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Entanglement of photons in their dual wave-
particle nature
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Rosario Lo Franco 4,5 & Fabio Sciarrino1

Wave-particle duality is the most fundamental description of the nature of a quantum object,

which behaves like a classical particle or wave depending on the measurement apparatus. On

the other hand, entanglement represents nonclassical correlations of composite quantum

systems, being also a key resource in quantum information. Despite the very recent obser-

vations of wave-particle superposition and entanglement, whether these two fundamental

traits of quantum mechanics can emerge simultaneously remains an open issue. Here we

introduce and experimentally realize a scheme that deterministically generates entanglement

between the wave and particle states of two photons. The elementary tool allowing this

achievement is a scalable single-photon setup which can be in principle extended to generate

multiphoton wave-particle entanglement. Our study reveals that photons can be entangled in

their dual wave-particle behavior and opens the way to potential applications in quantum

information protocols exploiting the wave-particle degrees of freedom to encode qubits.
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Quantum mechanics is one of the most successful theories
in describing atomic-scale systems albeit its properties
remain bizarre and counterintuitive from a classical

perspective. A paradigmatic example is the wave-particle duality
of a single-quantum system, which can behave like both particle
and wave to fit the demands of the experiment’s configuration1.
This double nature is well reflected by the superposition principle
and evidenced for light by Young-type double-slit
experiments2, 3, where single photons from a given slit can be
detected (particle-like behavior) and interference fringes observed
(wave-like behavior) on a screen behind the slits. A double-slit
experiment can be simulated by sending photons into a
Mach–Zehnder interferometer (MZI) via a semitransparent
mirror (beam-splitter)2, 3. A representative experiment with MZI,
also performed with a single atom4, is the Wheeler’s delayed-
choice (WDC) experiment1, 5, where one can choose to observe
the particle or wave character of the quantum object after it has
entered the interferometer. These experiments rule out the exis-
tence of some extra information hidden in the initial state telling
the quantum object which character to exhibit before reaching the
measurement apparatus. Very recent quantum WDC experi-
ments, using quantum detecting devices and requiring ancilla
photons or post-selection, have then shown that wave and par-
ticle behaviors of a single photon can coexist simultaneously, with
a continuous morphing between them6–13. Regarding the latter
property, it is worth to mention that the classical concepts of
wave and particle need a suitable interpretation in the context of
quantum detection. Namely, the wave or particle nature of a
photon is operationally defined as the state of the photon,
respectively, capable or incapable to produce interference6. Along
this work, we always retain this operational meaning in terms of
two suitably defined quantum states.

When applying the superposition principle to composite sys-
tems, another peculiar quantum feature arises, namely the
entanglement among degrees of freedom of the constituent par-
ticles (e.g., spins, energies, spatial modes, polarizations)14, 15.

Entanglement gathers fundamental quantum correlations among
particle properties, which are at the core of nonlocality16–20 and
exploited as essential ingredient for developing quantum tech-
nologies21–23. Superposition principle and entanglement have
been amply debated within classical-quantum border, particularly
whether macroscopically distinguishable states (i.e., distinct
quasiclassical wave packets) of a quantum system could be pre-
pared in superposition states24. While superpositions of coherent
states of a single quantum system (also known as “cat states” from
the well-known Schrödinger’s epitome) have been observed for
optical or microwave fields starting from two decades ago24–28,
the creation of entangled coherent states of two separated sub-
systems has remained a demanding challenge, settled only very
recently by using superconducting microwave cavities and
Josephson junction-based artificial atoms29. An analogous situa-
tion exists in the context of wave-particle duality where, albeit
wave-particle superpositions of a photon have been reported6–12,
entangled states of photons correlated in their wave-particle
degrees of freedom are still unknown.

In this work we experimentally demonstrate that wave-particle
entanglement of two photons is achievable deterministically. We
reach this goal by introducing and doubling a scalable all-optical
scheme which is capable to generate, in an unconditional manner,
controllable single-photon wave-particle superposition states.
Parallel use of this basic toolbox then allows the creation of
multiphoton wave-particle entangled states.

Results
Single-photon toolbox. The theoretical sketch of the
wave-particle scheme for the single photon is displayed in
Fig. 1. A photon is initially prepared in a polarization state
ψ0j i ¼ cos α Vj i þ sin α Hj i, where Vj i and Hj i are the vertical
and horizontal polarization states and α is adjustable by a pre-
paration half-wave plate (not shown in the figure). After crossing
the preparation part of the setup of Fig. 1 (see Supplementary
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Fig. 1 Conceptual figure of the wave-particle toolbox. A single photon is coherently separated in two spatial modes by means of a polarizing beam-splitter
(PBS) according to its initial polarization state (in). A half-wave plate (HWP) is placed after the PBS to obtain equal polarizations between the two modes.
One mode is injected in a complete Mach-Zehnder interferometer (MZI) with phase ϕ1, thus exhibiting wave-like behavior. The second mode is injected in
a Mach-Zehnder interferometer lacking the second beam-splitter, thus exhibiting particle-like behavior (no dependence on ϕ2). The output modes are
recombined on two symmetric beam-splitters (BS4, BS5), which can be removed to change the measurement basis. Detectors (D1, D2, D3, D4) are placed
on each final path ( 1j i, 2j i, 3j i, 4j i)
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Notes 1 and 2 and Supplementary Fig. 1 for details), the photon
state is

ψ fj i ¼ cos α wavej i þ sin α particlej i; ð1Þ

where the states

wavej i ¼ eiϕ1=2 cos ϕ1
2 1j i � i sin ϕ1

2 3j i
� �

;

particlej i ¼ 1ffiffi
2

p 2j i þ eiϕ2 4j i� �
;

ð2Þ

operationally represent the capacity wavej ið Þ and incapacity
particlej ið Þ of the photon to produce interference6, 11. In fact, for

the wavej i state the probability of detecting the photon in the
path nj i (n= 1, 3) depends on the phase ϕ1: the photon must
have traveled along both paths simultaneously (see upper MZI in
Fig. 1), revealing its wave behavior. Instead, for the particlej i state
the probability to detect the photon in the path nj i (n= 2, 4) is 1/
2, regardless of phase ϕ2: thus, the photon must have crossed only
one of the two paths (see lower MZI of Fig. 1), showing its
particle behavior. Notice that the scheme is designed in such a
way that Vj i Hj ið Þ leads to the wavej i particlej ið Þ state.

