϑ and ϕ, implying perfect JRSP. Here, in 
the presence of noises, we employ the initial quantum channel 
in the form

( )( )θ θ θ= +Q cos 0 0 0 sin 1 1 1 ,
123 123 (14)

with θ introduced as a freely controlling parameter to optimize 
the JRSP performance.

The effect of noises can conveniently be accounted for by 
means of superoperators whose action on a density matrix 
yields again a legitimate density matrix. In the operator-sum 
representation the mentioned superoperator is given in terms 
of Kraus operators [39] which adequately model a specific type 
of noise. Four typical noise types which are often encountered 
in reality are bit-flip (B), phase-flip (P), amplitude-damping 
(A) and depolarizing (D) (the physical meaning of a noise type 
can be found in [39, 40]). Suppose that each of the qubits 1, 2, 
3 independently experiences a type of noise. Subjected to such 

noise types, the initial pure quantum channel state ( )θQ
123

 in 
equation (14) becomes a mixed one, ρ123, which can be repre-
sented in terms of Kraus operators as

∑ ∑ ∑ρ θ θ= ⊗ ⊗

⊗ ⊗

αβγ α
α

β
β

γ
γ

α
α

β
β

γ
γ

= = =

+ + +

α β γ

K p K p K p Q Q

K p K p K p ,

j

N

m

N

n

N

j m n

j m n

123
1 1 1

1 2 3 123

1 2 3

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

 

(15)

where α
αK pj 1( ) and αp1  are the jth Kraus operator and 

the noise strength for qubit 1 under the action of the noise 
type  { }α∈ B P A D, , , , while αN  is the number of α-type 
noise Kraus operators. The noise strength is a parameterized 
quantity which is proportional to the time the noise is acting 
on the qubit or the distance the qubit has to travel along in 
the noisy environment. If the time/distance is zero the noise 
strength is zero. Infinity of the time/distance is meant by unit 
noise strength. Hence, αp1  satisfies the conditions ⩽ ⩽αp0 11  

and is in essence a probability. Similar explanations hold for 

( )β
βK p ,m 2  γ

γK p ,n 3( )  βp2 , γp3  and β γN N, . Let Bob be capable of 
producing the initial quantum channel ( )θQ

123
 at his well-

equipped laboratory. After that, he keeps qubit 2 with himself 
in a noise-free storage, but sends qubit 1 (3) to Alice (Charlie) 
via α-type (γ-type) noisy environment. Hence, the resulting 
channel reduces to

( ) ( ) ( ) ( )

( ) ( )

∑∑ρ θ θ= ⊗ ⊗

⊗ ⊗

αγ α
α

γ
γ

α
α

γ
γ

= =
+ +

α γ

K p I K p Q Q

K p I K p ,

j

N

n

N

j n

j n

123
1 1

1 3 123

1 3

 

(16)

with I  =  {{1, 0}, {0, 1}} being the identity operator.
First, consider α = B and { }γ∈ B P A D, , , . The Kraus 

operators of interest are well-known:

( ) ( )= − =K p p I K p p X1 , ,B
nB nB

B
nB nB1 2 (17)

( ) ( )= − =K p p I K p p Z1 , ,P
nP nP

P
nP nP1 2 (18)

( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟= − =K p

p
K p

p1 0
0 1

,
0

0 0
A

nA
nA

A
nA

nA
1 2 (19)

and

( ) ( )

( ) ( )

= − =

= =

K p p I K p p X

K p i p XZ K p p Z

1
3

4
,

1

4
,

1

4
,

1

4
.

