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Abstract We consider a set of quantum channels which are though partially entangled but
can perform perfectly quantum teleportation of two-qubit states with the assistance of a
controller. The quantum channels are designed so that only the controller is able to correctly
control the task and without his/her cooperation the receiver cannot obtain with certainty a
state with quality better than that obtained classically. The key point enhancing the role of
the controller is that he/she is the only one who is allowed to know the quantum channel
parameters.

Keywords Controlled teleportation · Two-qubit state · Partially entangled quantum
channel · Role of the controller

1 Introduction

One of the purposes of quantum information sciences is to discover protocols by which dif-
ferent remote authorized parties can work together securely towards a target project only by
dual usage of local operations and traditional classical communication. Such tasks remained
mythic until recently when they have turned out to be realistic if the parties share in advance
a ‘spooky’ correlated resource called quantum entanglement [1] . The first and perhaps most
famous protocol as such is the quantum teleportation [2] which differs conceptually from
the long-known fictitious teleportation in the star trek movies in that it is realizable [3–5]
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because it does not violate the nocloning theorem [6] and rests in peace with the Einstein’s
special relativity theory. In fact, quantum teleportation is the best way for a sender Alice to
securely transfer unknown quantum information to a receiver Bob, no matter how far the
two people are apart. It is perfect if both its fidelity and success probability are equal to 1.
Perfect quantum teleportation of an N -qubit state requires at least a 2N -qubit maximally
entangled quantum channel which is beforehand shared equally between Alice and Bob [7].
As is known, after Alice announces her Bell-measurement outcomes, Bob is able to obtain
a replica of the desired state by application of appropriate unitary operations to his qubits.
Bob’s recovery action cannot be affected or postponed or stopped by anyone.

In practice, last-minute situations, which generally depend on many factors including
both technical and non-technical ones, may occur that lead to the need to stop Bob’s
receiving the target state even after the announcement of Alice’s data. To meet such
a need, the so-called controlled quantum teleportation protocols [8–22] have been pro-
posed in which one or more people, the controller(s), will join the game with Alice and
Bob. Now the quantum resource for perfectly teleporting an N -qubit state should con-
tain more than 2N qubits. Namely, the working channel must be a (2N + M)-qubit
maximally entangled state of which the M extra qubits are held and manipulated by the
controllers. According to the well-established recipe, first Alice measures the qubits at
her hand in the Bell-state basis, then the controllers measure their qubits in the basis{|±〉m = 2−1/2 (|0〉 ± |1〉)m ; m = 1, 2, ..., M

}
, and finally Bob reconstructs the collapsed

state of his qubits to the right one using both the measurement outcomes publicly published
by Alice and the controllers. The role the controllers play is clear: even knowing Alice’s data
Bob cannot get the correct state without the controllers’ data. Therefore, the controllers are
in the position to control the task at their will (i.e., to permit, to postpone or even to forbid
Bob’s getting the intended state). However, the controllers’ role is limited in the following
aspects.

(i) Although the teleportation process requires a prior establishment of the entangled
quantum channel, there may happen a situation in which, after the quantum channel
has been safely shared among the authorized parties, someone else could access to the
M qubits of the (2N +M)-qubit entangled quantum channel (because of, say, the con-
troller’s negligent guarding). If so, they can correctly act on those M qubits since the
measurement basis

{|±〉m
}
is known to everybody.

(ii) It may also happen that due to certain unfavorable circumstances arising at last minutes
the controllers purposively decide not to participate in the task (i.e., they do not do
their measurements or do them but do not let the outcomes broadcasted). If so, Bob
can still solely use Alice’s data to obtain with certainty an approximate state whose
fidelity is greater than the ‘classical’ fidelity Fclass = 2/(2N +1) which is achievable
without sharing any entanglements [23, 24].

In order to overcome the two above-mentioned limitations, thereby enhancing the con-
trollers’ role, as well as to retain perfection of quantum teleportation, proper partially
entangled states can be designed to serve as the quantum channels and, more importantly,
the parameters characterizing such quantum channels are kept confidentially to everybody
but the controllers.