To verify the coherent wave-particle superposition as a
function of the parameter α, the wave and particle states have
to interfere at the detection level. This goal is achieved by
exploiting two symmetric beam-splitters where the output paths
(modes) are recombined, as illustrated in the detection part of
Fig. 1. The probability Pn= Pn(α, ϕ1, ϕ2) of detecting the photon
along path nj i (n= 1, 2, 3, 4) is now expected to depend on all
the involved parameters, namely

P1 ¼ Pc þ I c; P2 ¼ Pc � I c; P3 ¼ Ps þ I s; P4 ¼ Ps � I s;

ð3Þ

where

Pc ¼ 1
2
cos2α cos2

ϕ1

2
þ 1
4
sin2α;

Ps ¼ 1
2
cos2α sin2

ϕ1

2
þ 1
4
sin2α;

I c ¼ 1

2
ffiffiffi
2

p sin 2α cos2
ϕ1

2
;

I s ¼ 1

2
ffiffiffi
2

p sin 2α sin
ϕ1

2
sin

ϕ1

2
� ϕ2

� �
:

ð4Þ

We remark that the terms I c, I s in the detection probabilities
exclusively stem from the interference between the wavej i and
particlej i components appearing in the generated superposition
state ψ fj i of Eq. (1). This fact is further evidenced by the
appearance, in these interference terms, of the factor C ¼ sin 2α,
which is the amount of quantum coherence owned by ψ fj i in the
basis { wavej i, particlej i} theoretically quantified according to the
standard l1-norm30. On the other hand, the interference terms I c,
I s are always identically zero (independently of phase values)
when the final state of the photon is: (i) wavej i (α= 0); (ii)
particlej i (α= π/2); (iii) a classical incoherent mixture ρf ¼
cos2α wavej i waveh j þ sin2α particlej i particleh j (which can be the-
oretically produced by the same scheme starting from an initial
mixed polarization state of the photon).

The experimental single-photon toolbox, realizing the pro-
posed scheme of Fig. 1, is displayed in Fig. 2 (see Methods for
more details). The implemented layout presents the advantage of
being interferometrically stable, thus not requiring active phase
stabilization between the modes. Figure 3 shows the experimental

results for the measured single-photon probabilities Pn. For α= 0,
the photon is vertically polarized and entirely reflected from the
PBS to travel along path 1, then split at BS1 into two paths, both
leading to the same BS3 which allows these two paths to interfere
with each other before detection. The photon detection
probability at each detector Dn (n= 1, 2, 3, 4) depends on the
phase shift ϕ1: P1 α ¼ 0ð Þ ¼ P2 α ¼ 0ð Þ ¼ 1

2 cos
2 ϕ1

2 ,

P3 α ¼ 0ð Þ ¼ P4 α ¼ 0ð Þ ¼ 1
2 sin

2 ϕ1
2 , as expected from Eqs. (3)

and (4). After many such runs an interference pattern emerges,
exhibiting the wave-like nature of the photon. Differently, if
initially α= π/2, the photon is horizontally polarized and, as a
whole, transmitted by the PBS to path 2, then split at BS2 into two
paths (leading, respectively, to BS4 and BS5) which do not interfere
anywhere. Hence, the phase shift ϕ2 plays no role on the photon
detection probability and each detector has an equal chance to
click: P1 α ¼ π

2

� � ¼ P2 α ¼ π
2

� � ¼ P3 α ¼ π
2

� � ¼ P4 α ¼ π
2

� � ¼ 1
4, as

predicted by Eqs. (3) and (4), showing particle-like behavior
without any interference pattern. Interestingly, for 0< α< π/2,
the photon simultaneously behaves like wave and particle. The
coherent continuous morphing transition from wave to particle
behavior as α varies from 0 to π/2 is clearly seen from Fig. 4a and
contrasted with the morphing observed for a mixed incoherent
wave-particle state ρf (Fig. 4b). Setting ϕ2= 0, the coherence of
the generated state is also directly quantified by measuring the
expectation value of an observable σ1234x , defined in the four-
dimensional basis of the photon paths 1j i; 2j i; 3j i; 4j if g of the
preparation part of the setup as a Pauli matrix σx between modes
(1, 2) and between modes (3, 4). It is then possible to
straightforwardly show that σ1234x

	 
 ¼ Tr σ1234x ρf
� � ¼ 0 for any

incoherent state ρf, while
ffiffiffi
2

p
σ1234x

	 
 ¼ sin 2α ¼ C for an arbitrary
state of the form ψ fj i defined in Eq. (1). Insertion of beam-
splitters BS4 and BS5 in the detection part of the setup
(corresponding to β= 22.5° in the output wave-plate of Fig. 2)
rotates the initial basis 1j i; 2j i; 3j i; 4j if g generating a measure-
ment basis of eigenstates of σ1234x , whose expectation value is thus
obtained in terms of the detection probabilities as σ1234x

	 
 ¼
P1 � P2 þ P3 � P4 (see Supplementary Note 2). As shown in
Fig. 4c, d, the observed behavior of

ffiffiffi
2

p
σ1234x

	 

as a function of α

confirms the theoretical predictions for both coherent ψ fj i
(Fig. 4c) and mixed (incoherent) ρf wave-particle states (the latter
being obtained in the experiment by adding a relative time delay
in the interferometer paths larger than the photon coherence time
to lose quantum interference, Fig. 4d).