D
nD nD

D
nD nD

D
nD nD

D
nD nD

1 2

3 4

 

(20)

Calculations based on the above formulae for the Kraus opera-
tors and those given in the general formalism section give

[ ( ) ( )]θ= − + − − −F p p p p p
2

3

1

3
2 1 sin 2 ,BB B B B B B1 3 1 3 3

 (21)

[ ( ) ( )]θ= − − −F p p
2

3

1

3
1 2 sin 2 ,BP B P1 3 (22)

( ) ( )θ θ= − + − − −⎡⎣ ⎤⎦F p p p p
2

3

1

3
1 2 sin 1 sin 2BA B B A A1 1 3

2
3

 (23)
and

[ ( ) ( )]θ= − + − − −F p p p p p
2

3

1

6
2 2 2 1 sin 2 .BD B D B D D1 3 1 3 3

 (24)
At this moment the parameter θ introduced in equation (14) 
will play its role. Since ⩽ ⩽αp0 1n  for any { }∈n 1, 2, 3  and 

{ }α∈ B P A D, , , , it is trivial from equations  (21), (22) and 
(24) that the optimal values of θ at which FBB , FBP  and FBD  
become maximal are

θ θ
π

= =
4

,BB BD
opt opt (25)

/ /
/ /

θ
π
π

=
<

− >

⎧
⎨
⎩

p

p

4 for 1 2,

4 for 1 2.
BP P

P
opt

3

3
 (26)
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Yet, nontrivial is the case of FBA  in equation  (23). The 

optimal value θBA
opt that makes FBA  maximal can be deter-

mined from the equation  / θ∂ ∂ =θ θ=F 0BA BA
opt

 and the condi-

tion / θ∂ ∂ <θ θ=F 0BA
2 2

BA
opt

. Solving this equation  with the 

condition we have

( )
θ =

−

−

p

p p

1

2
arctan

2 1

1 2
.BA A

B A
opt

3

1 3

 (27)

With so chosen values of θ γB
opt we have straightforwardly 

derived the optimal averaged fidelities γFB opt
 from  

equations (21)–(24). Their analytical expressions read

( )= − + −F p p p p1
1

3
2 2 ,BB B B B Bopt 1 3 1 3 (28)

= − − −F p p
2

3

1

3
1 2 ,BP B Popt 1 3( ) (29)

( ) ( )= − + − − − + −⎡
⎣⎢

⎤
⎦⎥

F

p p p p p p p
2

3

1

6
2 3 2 4 1 1 2

BA

B A B A A B A

opt

1 3 1 3 3 1
2

3
2

 

(30)
and

( )= − + −F p p p p1
1

6
2 3 2 .BD B D B Dopt 1 3 1 3 (31)

The dependences of γFB opt
 on p B1  and ( )γ =γp B P A D, , ,3  

are plotted in figure 1. As a rule, the JRSP protocol is useless 

if the optimal averaged fidelities γFB opt
 is equal to or smaller 

than 2/3, the best classically achievable fidelity value [41, 42].  

To visualize the domain of p B1  and γp3  within which the JRSP 
protocol remains useful we display in figure  2 the corre-
sponding density plots in phase spaces. As quickly followed 
from figures 1(a) and 2(a), FBB opt decreases with increasing 
p B1  or/and p B3 . A closer look, however, reveals that if =p 1B1  
then /=F 2 3BB opt  for any p B3 , whereas for any given <p 1B1 , 
the quality of JRSP is getting worse though still acceptable 
( / )>F 2 3BB opt  as p B3  is increasing from zero. However, the 
protocol suddenly loses its usefulness at /=p 1 2B3  at which 

/=F 2 3BB opt  and beyond which /<F 2 3BB opt . That is, p B3  
should be smaller than 1/2 to keep the JRSP protocol super ior 
to the classical one. Yet, for any /<p 1 2B3  the value of 
FBB opt is tending to 2/3 only asymptotically with increasing 
p B1 . Differently from FBB opt, the behavior of FBP opt seems 
unusual. Notice that FBP opt is always equal to or less than 
2/3 when /=p 1 2P3  for any p B1 , i.e. the necessary condition 
for the JRSP to be useful is /≠p 1 2P3 . Moreover, for a given 

/ ( / )< >p p1 2 1 2P P3 3 , FBP opt is first decreases with increasing 
p B1  until = −p p1 2B P1 3  ( )−p2 1P3 , at which FBP opt drops 
to 2/3, and then the protocol ceases to work for any further 
increase in p B1 . On the other hand, for a given p B1  the value of 
FBP opt decreases as p P3  increases from zero, which is usual. 