In this paper, we shall demonstrate these ideas through the case of teleporting a general
unknown two-qubit state of the form

|ψ〉uv =
(
x|00〉 + yeiϕ1 |01〉 + zeiϕ2 |10〉 + teiϕ3 |11〉

)

uv
, (1)
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where ϕ1,2,3 ∈ [0, 2π ] and x2+y2+z2+t2 = 1 to satisfy the normalization condition, under
supervision of a single controller named Charlie. The next section, Section 2, is devoted to
the case when Charlie is capable of controlling one bit of useful information. The case of
controlling two informative bits is presented in Section 3 and Conclusion is the final section.
There is a big bundle of cumbersome formulae which are not all shown explicitly to not
delute the main content.

2 The One-bit Control Case

We start with the case when Charlie holds one qubit. This implies that he controls the task
by one bit of information. The quantum channel must therefore be a five-qubit state. First,
we consider the following state

|Q1 (θ)〉12345 = |B00〉12|G(θ)〉345, (2)

where |B00〉12 is one of the four Bell-states [2] defined compactly by |Bmn〉12 =
2−1/2 ∑1

j=0(−1)mj |j, j ⊕ n〉12 , with m, n ∈ {0, 1} and ⊕ an addition mod 2, while

|G(θ)〉345= 1√
2

(|000〉 + cos θ |110〉 − sin θ |111〉)345 , (3)

which can be generated from the Greenberger-Horne-Zeilinger state |GHZ〉345
= 2−1/2

1∑

j=0
|jjj〉345 [25] as follows:

|G(θ)〉345 = R5(θ)CNOT45R5(−θ)|GHZ〉345, (4)

where CNOT45 is a controlled-NOT gate acting on a two-qubit state as CNOT45 |m, n〉45
= |m, m ⊕ n〉45 and R5(θ) a rotation gate acting on a single-qubit state as R5(θ)|m〉5
= cos(θ/2)|m〉5 − (−1)m sin(θ/2)|m ⊕ 1〉5. We assume that the state (2) (as well as other
quantum channel states to be used later in this work) is generated by some bank of states and
then distributed to Alice, Bob and Charlie with a careful checking process or a proper distil-
lation procedure so that the state is successfully shared among the three parties before they
proceed to perform their task. Of the quantum channel state (2), Alice holds qubits 1 and 3,
Bob qubits 2 and 4, while qubit 5 belongs to Charlie. Notably and of crucial importance in
our protocol, the quantum channel |Q1 (θ)〉12345 is partially entangled and characterized by
one parameter, the angle θ, whose value is known by Charlie but kept secret to anyone else.

To fulfill the task, Alice performs two Bell-state measurements, one on qubits (u, 1) and
the other on qubits (v, 3), with the outcomes {a, b} and {c, d} corresponding to finding
|Bab〉u1 and |Bcd〉v3 , each of which occurs with an equal probability of Pab = Pcd = 1/4
for any a, b, c, d ∈ {0, 1}. As for the controller Charlie, he applies R(−θ) to the qubit at
his hand (i.e., qubit 5), then measures it in its computational basis. Note at this point that
noone except Charlie is able to manipulate qubit 5 correctly because only Charlie knows the
value of θ, thereby the issue (i) mentioned in Introduction when using maximally entangled
quantum channel is avoided. The outcome will be m ∈ {0, 1} if Charlie finds |m〉5 , which
occurs with probability

Pm = δm0 cos
2(θ/2) + δm1 sin

2(θ/2). (5)

It is worth noting that Alice and Charlie can act independently. However, Alice should
always broadcast her outcomes {a, b, c, d} publicly, whereas Charlie would not do so. Actu-
ally, Charlie has to carry out an overall analysis. If he doubts in something, he keeps the
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outcome m with himself, otherwise he also publicly broadcasts it. In the latter case, con-
ditioned on the broadcasted data {a, b, c, d, m}, Bob is able to obtain the desired state by
applying to his qubits 2 and 4 the following recovery operator

Rabcdm =
(
XbZa

)

2
⊗

(
XdZc⊕m

)