Wave-particle entanglement. The above single-photon scheme
constitutes the basic toolbox which can be extended to create a
wave-particle entangled state of two photons, as shown in Fig. 2b.
Initially, a two-photon polarization maximally entangled state
Ψj iAB ¼ 1ffiffi

2
p VVj i þ HHj ið Þ is prepared (the procedure works in

general for arbitrary weights, see Supplementary Note 3). Each
photon is then sent to one of two identical wave-particle tool-
boxes which provide the final state

Φj iAB ¼ 1ffiffiffi
2

p wavej i wave0j i þ particlej i particle0j ið Þ; ð5Þ

where the single-photon states wavej i, particlej i, wave0j i,
particle0j i are defined in Eq. (2), with parameters and paths
related to the corresponding wave-particle toolbox. Using the
standard concurrence14 C to quantify the amount of entangle-
ment of this state in the two-photon wave-particle basis, one
immediately finds C= 1. The generated state Φj iAB is thus a
wave-particle maximally entangled state (Bell state) of two pho-
tons in separated locations.
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The output two-photon state is measured after the two
toolboxes. The results are shown in Fig. 5. Coincidences between
the four outputs of each toolbox are measured by varying ϕ1 and
ϕ′
1. The first set of measurements (Fig. 5a–d) is performed by

setting the angles of the output wave-plates (see Fig. 2c) at {β= 0,
β′= 0}, corresponding to removing both BS4 and BS5 in Fig. 1
(absence of interference between single-photon wave and particle
states). In this case, detectors placed at outputs (1, 3) and (1′, 3′)
reveal wave-like behavior, while detectors placed at outputs (2, 4)
and (2′, 4′) evidence a particle-like one. As expected, the two-
photon probabilities Pnn′ for the particle detectors remain
unchanged while varying ϕ1 and ϕ′

1, whereas the Pnn0 for the
wave detectors show interference fringes. Moreover, no contribu-
tion of crossed wave-particle coincidences Pnn0 is obtained, due to
the form of the entangled state. The second set of measurements
(Fig. 5e–h) is performed by setting the angles of the output wave-
plates at {β= 22.5°, β′= 22.5°}, corresponding to the presence of
BS4 and BS5 in Fig. 1 (the presence of interference between single-
photon wave and particle states). We now observe nonzero
contributions across all the probabilities depending on the
specific settings of phases ϕ1 and ϕ′

1. The presence of
entanglement in the wave-particle behavior is also assessed by
measuring the quantity E ¼ P220 � P210 as a function of ϕ1, with

fixed ϕ′
1 ¼ ϕ2 ¼ ϕ′

2 ¼ 0. According to the general expressions of
the coincidence probabilities (see Supplementary Note 3), E is
proportional to the concurrence C and identically zero (inde-
pendently of phase values) if and only if the wave-particle two-
photon state is separable (e.g., wavej i ⊗ wave0j i or a maximal
mixture of two-photon wave and particle states). For Φj iAB of Eq.
(5) the theoretical prediction is E ¼ 1=4ð Þcos2 ϕ1=2ð Þ, which is
confirmed by the results reported in Fig. 5i, j (within the
reduction due to visibility). A further test of the generated wave-
particle entanglement is finally performed by the direct measure
of the expectation values Wh i ¼ Tr Wρð Þ of a suitable entangle-
ment witness31, defined in the (4 × 4)-dimensional space of the
two-photon paths as

W ¼ 1� 2 σ1234x � σ1234x

� �′h i
� σ1234z � σ1234z

� �′h i
; ð6Þ

where 1 is the identity matrix, σ1234x has been defined previously,
and σ1234z corresponds to applying a σz Pauli matrix between
modes (1, 2) and between modes (3, 4). The measurement basis of
σ1234z is that of the initial paths 1j i; 2j i; 3j i; 4j if g exiting the
preparation part of the single-photon toolbox. It is possible to
show that Tr Wρsð Þ � 0 for any two-photon separable state ρs of
wave-particle states, so that whenever Tr Wρeð Þ<0 the state ρe is
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entangled in the photons wave-particle behavior (see Supple-
mentary Note 3). The expectation values of W measured in the
experiment in terms of the 16 coincidence probabilities Pnn′, for
the various phases considered in Fig. 5, are: Wh i ¼
�0:699± 0:041 (ϕ1= ϕ′

1 = 0); Wh i ¼ �0:846± 0:045 (ϕ1= ϕ′
1

= π); Wh i ¼ �0:851± 0:041 (ϕ1= π, ϕ′
1 = 0); Wh i ¼

�0:731± 0:042 (ϕ1= 0, ϕ′
1 = π). These observations altogether

prove the existence of quantum correlations between wave and
particle states of two photons in the entangled state Φj iAB.

Discussion
In summary, we have introduced and realized an all-optical
scheme to deterministically generate single-photon wave-particle
superposition states. This setup has enabled the observation of the
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simultaneous coexistence of particle and wave character of the
photon maintaining all its devices fixed, being the control only on
the preparation of the input photon. Specifically, different initial
polarization states of the photon, then transformed into
which-way (path) states, reveal the wave-to-particle morphing
economizing the employed resources compared with previous
experiments with delayed choice6–12. The advantageous
aspects of the single-photon scheme have then supplied the
key for its straightforward doubling, by which we have
observed that two photons can be cast in a wave-particle
entangled state provided that suitable initial entangled
polarization states are injected into the apparatus. We remark
that powerful features of the scheme are flexibility and
scalability. Indeed, a parallel assembly of N single-photon
wave-particle toolboxes allows the generation of
N-photon wave-particle entangled states. For instance,
the GHZ-like state ΦNj i ¼ 1ffiffi

2
p wave1;wave2; ¼ ;waveNj ið

+ particle1; particle2; ¼ ; particleNj iÞ is produced when the
GHZ polarization entangled state ΨNj i ¼
1ffiffi
2

p V1V2 ¼VNj i þ H1H2 ¼HNj ið Þ is used as input state.
From the viewpoint of the foundations of quantum mechanics,

our research brings the complementarity principle for wave-
particle duality to a further level. Indeed, it merges this basic trait
of quantum mechanics with another peculiar quantum feature
such as the entanglement. In fact, besides confirming that a
photon can live in a superposition of wave and particle behaviors
when observed by quantum detection11, we prove that the
manifestation of its dual behavior can intrinsically depend on the
dual character of another photon, according to correlations ruled
by quantum entanglement. Specifically, the coherent wave-
particle behavior of a photon is quantum correlated to the
measurement outcome of an apparatus, sensitive to the wave-

particle behavior of another photon, placed in a region separated
from it. Our work shows that this type of entanglement is possible
for composite quantum systems. We finally highlight that the
possibility to create and control wave-particle entanglement may
also play a role in quantum information scenarios. In particular, it
opens the way to design protocols which exploit quantum
resources contained in systems of qubits encoded in wave and
particle operational states.