This tendency continues until ( )/= −p p1 2P B3 1 , at and imme-
diately beyond which the protocol ‘dies’ (i.e. out of service). 
Interestingly, however, as p P3  increases further to reach a value 
larger than ( )/+ p1 2B1  the protocol ‘revives’ (i.e. back to ser-
vice) with FBP opt increasing with p P3 , which seems unusual 
since it would mean that ‘more noise better quality’ (i.e. larger 
p P3  leads to larger FBP opt). Such sudden ‘death’ and sudden 
‘birth’ of service of the quantum JRSP protocol for FBP opt are 

Figure 1. The optimal averaged fidelity (a) FBB opt, (b) FBP opt, (c) FBA opt and (d) FBD opt as a function of p B1  and ( )γ =γp B P A D, , ,3 . 

The plane at 2/3 is inserted to help visualizing the quantum ( / )>γF 2 3B opt
 and classical ( ⩽ / )γF 2 3B opt

 domains.
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clearly seen from figures 1(b) and 2(b). Figures 1(c) and 2(c) 
show that adding more noise, either bit-flip noise or noise due 
to amplitude-damping mechanism or both, always reduces the 
JRSP efficiency. Qualitatively, this is somewhat similar to the 
case in figures 1(a) and 2(a), except the fact that the upper bound 
p A3

max of the strength of noise acting on qubit 3 is not a constant 
but a function of p B1 , i.e. ( )/( )= + +p p p1 1 2A B B3

max
1 1 , which 

monotonically decreases with p B1 . In particular, a seeming 

surprise arises here if we look back at the expression of θBA
opt 

in equation  (27) which indicates that / ( / )θ π θ π≠ =4 4BA BA
opt opt  

when ( )≠ =p p0 0A A3 3 . This says that non-maximally 

entangled channel ( ( / ) )θ π≠Q 4
123

 outperforms maximally 

entangled channel ( ( / ) )θ π=Q 4
123

 or ‘less entanglement 
better quality’. As for figures 1(d) and 2(d), the useful domain 
in phase space is narrower than that in figures 1(c) and 2(c), 
with the border determined by ( )/( )= − −p p p2 1 3 2D B B3 1 1  
or ( )/ [ ( )]= − −p p p3 2 2 1 .B D D1 3 3

Next, consider α = P and { }γ∈ B P A D, , , . In this sce-
nario the values of θ that make the JRSP protocol optimal can 
be found to be

/ /
/ /

θ θ
π
π

= =
<

− >

⎧
⎨
⎩

p

p

4 for 1 2,
4 for 1 2,

PB PD P

P
opt opt

1

1
 (32)

θ
π
π

=
< < > >

− < > > <

⎧
⎨
⎩

p p p p

p p p p

4 for 1 2, 1 2 or 1 2, 1 2,

4 for 1 2, 1 2 or 1 2, 1 2,
PP P P P P

P P P P
opt

1 3 1 3

1 3 1 3

/ / / / /
/ / / / /

 (33)

( )
θ =

− −p p

p

1

2
arctan

2 1 2 1
.PA P A

A
opt

1 3

3

 (34)

Note that use of the above value of θPA
opt reduces the entan-

glement degree of the initial quantum channel ( )θQ
123

 in  
equation (14). The optimal averaged fidelities are derived in 
the form

( )
= +

− − −
F

p p p2

3

1 2 1

3
,PB

P B B
opt

1 3 3 (35)

( )( )
= +

− −
F

p p2

3

1 2 1 2

3
,PP

P P
opt

1 3 (36)

( ) ( )
= +

− − + −
F

p p p p2

3

4 1 2 1

6
PA

P A A A
opt

1
2

3 3
2

3 (37)

and

( )
= +

− − −
F

p p p2

3

2 1 2 1

6
.PD

P D D
opt

1 3 3 (38)