4
, (6)

where X and Z are the usual Pauli bit-flip and phase-flip matrices. The total success
probability is P = ∑1

a,b,c,d,m=0 PabPcdPm = 1.
Now we are passing to study the case when Charlie observes something wrong. In that

case Bob lacks the data m and what at his hand after Alice’s measurements will be a
two-qubit mixed state ρabcd resulted from tracing out over the states of Charlie’s qubit.
These mixed states are unitarily related so Bob can transform them around from one to
another by appropriate unitary operators. The quality of ρabcd can be assessed by the fidelity
Fabcd = 〈ψ | ρabcd |ψ〉whose explicit expressions have been derived and are provided in the
appendix. As seen from (35)–(50), the fidelities depend not only on Alice’s data {a, b, c, d}
and on the quantum channel parameter θ but also on the state to be teleported through x, y,

z, t, ϕ1, ϕ2 and ϕ3. Then, of relevant interest is the fidelity averaged over all input states.
To calculate such an averaged fidelity Fabcd , we adopt the Hurwitz parameterization [26],
changing the variables {x, y, z, t} to {γ1, γ2, γ3} with γ1,2,3 ∈ [0, π/2] as

x = cos γ3, (7)

y = sin γ3 cos γ2, (8)

z = sin γ3 sin γ2 cos γ1, (9)

t = sin γ3 sin γ2 sin γ1. (10)

The distribution of ϕk is assumed to be uniform with a probability densityP(ϕk) = (2π)−1.

As for the distribution of γk, it is taken to be nonuniform with a probability densityP(γk) =
k sin(2γk) sin2k−2(γk), like the volume element on the sphere [26]. The averaged fidelity
Fabcd is then determined by [27]

Fabcd = 3!
π3

3∏

k=1

∫ π/2

0
cos γk(sin γk)

2k−1dγk

3∏

q=1

∫ 2π

0
Fabcddϕq. (11)

Substituting (35)–(50) into (11) yields

F 0000 = 1

5
(3 + 2 cos θ), (12)

F 0010 = 1

5
(3 − 2 cos θ) (13)

and

Fabcd �=0000,0010 = 1

5
. (14)

Figure 1 shows the dependence on θ of the various Fabcd . For any values of θ,

F abcd �=0000,0010 ≤ min{F 0000,F 0010}. For π/3 ≤ θ ≤ 2π/3 or 4π/3 ≤ θ ≤ 5π/3, both
F 0000 and F 0010 are greater than or equal to Fclass = 2/(22 + 1) = 2/5. If θ is chosen out-
side those domains, then among F 0000 and F 0010 one is greater and the other is smaller than
Fclass . Although, for a given θ, Bob has a chance to obtain a state with fidelity greater than
2/5, he cannot obtain it with certainty, because he has no ideas about the value of θ. That
is, he does not know which one of F 0000 and F 0010 is greater than Fclass . In particular, if θ

is chosen such that 0 < θ < π/3 or 5π/3 < θ < 2π (for which only F 0000 is greater than
2/5 but all the other averaged fidelities are smaller than 2/5) or 2π/3 < θ < 4π/3 (for
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Fig. 1 The dependence on θ of the various averaged fidelities Fabcd when the state |Q1 (θ)〉12345 in (2) is
used as the quantum channel. The solid curve is for F 0000 in (12), the dashed curve is for F 0010 in (13), and
the solid horizontal line is for Fabcd �=0000,0010 in (14). The dashed horizontal line is for Fclass = 2/5

which only F 0010 is greater than 2/5 but all the other averaged fidelities are smaller than
2/5), and its exact value is kept secret to Bob, then Bob is unable to obtain with certainty
a state with quality better than that achievable by classical means, resolving the issue (ii) in
Introduction.

It is worth emphasizing again that in our above protocol we only allow Charlie know
the value of θ. This is the key point to resolve both the issues (i) and (ii) mentioned in
Introduction, thereby enhancing the role of the controller compared with the case of using
maximally entangled state or the case of using partially entangled state whose characteristics
are known by both Clarlie and Bob.