Methods
Experimental wave-particle toolbox. The implementation of the wave-particle
toolbox exploits both polarization and path degrees of freedom of the photons. A
crucial parameter is to obtain an implemented toolbox presenting high interfero-
metric stability. This is achieved in the experiment by exploiting the scheme of
Fig. 2, which presents an intrinsic interferometric stability due to the adoption of
calcite crystals as beam-displacing prisms (see Supplementary Note 1). More
specifically, all optical paths of the overall interferometer are transmitted by the
same beam-displacing prisms and propagate in parallel directions, and are thus
affected by the same phase fluctuations. Relative phases ϕ1 and ϕ2 (Fig. 2) within
the interferometer are controlled by two liquid crystal devices, which introduce a
tunable relative phase between polarization state Hj i and Vj i depending on the
applied voltage. The parameter α of Eq. (1) is set by an input half-wave plate, while
the output half-wave plate at the detection stage rotates the measurement basis
depending on its angle β (β= 0° corresponds to the absence of BS4 and BS5, while
β= 22.5° corresponds to the presence of BS4 and BS5). Both half-wave plates are
controlled by a motorized stage. Hence, all the variable optical elements in the
setup can be controlled via software.

Acquisition system. The output photons are detected by avalanche photodiode
detectors, which are connected to an id800 Time to Digital Converter from ID
Quantique that is employed to record the output single counts and two-photon
coincidences. The photon source is a parametric down conversion source gen-
erating pairs of entangled photons. In the single particle experiment, one of the
generated photon is directly detected and acts as a trigger, while the other photon is
injected in the wave-particle toolbox. Two-photon coincidences are recorded
between the output detectors of the toolbox and the trigger photon. In the two-
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Fig. 5 Generation of wave-particle entangled superposition with a two-photon state. Measurements of the output coincidence probabilities Pnn0 to detect
one photon in output mode n of the first toolbox and one in the output mode n′ of the second toolbox, with different phases ϕ1 and ϕ′

1 ϕ2 ¼ ϕ′
2 ¼ 0

� �
.

a–d, Pnn′ measured with {β= 0, β′= 0}, corresponding to the absence of BS4 and BS5 in Fig. 1. a ϕ1= 0 and ϕ′
1 = 0. b ϕ1= π and ϕ′

1 ¼ 0. c ϕ1= 0 and ϕ′
1 ¼π.

d ϕ1= π and ϕ′
1 ¼π. e–h Pnn′ measured with {β= 22.5°, β′= 22.5°}, corresponding to the presence of BS4 and BS5 in Fig. 1. e ϕ1= 0 and ϕ′

1 ¼ 0. f ϕ1= π and
ϕ′
1 ¼ 0. g ϕ1= 0 and ϕ′

1 ¼π. h ϕ1= π and ϕ′
1 ¼ π. White bars: theoretical predictions. Colored bars: experimental data. Orange bars: Pnn′ contributions for

detectors Dn and Dn0 linked to wave-like behavior for both photons (in the absence of BS4 and BS5). Cyan bars: Pnn0 contributions for detectors Dn and Dn0

linked to particle-like behavior for both photons (in the absence of BS4 and BS5). Magenta bars: Pnn0 contributions for detectors Dn and Dn0 linked to wave-
like behavior for one photon and particle-like behavior for the other one (in absence of BS4 and BS5). Darker regions in colored bars correspond to 1 σ error
interval, due to the Poissonian statistics of two-photon coincidences. i, j, Quantitative verification of wave-particle entanglement. i, P220 (blue) and P210
(green) and j, E ¼ P220 � P210 , as a function of ϕ1 for ϕ

′
1 ¼ 0 and {β= 22.5°, β′= 22.5°}. Error bars are standard deviations due to the Poissonian statistics of

two-photon coincidences. Dashed curves: best-fit of the experimental data
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particle experiment, the two photons of the entangled pair are separately sent to
two independent wave-particle toolboxes. Two-photon coincidences are then
recorded between the output detectors of each toolbox. A dedicated LabVIEW
routine allows simultaneous control of the optical elements and of the detection
apparatus to obtain a fully automatized measurement process.

Data availability. The data sets generated during and/or analyzed during the
current study are available from the corresponding author on reasonable request.
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Supplementary Figure 1: a, Conceptual scheme of the wave-particle toolbox. b, Layout of the experimental implementation of the wave-
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SUPPLEMENTARY NOTE 1: DESCRIPTION OF THE WAVE-PARTICLE TOOLBOX

We now discuss the implementation of the wave-particle toolbox reported in Fig. 2c-d of the main text. The conceptual
scheme (Fig. 1 in the main text) is reported in Supplementary Fig. 1a, while the actual layout is shown in Supplementary
Fig. 1b. The implemented toolbox exploits simultaneously the polarization degree of freedom and different spatial modes in an
interferometrically stable configuration.

The input state |ψ0〉 is separated in two parallel beams according to their polarization state by the first beam-displacing prism
(BDP1), thus implementing the action of the first PBS. Then, HWP1 with optical axis at 45◦ is placed on the bottom mode of
the interferometer. The second half-wave plate (HWP2) implements simultaneously in the polarization degree of freedom the
action of BS1 and BS2. After insertion of phases φ1 and φ2 between polarization states through liquid crystals LC1 and LC2,
the action of BS3 is reproduced by HWP3 intercepting only the top mode. Then, beam-displacing prism BDP2 and the set of
half-wave plates HWP4-HWP7 is inserted to separate and prepare the four output modes. Finally, the modes are recombined
spatially by BDP3 and in polarization by HWP8. Depending on the angle of HWP8, this corresponds to removing (β = 0◦) or
inserting (β = 22.5◦) the final beam-splitters BS4 and BS5 of the conceptual scheme. The final PBS in the experimental scheme
of Supplementary Fig. 1b spatially separates the four output modes 1-4, which are measured by detectors D1-D4.