The dependences of γFP opt
 on p P1  and γp3  ( )γ = B P A D, , ,  

are plotted in figure  3 and the phase-space useful domains 
are shown in figure  4. The border between the useful 
and useless domains for FPB opt in figure  4(a) obeys the 
 equation  = − + −p p p1 2 1 1 2B P P3 1 1/( ). So ⩾ /p 1 2B3  
are ruled out. For a /<p 1 2B3 , FPB opt first decreases with 
p P1  until / [ ( )]= +p p1 2 1P B1

min
3  at which it gets equal to 

2/3. The segment of p P1  sandwiched between p P1
min and 

( )/ [ ( )]= + +p p p1 2 2 1P B B1
max

3 3  is irrelevant, but after p P1
max 

the JRSP protocol becomes more and more efficient with 
increasing phase-flip noise. When qubit 1 is affected by 
phase-flip noise and qubit 3 (a) also by phase-flip noise or (b) 
by amplitude-damping noise, the protocol is better than the 

Figure 2. Phase diagrams for the optimal averaged fidelity (a) FBB opt, (b) FBP opt, (c) FBA opt and (d) FBD opt in the − γp pB1 3  space. The 

magnitude of γFB opt
 is described by colors. The classical domain is in white backgrounds.
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classical one for almost all the values of noise strengths. In 
fact, for the case (a) it requires only /≠p 1 2P1  and /≠p 1 2P3 , 
while for the case (b) only /≠p 1 2P1  and ≠p 1A3 , as is evident 
from figures 4(b) and (c). When qubit 1 is affected by phase-
flip noise and qubit 3 by depolarizing noise, the phase-space 
diagram shown in figure 4(d) is similar to that in figure 4(a), 
but with the border described by a different equation, 

/( )= − + −p p p2 1 2 1 2 1 2D P P3 1 1 , so that of p D3  cannot 
be equal to or greater than 2/3 and for a given /<p 2 3D3 the 
values of p P1  should be smaller than ( )/ [ ( )]+ +p p2 4 1B B3 3  or 
greater than ( )/ [ ( )]+ +p p2 3 4 1B B3 3 .

Further, consider α = A and { }γ∈ B P A D, , , . The optimal 
values of θ are found to be

( )
( )

θ =
− −

−

p p

p p

1

2
arctan

2 1 1

1 2
,AB A B

A B
opt

1 3

1 3

 (39)

( )
θ =

− −p p

p

1

2
arctan

2 1 1 2
,AP A P

A
opt

1 3

1

 (40)

( )( )
θ =

− −

+ −

p p

p p p p

1

2
arctan

2 1 1

2
AA A A

A A A A
opt

1 3

1 3 1 3

 (41)

and

θ =
− p

p

1

2
arctan

2 1
.AD A

A
opt

1

1

 (42)

With any of the above θ γA
opt the initial quantum channel ( )θQ

123
is non-maximally entangled but the corresponding averaged 
fidelities are maximal

= − − +

+ − − + −

⎡
⎣⎢

⎤
⎦⎥

F p p p p

p p p p

1

6
4 2 2

4 1 1 1 2 ,

AB A B A B

A B A B

opt 1 3 1 3

1 3
2

1
2

3
2( )( ) ( )

 

(43)

( )( )= − + + − −⎡
⎣⎢

⎤
⎦⎥F p p p p

1

6
4 4 1 1 2 ,AP A A A Popt 1 1

2
1 3

2

 (44)

Figure 3. The optimal averaged fidelity (a) FPB opt, (b) FPP opt, (c) FPA opt and (d) FPD opt as a function of p P1  and ( )γ =γp B P A D, , ,3 . 

The plane at 2/3 is inserted to help visualizing the quantum ( / )>γF 2 3P opt
 and classical ( ⩽ / )γF 2 3P opt

 domains.