The quantum channel |Q1 (θ)〉 in (2) turns out not good in the case when xt =
yzei(ϕ1+ϕ2−ϕ3) for which |ψ〉uv =(yt−1ei(ϕ1−ϕ3) |0〉 + |1〉)u(zt−1ei(ϕ2−ϕ3) |0〉 + |1〉)v is a
product state, because qubit u becomes beyond any control. To be valid to an arbitrary two-
qubit state, including the product one, the following genuine five-qubit entangled quantum
channel,

|Q2(θ)〉12345 = 1

2
[|00000〉 + cos θ(|00110〉 − |11110〉)

+ |11000〉− sin θ(|00111〉 − |11111〉)]12345, (15)

can be used, which is produced by application of a sequence of operators to |GHZ〉123|00〉45
like this:

|Q2(θ)〉12345 = R5(θ)CNOT45R5(−θ)CNOT45CNOT34H3|GHZ〉123|00〉45, (16)

where H is the Hadamard gate acting on a single-qubit state as H |j〉 = 2−1/2((−1)j

|j〉 + |j ⊕ 1〉). The same procedures as for |Q1(θ)〉12345 apply here, but the obtained results
are different. Namely, with the controller’s permission Bob’s recovery operators read

Rabcdm =
[(

XbZa
)

2
⊗

(
XdZc⊕m

)

4

]
CZ24, (17)

where CZ24 is a controlled-Z gate acting on a two-qubit state as CZ24|mn〉24 =
(−1)mn|mn〉24,while without the controller’s permission the fidelities of Bob’s mixed states
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depend on the parameters of both the input state and the quantum channel (we have explic-
itly derived those formulae but will not show them because they are cumbersome). The
corresponding averaged fidelities have been calculated to be

F 0000 = F 0010 = F 1010 = 2

5
(18)

and

Fabcd �=0000,0010,1010 =1

5
. (19)

Since all the averaged fidelities are independent of θ, Bob can, for any Alice’s possible
measurement outcomes, obtain a state with the highest fidelity equal to 2/5 = Fclass , but a
state with fidelity higher than 2/5 he cannot. In this sense, the role of the controller in this
case is marginal.

3 The Two-bit Control Case

In the previous section we showed that by holding only one qubit the controller is useful in
the sense that without his permission the receiver can never obtain with certainty a state with
fidelity better than the ‘classical’ one. To see whether any added benefits may arise when
the controller holds two qubits, we shall consider in this section the following six-qubit
quantum channels:

|Q3 (θ1, θ2)〉123456 = |G (θ1)〉125|G (θ2)〉346 (20)

and

|Q4 (θ1, θ2)〉123456 = 1

2
[|000000〉 + cos θ1 |110000〉− sin θ1 |110011〉

+ cos θ2|001100〉 − sin θ2|001101〉
−cos θ1cos θ2 |111100〉 + cos θ1 sin θ2 |111101〉
+sin θ1 cos θ2 |111110〉 − sin θ1 sin θ2 |111111〉]123456. (21)

The exact values of θ1 and θ2 are known only by Charlie. The state |Q4 (θ1, θ2)〉123456,
which is a genuine six-qubit entangled state, can be generated starting from
|GHZ〉123|000〉456 as

|Q4 (θ1, θ2)〉123456 = R6(θ2)R5(θ1)CNOT36CNOT25R6(−θ2)R5(−θ1)

CNOT36CNOT25CNOT34H3|GHZ〉123|000〉456. (22)

Of |Q3 (θ1, θ2)〉123456 and |Q4 (θ1, θ2)〉123456 qubits 1 (2) and 3 (4) are possessed by Alice
(Bob), while qubits 5 and 6 by Charlie. For these quantum channels Alice will do the same
way as in the case of using |Q1 (θ)〉12345 and |Q2 (θ)〉12345 , but Charlie will do a little
more: he will apply R(−θ1) to qubit 5, R(−θ2) to qubit 6, followed by measuring the two
qubits in the basis {|00〉56 , |01〉56 , |10〉56 , |11〉56}. The outcome will be m, n ∈ {0, 1} if he
finds |mn〉56 , which occurs with probability

Pmn = δm0δn0 cos
2(θ1/2) cos

2(θ2/2)

+δm0δn1 cos
2(θ1/2) sin

2(θ2/2)

+δm1δn0 sin
2(θ1/2) cos

2(θ2/2)

+δm1δn1 sin
2(θ1/2) sin

2(θ2/2). (23)
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Fig. 2 The dependence on θ1 and θ2 of the various averaged fidelities: a) F 0000 in (26), b) F 0010 in (27),
c) F 1000 in (28), and d) F 1010 in (29), when |Q3 (θ1, θ2)〉123456 in (20) is used as the quantum channel. The
plane at 2/5 is the ‘classical’ fidelity