SUPPLEMENTARY NOTE 2: SINGLE-PHOTON WAVE-PARTICLE STATE

In this Section we describe the derivation of the wave-particle superposition state of a single photon which travels along the
theoretical scheme, reported in Fig. 1 of the main text (see also Supplementary Fig. 1 above in Supplementary Note 1) and
realized by the experimental setup (wave-particle toolbox) of Fig. 2 of the manuscript.

A photon is initially prepared in a polarization state

|ψ0〉 = cosα |V〉+ sinα |H〉 , (1)

with |V〉 and |H〉 representing the states of vertical and horizontal polarization, respectively. This state is experimentally realized
by a half-wave plate (HWP) not shown in Fig. 1 (but evidenced in Fig. 2a in the manuscript). The photon so prepared is sent to
a polarizing beam splitter (PBS). Since the vertical polarization of the photon is reflected by the PBS (path 1), while horizontal
polarization is transmitted through the PBS (path 2), the photon passes through the upper (wave-like) path of Fig. 1 with a
probability amplitude cosα and it crosses the lower (particle-like) path with a probability amplitude sinα. A HWP (45◦) is
placed after the PBS to obtain equal polarizations between the two spatial modes (paths). Therefore, after the PBS and HWP,
the photon state is

|ψ1〉 = cosα |1〉+ sinα |2〉 , (2)

where |n〉 (n = 1, 2, 3, 4) represents a state of a photon traveling along path n. Then, each path further bifurcates at a balanced
beam splitter (BS), BS1 for path 1 and BS2 for path 2, transforming |ψ1〉 into

|ψ2〉 = cosα

[
1√
2

(|1〉+ eiφ1 |3〉)
]

+ sinα

[
1√
2

(|2〉+ eiφ2 |4〉)
]
, (3)

where φ1 (φ2) is a relative phase introduced by a phase shifter placed in path 3 (4). Notice that paths 3 and 4 are the paths
reflected by BS1 and BS2, respectively. Paths 1 and 3 are then recombined by BS3, after which the state |ψ2〉 becomes

|ψf〉 = cosα |wave〉+ sinα |particle〉 , (4)

where

|wave〉 = eiφ1/2(cos
φ1
2
|1〉 − i sin

φ1
2
|3〉), |particle〉 =

1√
2

(|2〉+ eiφ2 |4〉). (5)

As mentioned in the main text, this photon state is a coherent superposition of two operational wave and particle states rep-
resenting, respectively, the ability and inability to produce interference. Photon counting probabilities at detectors D1, D3

placed at the end of paths 1, 3 will reveal a wave-like behaviour with their dependence on the phase φ1; on the other hand,
photon counting probabilities at detectors D2, D4 placed at the end of paths 2, 4 will exhibit a particle-like behaviour in-
dependent of the phase φ2. However, these counting probabilities would not allow us to distinguish the wave-particle mor-
phing corresponding to the coherent superposition of equation (4) from that corresponding to the classical incoherent state
ρf = cos2 α |wave〉 〈wave| + sin2 α |particle〉 〈particle| with probabilities cos2 α and sin2 α, respectively. It is like measuring
the state |ψf〉 only along the orthogonal basis {|wave〉, |particle〉} corresponding to wave or particle behaviour.
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In order to observe a coherent wave-to-particle morphing as a function of α, the wave and particle operational states must
interfere at the detection level. This is done by letting paths 1 and 2 synchronize at BS4, while paths 3 and 4 synchronize at BS5

in the detection part of the experimental apparatus. The photon state |ψdet〉 after these additional beam-splitters results to be

|ψdet〉 = cosα|wave-det〉+ sinα|particle-det〉, (6)

where

|wave-det〉 =
eiφ1/2

√
2

(cos
φ1
2
|1〉+ cos

φ1
2
|2〉 − i sin

φ1
2
|3〉 − i sin

φ1
2
|4〉),

|particle-det〉 =
1

2
(|1〉 − |2〉+ eiφ2 |3〉 − eiφ2 |4〉). (7)

Now, as explicitly reported in the main text, the photon counting probabilities at detectors Dn (n = 1, 2, 3, 4) reveal the quantum
superposition of wave and particle behaviours and the wave-to-particle morphing. The insertion of BS4 and BS5 in fact permits
one to change the measurement basis into the coherent superposition of wave and particle behaviours. In the manuscript,
we notice that the terms Ic, Is of the detection probabilities exclusively stem from the interference between the |wave〉 and
|particle〉 components appearing in the generated superposition state |ψf〉 of equation (4). In these interference terms, the factor
C = sin 2α appears, which is the amount of quantum coherence owned by the pure state |ψf〉 in the basis {|wave〉, |particle〉}.
This is theoretically obtained by using the bona-fide quantifier according to the l1-norm of coherence for a two-state system [1],
defined as C =

∑
i,j (i 6=j) |ρij |, where ρij (in our case equal to sinα cosα) are the off-diagonal terms of the system density

matrix.
The coherence of the wave-particle superposition can be directly measured without resorting to the knowledge of the gener-

ated state. We can describe the 4-dimensional space spanned by the basis of the initial photon paths {|1〉, |2〉, |3〉, |4〉} of the
preparation part of the setup as

|1〉 =

 1
0
0
0

 , |2〉 =

 0
1
0
0

 , |3〉 =

 0
0
1
0

 , |4〉 =

 0
0
0
1

 . (8)

The action of the beam-splitters BS4 and BS5 on this basis states is represented by the matrix

BS4,5 =
1

2

 1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 , (9)

which rotates the initial states {|1〉, |2〉, |3〉, |4〉} into the states, respectively,
{
|1〉+|2〉√

2
, |1〉−|2〉√

2
, |3〉+|4〉√

2
, |3〉−|4〉√

2

}
. These rotated

states are the eigenstates, with corresponding eigenvalues {1,−1, 1,−1}, of an operator defined as:

σ1234
x =

 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 . (10)

This operator corresponds to the simultaneous application of the 2-dimensional first Pauli matrix σx, on the pair of states
{|1〉, |2〉} and on the pair {|3〉, |4〉}. Considering now the operational states of equation (5) and setting φ2 = 0 (this phase being
irrelevant for the particle behaviour), one easily finds

〈wave|σ1234
x |wave〉 = 〈particle|σ1234

x |particle〉 = 0, 〈±|σ1234
x |±〉 = ±1/

√
2, (11)

where |±〉 = (|wave〉 ± |particle〉)/
√

2: therefore, measuring 〈σ1234
x 〉 corresponds to measuring the state along the rotated

wave-particle basis {|+〉, |−〉}. Moreover, 〈σ1234
x 〉 = Tr(σ1234

x ρf) = 0 for any incoherent (classical) wave-particle state ρf =

cos2 α |wave〉 〈wave|+sin2 α |particle〉 〈particle| and, on the other hand, 〈σ1234
x 〉 = Tr(σ1234

x |ψf〉〈ψf |) = sin 2α/
√

2 = C/
√

2
for an arbitrary state of the form |ψf〉 of equation (4). The introduction of the additional beam-splitters BS4 and BS5 thus
allows the direct measure of the experimental expectation value 〈σ1234

x 〉 at the output detectors in terms of the photon detection
probabilities, according to the combination 〈σ1234

x 〉 = P1−P2 +P3−P4. In Fig. 4c of the main text, we report the experimental
observations of

√
2〈σ1234

x 〉 which confirm the generation of a wave-particle quantum superposition with α-dependent coherence,
contrasted with the zero mean value (independent of α) measured for an incoherent state ρf (see Fig. 4d).
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It is immediate to theoretically see that, starting from a mixed polarization photon state of the kind ρ0 = cos2 α |V〉 〈V| +
sin2 α |H〉 〈H|, a mixed incoherent wave-particle state for the photon is finally obtained by the scheme above, namely ρf =
cos2 α |wave〉 〈wave| + sin2 α |particle〉 〈particle|. In the experiment, such a state is effectively achieved by adding a relative
time delay in the interferometer paths larger than the photon coherence time to lose quantum interference. Comparisons of the
wave-particle morphing and of the coherence witness between the case of coherent wave-particle superposition and the case of
mixed wave-particle state are reported in the manuscript (see Fig. 4).

SUPPLEMENTARY NOTE 3: TWO-PHOTON WAVE-PARTICLE ENTANGLED STATE

We now describe the steps leading to the generation of the wave-particle entangled state of two separated photons. The scheme
is a parallel doubling of the single-photon scheme of Fig. 1 (see Fig. 2 of the manuscript). In order to give the most general
theoretical description of the procedure, let us consider the injection of an initial polarization entangled state of the form

|Ψ〉AB = cosα |VV〉+ sinα |HH〉 . (12)

Then, the photon A (B) is sent to wave-particle toolbox A, top, (B, bottom) as displayed in Fig. 2b of the manuscript. The photons
therefore independently follow the same steps described in the section above. For simplicity, we indicate the parameters, optical
devices and paths of the bottom wave-particle toolbox (B) with the symbol (′).

As a consequence, after the PBS + HWP and PBS′ + HWP′, the two-photon state becomes

|Ψ1〉 = cosα |11′〉+ sinα |22′〉 , (13)

where we indicate |nn′〉 ≡ |n〉|n′〉 = |n〉 ⊗ |n′〉.
Then, paths 1, 1′ goes towards BS1, BS1′ , while paths 2, 2′ bifurcate at BS2, BS2′ , transforming |Ψ1〉 into

|Ψ2〉 = cosα

[
1√
2

(|1〉+ eiφ1 |3〉)
] [

1√
2

(|1′〉+ eiφ1′ |3′〉)
]

+ sinα

[
1√
2

(|2〉+ eiφ2 |4〉)
] [

1√
2

(|2′〉+ eiφ2′ |4′〉)
]
, (14)

where φ1, φ1′ , φ2 and φ2′ are the relative phases introduced by the phase shifters placed in path 3, 3′, 4 and 4′. Successively,
paths 1 and 3 are recombined by BS3 and paths 1′ and 3′ are recombined by BS3′ , after which the state |Ψ2〉 becomes

|Φ〉AB = cosα |wave〉 |wave′〉+ sinα |particle〉
∣∣particle′

〉
, (15)

where the states |wave〉 and |particle〉 are defined in equation (5), while the states |wave′〉 and
∣∣particle′

〉
are defined in the

same way, namely

|wave′〉 = eiφ
′
1/2

(
cos

φ′1
2
|1′〉 − i sin

φ1
2
|3′〉
)
,
∣∣particle′

〉
=

1√
2

(
|2′〉+ eiφ

′
2 |4′〉

)
. (16)

At this stage, that is without the additional beam splitters BS4, BS5 and BS4′ , BS5′ in each wave-particle toolbox, the entan-
gled state can be measured by photon coincidences Pnn′ detecting their wave or particle behaviours. In the manuscript, we
have performed such a measurement for the case when the two-photon state is maximally entangled (that is, α = π/4 in equa-
tion (15)). The theoretical probabilities corresponding to wave, particle and crossed wave-particle behaviours are as follows.
Wave probabilities:

P11′ =
1

2
cos2

φ1
2

cos2
φ′1
2
, P33′ =

1

2
sin2 φ1

2
sin2 φ

′
1

2
,

P13′ =
1

2
cos2

φ1
2

sin2 φ
′
1

2
, P31′ =

1

2
sin2 φ1

2
cos2

φ′1
2
. (17)

Particle probabilities:

P22′ = P44′ = P24′ = P42′ = 1/8. (18)

Crossed wave-particle probabilities:

P12′ = P14′ = P21′ = P23′ = P32′ = P34′ = P41′ = P43′ = 0. (19)

The experimental results for these sixteen probabilities are plotted in Fig. 5a-d of the manuscript.