Figure 4. Phase diagrams for the optimal averaged fidelity (a) FPB opt, (b) FPP opt, (c) FPA opt and (d) FPD opt in the − γp pP1 3  space. The 

magnitude of γFP opt
 is described by colors. The classical domain is in white backgrounds.
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( )( ) ( )

= − − +

+ − − + + −

⎡
⎣

⎤
⎦

F p p p p

p p p p p p

1

6
4 2

4 1 1 2

AA A A A A

A A A A A A

opt 1 3 1 3

1 3 1 3 1 3
2

 

(45)and

=F F .AD BDopt opt (46)

Note that although the precise calculations yield different 
expressions for the averaged fidelities (i.e. ≠F FAD BD ) and 

the corresponding optimal values of θ also differ (i.e. θ θ≠AD BD
opt opt) 

the optimization procedure brings about equal optimal aver-
aged fidelities (i.e. =F FAD BDopt opt). Figures 5 and 6 show 

the dependences of γFA opt
 on p A1  and γp3  ( )γ = B P A D, , ,  

and the corresponding phase-space diagrams. The 

quantum–classical border in figure  6(a) is described by the 

equation  ( )/( )= − − − +p p p p p2 4 8 5 2B A A A A3 1 1 1
2

1 , while 

that in figure 6(d) is of the form as in figure 2(d). Qualitatively 
the diagrams in figures 6(a) and (d) are similar, but quanti-
tatively they differ in areas and the values at =p 0A1 . When 
qubit 3 is subjected to phase-flip (amplitude-damping) noise 
all of p A1  and p P3  are relevant, except for /=p 1 2P3  ( )=p 1A3 , 
as visual in figure 6(b) (figure 6(c)).

Finally, consider α = D and { }γ∈ B P A D, , , . Straight-
forward calculations yield

θ θ
π

= =
4

,DB DD
opt opt (47)

/ /
/ /

θ
π
π

=
<

− >

⎧
⎨
⎩

p

p

4 for 1 2

4 for 1 2
DP P

P
opt

3

3
 (48)

and

Figure 5. The optimal averaged fidelity (a) FAB opt, (b) FAP opt, (c) FAA opt and (d) FAD opt as a function of p A1  and ( )γ =γp B P A D, , ,3 . 

The plane at 2/3 is inserted to help visualizing the quantum ( / )>γF 2 3A opt
 and classical ( ⩽ / )γF 2 3A opt

 domains.

Figure 6. Phase diagrams for the optimal averaged fidelity (a) FAB opt, (b) FAP opt, (c) FAA opt and (d) FAD opt in the − γp pA1 3  space. The 

magnitude of γFA opt
 is described by colors. The classical domain is in white backgrounds.
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θ =
− p

p

1

2
arctan

2 1
.DA A

A
opt

3

3

 (49)

The optimal averaged fidelities are derived in the form

( )
= − −

−
F

p p p
1

2

3

3 4

6
,DB

B D B
opt

3 1 3 (50)

( )
= − +

− −
F

p p p2

3 6

1 1 2

3
,DP

D D P
opt

1 1 3 (51)

( )
= − −

−
F

p p p
1

3

3 2

6
DA

A D A
opt

3 1 3 (52)

and

( )
= − −

−
F

p p p
1

2

1

2
.DD

D D D
opt

3 1 3 (53)

The optimal averaged fidelity FDB opt ( FDP opt, FDA opt and 
FDD opt) as a function of p D1  and (P P P,B P A3 3 3  and )P D3  is dis-

played in figure 7.
The equations  of the quantum–classical border in 

 figures 8(a) and (b) are given by ( )/ [ ( )]= − −p p p2 3 4 1B D D3 1 1  
and ( )/ [ ( )]= − −p p p2 4 1P D D3 1 1 , while those in figures 8(c) 
and (d) are of the form ( )/ [ ( )]= − −p p p2 3 2 1A D D3 1 1  and 

( )/ [ ( )]= − −p p p2 3 3 1D D D3 1 1 . The phase-space diagrams in 
figure 8 tell that generally the allowed values of p D1  and γp3  
are more limited in this scenario compared with those previ-
ously considered.

4. Conclusion

We have drawn a small stroke in the big picture of decoher-
ence by analyzing how noises affect the quality of JRSP 
using a controllable GHZ-type state as the initial quantum 

Figure 7. The optimal averaged fidelity (a) FDB opt, (b) FDP opt, (c) FDA opt and (d) FDD opt as a function of p D1  and γp3  ( )γ = B P A D, , , . 