If both Alice and Charlie announce their measurement outcomes {a, b, c, d, m, n}, then
the recovery operators of Bob are

Rabcdmn =
(
XbZa⊕m

)

2
⊗

(
XdZc⊕n

)

4
(24)

when using |Q3 (θ1, θ2)〉123456 and
Rabcdmn =

[(
XbZa⊕m

)

2
⊗

(
XdZc⊕n

)

4

]
CZ24 (25)

when using |Q4 (θ1, θ2)〉123456 . The total success probability is P = ∑1
a,b,c,d,m,n=0

PabPcdPmn = 1.
In case Charlie does not announce his outcomes the mixed states Bob would obtain have

the fidelities depending on the parameters of both the input state and the quantum channel
(whose explicit formulae have been derived but not shown). The corresponding averaged
fidelities can then be calculated to be

F 0000=1

5
(2 + cos θ1 + cos θ2 + cos θ1 cos θ2), (26)

F 0010 =1

5
(2 + cos θ1 − cos θ2 − cos θ1 cos θ2), (27)

F 1000 =1

5
(2 − cos θ1 + cos θ2 − cos θ1 cos θ2), (28)
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Fig. 3 The θ -dependence of the various averaged fidelities when |Q3 (θ1 = θ2 = θ)〉123456 in (20) is used as
the quantum channel. The solid curve is for F 0000 in (32), the short-dashed curve is for F 0010 and F 1000 in
(33), the long-dashed curve is for F 1010 in (34) and the solid horizontal line is for Fabcd �=0000,0010,1000,1010
in (31). The dashed horizontal line is for Fclassical = 2/5

F 1010 =1

5
(2 − cos θ1 − cos θ2 + cos θ1 cos θ2) (29)

for |Q3 (θ1, θ2)〉123456 and
F 0000=F 0010 =F 1000 =F 1010 =2

5
(30)

for |Q4 (θ1, θ2)〉123456 , while

Fabcd �=0000,0010,1000,1010 =1

5
(31)

for both |Q3 (θ1, θ2)〉123456 and |Q4 (θ1, θ2)〉123456 .

The values of the averaged fidelities in (30) and (31) indicate that the role of the con-
troller when employing |Q4 (θ1, θ2)〉123456 as the quantum channel is marginal, similar to
the case of employing |Q2 (θ)〉12345 , explained in the previous section. Concerning the case
of employing |Q3 (θ1, θ2)〉123456 as the quantum channel, it is obvious from (26)–(29) and
(31) that Fabcd �=0000,0010,1000,1010 ≤ min{F 0000,F 0010,F 1000,F 1010} for any θ1 and θ2. So
we are left only with F 0000, F 0010, F 1000 and F 1010 in (26)–(29). A quick look at them
reveals that they sum up to 8/5 and hence not all of them can be larger than Fclass = 2/5.
For a closer look, we plot their dependences on θ1 and θ2 in Fig. 2. These figures show that,
as a function of θ1 and θ2, each of F 0000, F 0010, F 1000 and F 1010 can be smaller or larger
than 2/5, but which one is larger than 2/5 is unknown without specifying the values of θ1
and θ2. This means that Bob cannot sort out with certainty a state with fidelity larger than
the ‘classical’ one. In particular, it is sufficient to use θ1 = θ2 = θ in which case

F 0000=1

5
(2 + 2 cos θ + cos2 θ), (32)

F 0010 =F 1000 =1

5
(2 − cos2 θ) (33)
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and

F 1010 =1

5
(2 − 2 cos θ + cos2 θ), (34)

whose θ -dependence is displayed in Fig. 3. As is visual from Fig. 3, for all θ neither F 0010
nor F 1000 can exceed Fclass , while either F 0000 or F 1010 can be above Fclass , but both of
F 0000 and F 1010 cannot simultaneously. As elucidated in the previous section, this implies
an enhanced role of the controller (i.e., a state with fidelity greater than 2/5 cannot be
obtained with certainty by Bob).