5

When the final beam-splitters in each wave-particle toolbox are used to perform measurements in the rotated wave-particle
basis, paths 1 (1′) and 2 (2′) interfere at BS4 (BS4′) while paths 3 (3′) and 4 (4′) synchronize at BS5 (BS5′ ). The overall state of
the two photons then becomes

|Φ〉detAB = cosα |wave-det〉
∣∣wave-det′

〉
+ sinα |particle-det〉

∣∣particle-det′
〉
, (20)

where the states |wave-det〉 and |particle-det〉 are defined in equation (7), while the states
∣∣wave-det′

〉
and

∣∣particle-det′
〉

are
defined in the same way, namely∣∣wave-det′

〉
=

1√
2
eiφ

′
1/2(cos

φ′1
2
|1′〉+ cos

φ′1
2
|2′〉 − i sin

φ′1
2
|3′〉 − i sin

φ′1
2
|4′〉),∣∣particle-det′

〉
=

1

2
(|1′〉 − |2′〉+ eiφ

′
2 |3′〉 − eiφ′

2 |4′〉). (21)

For this state, the coincidence probabilities Pnn′ = Pnn′(α, φ1, φ
′
1, φ2, φ

′
2) that a pair of detectors Dn and Dn′

(n = 1, 2, 3, 4; n′ = 1′, 2′, 3′, 4′) fires are now found to be

P11′ = P22′ =
1

4
cos2 α cos2

φ1
2

cos2
φ′1
2

+
1

16
sin2 α+

1

8
sin 2α cos

φ1
2

cos
φ′1
2

cos

(
φ1 + φ′1

2

)
,

P12′ = P21′ =
1

4
cos2 α cos2

φ1
2

cos2
φ′1
2

+
1

16
sin2 α− 1

8
sin 2α cos

φ1
2

cos
φ′1
2

cos

(
φ1 + φ′1

2

)
,

P13′ = P24′ =
1

4
cos2 α cos2

φ1
2

sin2 φ
′
1

2
+

1

16
sin2 α− 1

8
sin 2α cos

φ1
2

sin
φ′1
2

sin

(
φ′2 −

φ1 + φ′1
2

)
,

P14′ = P23′ =
1

4
cos2 α cos2

φ1
2

sin2 φ
′
1

2
+

1

16
sin2 α+

1

8
sin 2α cos

φ1
2

sin
φ′1
2

sin

(
φ′2 −

φ1 + φ′1
2

)
,

P31′ = P42′ =
1

4
cos2 α sin2 φ1

2
cos2

φ′1
2

+
1

16
sin2 α− 1

8
sin 2α sin

φ1
2

cos
φ′1
2

sin

(
φ2 −

φ1 + φ′1
2

)
,

P32′ = P41′ =
1

4
cos2 α sin2 φ1

2
cos2

φ′1
2

+
1

16
sin2 α+

1

8
sin 2α sin

φ1
2

cos
φ′1
2

sin

(
φ2 −

φ1 + φ′1
2

)
,

P33′ = P44′ =
1

4
cos2 α sin2 φ1

2
sin2 φ

′
1

2
+

1

16
sin2 α− 1

8
sin 2α sin

φ1
2

sin
φ′1
2

cos

(
φ2 + φ′2 −

φ1 + φ′1
2

)
,

P34′ = P43′ =
1

4
cos2 α sin2 φ1

2
sin2 φ

′
1

2
+

1

16
sin2 α+

1

8
sin 2α sin

φ1
2

sin
φ′1
2

cos

(
φ2 + φ′2 −

φ1 + φ′1
2

)
. (22)

The theoretical predictions of these sixteen probabilities for the generated maximally entangled state of the experiment reported
in the manuscript, can be retrieved by fixing α = π/4. The experimental plots are reported in Fig. 5e-h of the manuscript. We
recall that the detection of these probabilities corresponds to measuring each photon of the entangled pair along the coherent
superposition of wave and particle behaviours.

We point out that the third terms of all the coincidence probabilities of equation (22) are identically zero (that is, in-
dependently of the values of the phases) if and only if there is no quantum entanglement between the wave and particle
degrees of freedom of the two photons. In fact, all these terms contain the factor C = sin 2α = 2 sinα cosα, where
C is the standard concurrence quantifying the entanglement of the state |Φ〉AB of equation (15) in the two-photon basis
{|wave〉|wave′〉, |wave〉|particle′〉, |particle〉|wave′〉, |particle〉|particle′〉} [2]. A first way to experimentally assess the concur-
rence of |Φ〉AB is by suitably combining the detected coincidence probabilities above, assuming the knowledge of the state.
In particular, setting φ2 = φ′2 = 0 (being these phases unimportant in the creation of the wave-particle entangled state), one
finds C/4 = (P11′ − P12′) + (P13′ − P14′) + (P31′ − P32′) + (P33′ − P34′). However, to quantitatively assess the theoretical
predictions for the generated state, it is sufficient to employ the quantity

E = P11′ − P12′ = P22′ − P21′ =
C

4
cos

φ1
2

cos
φ′1
2

cos

(
φ1 + φ′1

2

)
, (23)

which is identically zero if and only if the wave-particle two-photon state is separable (unentangled): α = 0 (|wave〉⊗ |wave′〉),
α = π/2 (|particle〉 ⊗ |particle′〉). This quantity would be identically zero also for a mixture of two-photon wave and particle
states like ρAB = cos2 α|wave〉〈wave| ⊗ |wave′〉〈wave′| + sin2 α|particle〉〈particle| ⊗ |particle′〉〈particle′|, since the third
terms in the probabilities do not appear at all (C = 0). For the generated entangled state in the experiment, that is for |Φ〉AB

of equation (15) with α = π/4 and thus C = 1, fixing φ′1 = 0, this quantity reduces to E = (1/4) cos2(φ1/2). Experimental
measurements of the latter are reported in Fig. 5i-j of the manuscript and confirm the theoretical predictions.
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We can also provide a further stronger test of the creation of the wave-particle entanglement |Φ〉AB of equation (15) which
does not resort to the knowledge of the state itself. This test is realized by directly measuring the expectation value of the
entanglement witness defined, in the two-photon path basis {{|1〉, |2〉, |3〉, |4〉} ⊗ {|1′〉, |2′〉, |3′〉, |4′〉}}, as