The plane at 2/3 is inserted to help visualizing the quantum ( / )>γF 2 3D opt
 and classical ( ⩽ / )γF 2 3D opt

 domains.

Figure 8. Phase diagrams for the optimal averaged fidelity (a) FDB opt, (b) FDP opt, (c) FDA opt and (d) FDD opt in the − γp pD1 3  space. The 

magnitude of γFD opt
 is described by colors. The classical domain is in white backgrounds.
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channel. The types of noises we have considered are bit-flip, 
phase-flip, amplitude-damping and depolarizing noise which 
are usually met in realistic situations. The action of a noise 
type on a qubit is modeled by a superoperator in terms of the 
operator-sum of Kraus operators. We assumed that two of the 
three concerned qubits are acted on by an independent noise 
and derived explicit dependences of optimal averaged fidelities 
of JRSP in all possible 16 scenarios. In each scenario we also 
figured out the phase space diagrams allowing to specify the 
range of noise strengths in which the quantum JRSP protocol is 
better than the best classical one. Beside the usually expected 
property that quality gets worse with increasing noise or/
and decreasing degree of entanglement, we encountered two 
‘unusual’ things. The first one is ‘more noise better quality’ 
and the second one is ‘less entanglement better quality’. These 
things also arose in noisy quantum teleportation [36] as a direct 
result of mathematical calculations. Here we provide physical 
interpretations. The point is that quality is decided by the 
working quantum channel state. In the presence of noises the 
working state is the decohered one but not the initial one. More 
concretely, in the context of our JRSP protocol, the working 

state is ( )ρ θαγ
123  in equation (16) but not the initial one ( )θQ

123
 

in equation  (14). Because the ideal state ( / )θ π=Q 4
123

 is 
maximally entangled, it is natural that the closer ( )ρ θαγ

123  is to 
( / ) ( / )θ π θ π= =Q Q4 4

123
 the better quality of JRSP results. 

As can be verified, under the action of phase-flip noise the 

closeness between ( )ρ θαγ
123  and ( / ) ( / )θ π θ π= =Q Q4 4

123
 

is maximal if /θ π= − 4 when the noise strength is larger 

than 1/2. By choosing such θ for the initial state ( )θQ
123

 the 

entanglement degree contained in the working state ( )ρ θαγ
123  

increases with the noise strength when it is larger than 1/2. 
Hence, the ‘more noise better quality’ is physically translated 
to ‘larger entanglement better quality’ (note, here it is entan-
glement of the working channel ( / )ρ θ π= −αγ 4123 . Likewise, 
under the action of amplitude-damping noise the closeness 
between ( )ρ θαγ

123  and ( / ) ( / )θ π θ π= =Q Q4 4
123

 is maximal 
at /θ π≠ 4. That is, the initial state ( / )θ π≠Q 4

123
 is non-max-

imally entangled, but the entanglement degree of the working 
state ( / )ρ θ π≠αγ 4123  is larger than the entanglement degree of 

( / )ρ θ π=αγ 4123 . So, the ‘less entanglement better quality’ also 
implies ‘larger entanglement better quality’ (note, in the 
former italic sentence entanglement means entanglement of 
the initial quantum channel but in the latter italic sentence 
entanglement means entanglement of the decohered quantum 
channel which is the working one). Therefore, in light of our 
interpretations the two ‘unusual’ things mentioned above turn 
out to be usual: both in fact reflect the truth that a working (not 
initial) quantum channel with a larger degree of entanglement 
results in a better quality of JRSP protocol. For a comprehen-
sive study one can extend this work to the case when all the 
three qubits are subjected to noises or to consider other kinds 
of the initial quantum channels or analyze other ways of noise 
action (e.g. collective action of different types of noises, non-
Markovian noise, etc). Noisy JRSP and noisy controlled JRSP 
of multi-qubit states are also worth investigating. These topics 
may be dealt with in future.
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