W = 11− 2[σ1234
x ⊗ (σ1234

x )′]− [σ1234
z ⊗ (σ1234

z )′], (24)

where 11 = 11⊗ 11′ is the identity matrix and

σ1234
z =

 1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 . (25)

The measurement basis of σ1234
x , as already explained in the Supplementary Note 2 above, is the rotated one after the insertion

of beam-splitters BS4 and BS5. The measurement basis of σ1234
z is instead simply that of the initial paths {|1〉, |2〉, |3〉, |4〉}

exiting the preparation part of the single-photon toolbox and directly going to the detectors. It is immediate to see that
〈wave|σ1234

z |wave〉 = 1 and 〈particle|σ1234
z |particle〉 = −1, where the wave and particle states are defined in equation

(5). In order that W is a faithful entanglement witness, its expectation value 〈W〉 = Tr(Wρ) must satisfy the requirement:
Tr(Wρs) ≥ 0 for any two-particle separable state ρs of wave-particle states, so that whenever Tr(Wρe) < 0 the state ρe is
entangled in the photons wave-particle behaviour [3]. In the following, we show thatW indeed fulfills this property.

A general bipartite separable state ρs is given by a convex sum of product states of the kind [2,3]: ρs =
∑
i piρi ⊗ ρ′i, where∑

i pi = 1, while ρi =
∑
k ak|ψik〉〈ψik| and ρ′i =

∑
k′ bk′ |ϕik′〉〈ϕik′ | are generic single-particle states with

∑
k ak =

∑
k′ bk′ =

1. Describing the single-particle space as spanned by the two operational states |wave〉 ≡ |w〉 and |particle〉 ≡ |p〉, an arbitrary
single-particle pure state can be expressed as

|ψ〉 = cos θ|w〉+ eiγ sin θ|p〉 ⇒ |ψ〉〈ψ| =
(

cos2 θ eiγ sin θ cos θ
e−iγ sin θ cos θ sin2 θ

)
. (26)

Since it is trivial that 〈11〉 = 1 whatever the two-particle state, let us focus on the second and third terms of equation (24). We
first notice that

Tr[
√

2σ1234
x |ψ〉〈ψ|] =

√
2〈ψ|σ1234

x |ψ〉 = cos γ sin 2θ, Tr[σ1234
z |ψ〉〈ψ|] = 〈ψ|σ1234

z |ψ〉 = cos 2θ. (27)

By exploiting the well-known properties of the Kronecker (tensor) product of matrices (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),
Tr(A⊗B) = Tr(A)Tr(B) and the linearity of trace, for any couple of pure states |ψ〉, |ψ′〉 of the two particles we obtain that

Tr[(2σ1234
x ⊗ (σ1234

x )′ + σ1234
z ⊗ (σ1234

z )′)(|ψ〉〈ψ| ⊗ |ψ′〉〈ψ′|)] =

= 2Tr[σ1234
x |ψ〉〈ψ|]Tr[(σ1234

x )′|ψ′〉〈ψ′|] + Tr[σ1234
z |ψ〉〈ψ|]Tr[(σ1234

z )′|ψ′〉〈ψ′|] =

= (cos γ sin 2θ)(cos γ′ sin 2θ′) + cos 2θ cos 2θ′ ≤ sin 2θ sin 2θ′ + cos 2θ cos 2θ′ = cos[2(θ − θ′)] ≤ 1.

(28)

This first inequality is the basic one for our demonstration. In fact, considering now the general separable state ρs as defined
above, we have

Tr[(2σ1234
x ⊗ (σ1234

x )′ + σ1234
z ⊗ (σ1234

z )′)ρs] =
∑
i

pi
∑
k

ak
∑
k′

bk′Tr[(2σ1234
x ⊗ (σ1234

x )′+

+ σ1234
z ⊗ (σ1234

z )′)(|ψik〉〈ψik| ⊗ |ϕik′〉〈ϕik′ |)] ≤
∑
i

pi
∑
k

ak
∑
k′

bk′ = 1,
(29)

where in the last line we have just used the result of equation (28) and the normalization of all the coefficients. As a consequence
of equation (29), we finally get for the operator of equation (24)

Tr(Wρs) = 1− Tr[(2σ1234
x ⊗ (σ1234

x )′ + σ1234
z ⊗ (σ1234

z )′)ρs] ≥ 0, (30)

for any separable state ρs of wave-particle states. The theoretical prediction of its mean value for the wave-particle entangled
state |Φ〉AB of equation (15) is Tr[W|Φ〉AB〈Φ|] = −1. Therefore,W is a faithful entanglement witness.

Being the diagonal forms of the two local observables σ1234
x , σ1234

z equal (see equations (10) and (25)) with different measure-
ment basis (eigenstates), it is immediate to realise that the experimental measure of both 〈σ1234

x ⊗(σ1234
x )′〉 and 〈σ1234

z ⊗(σ1234
z )′〉

is provided by the same combination of the detected coincidence probabilities as follows: P11′ − P12′ + P13′ − P14′ − P21′ +
P22′−P23′ +P24′ +P31′−P32′ +P33′−P34′−P41′ +P42′−P43′ +P44′ . In the main text we report the expectation values ofW
measured in the experiment for the different phases, namely: 〈W〉 = −0.699± 0.041 (φ1 = φ′1 = 0); 〈W〉 = −0.846± 0.045
(φ1 = φ′1 = π); 〈W〉 = −0.851 ± 0.041 (φ1 = π, φ′1 = 0); 〈W〉 = −0.731 ± 0.042 (φ1 = 0, φ′1 = π). These observations
ultimately confirm the effective generation of a wave-particle entanglement.

We notice that by changing the initial polarization entangled state, different wave-particle entangled states can be created. For
example, 1√

2
(|VH〉+ |HV〉) leads to 1√

2
(|wave〉

∣∣particle′
〉

+ |particle〉 |wave′〉).
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