4 Conclusion

We have studied quantum teleportation of a two-qubit state under control of a controller
via a set of partially entangled quantum channels. The partial entanglement, whose identity
is allowed to be known only by the controller, is intentionally employed to avoid anyone
else except the controller to be able to control the task. All the protocols considered are
perfect as both their fidelity and total success probability are equal to 1, despite the partial
entanglement. We have further analyzed the role the controller plays in our protocols. The
controller is regarded as unuseful if without his/her cooperation the receiver is surely able to
obtain an approximate state with fidelity higher than the ‘classical’ fidelity. Otherwise, if the
receiver cannot obtain with certainty a state with fidelity equal to or higher than the ‘clas-
sical’ fidelity, then the controller is fully useful. In case, the receiver can certainly obtain
only a state with fidelity equal to the ‘classical’ fidelity, the controller’s role is marginal.
According to such criteria, we have shown that the controller is fully useful when the quan-
tum channels |Q1 (θ)〉12345 and |Q3 (θ1, θ2)〉123456 in (2) and (20) are used, but its role is
marginal when using the quantum channels |Q2 (θ)〉12345 and |Q4 (θ1, θ2)〉123456 in (15)
and (21). With respect to the quantum resource cost, it is economical to use |Q1 (θ)〉12345
when the state to be teleported is entangled. Yet, to teleport a pair of single-qubit states,
|Q3 (θ1, θ2)〉123456 is the right choice, though one extra qubit must be held by the controller,
since in this case |Q1 (θ)〉12345 cannot control both qubits at the same time. In summary, in
our proposed protocols, using |Q1 (θ)〉12345 or |Q3 (θ1, θ2)〉123456 essentially enhances the
controller’s role. All the quantum channels under consideration in this paper are produce-
able within current technologies. We hope our study would shed some light also to other
kinds of controlled quantum information processing protocols.
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Appendix

The fidelity Fabcd as a function of x, y, z, t and θ when |Q1 (θ)〉12345, (2), is used as the
working quantum channel:

F 0000 =
(
x2 + z2

)2 + (y2 + t2)2 + 2
(
x2 + z2

)
(y2 + t2) cos θ, (35)
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F 0001 = 2(x2y2 + z2t2) + 4xyzt cos(ϕ1 + ϕ2 − ϕ3)

+2{x2y2 cos(2ϕ1) + z2t2 cos[2(ϕ2 − ϕ3)]
+2xyzt cos (ϕ1 − ϕ2 + ϕ3)} cos θ, (36)

F 0010 =
(
x2 + z2

)2 + (y2 + t2)2 − 2
(
x2 + z2

)
(y2 + t2) cos θ, (37)

F 0011 = 2(x2y2 + z2t2) + 4xyzt cos (ϕ1 + ϕ2 − ϕ3)

−2{x2y2 cos (2ϕ1) + z2t2 cos[2 (ϕ2 − ϕ3)]
+2xyzt cos (ϕ1 − ϕ2 + ϕ3)} cos θ, (38)

F 0100 = 2(x2z2 + y2t2) + 2x2z2 cos (2ϕ2)

+2y2t2 cos[2 (ϕ1 − ϕ3)]
+4xyzt cos (ϕ2) cos (ϕ1 − ϕ3) cos θ, (39)

F 0101 = 2(x2t2 + y2z2) + 4xyzt cos (ϕ1 − ϕ2 − ϕ3)

+2{x2t2 cos (2ϕ3) + y2z2 cos[2 (ϕ1 − ϕ2)]
+2xyzt cos (ϕ1 − ϕ2 + ϕ3)} cos θ, (40)

F 0110 = 2(x2z2 + y2t2) + 2x2z2 cos (2ϕ2)

+2y2t2 cos[2 (ϕ1 − ϕ3)]
−4xyzt cos (ϕ2) cos (ϕ1 − ϕ3) cos θ, (41)

F 0111 = 2(x2t2 + y2z2) + 4xyzt cos (ϕ1 − ϕ2 − ϕ3)

−2{x2t2 cos (2ϕ3) + y2z2 cos[2 (ϕ1 − ϕ2)]
+2xyzt cos (ϕ1 − ϕ2 + ϕ3)} cos θ, (42)

F 1000 =
(
x2 − z2

)2 + (y2 − t2)2 + 2
(
x2 − z2

)
(y2 − t2) cos θ, (43)

F 1001 = 2(x2y2 + z2t2) − 4xyzt cos (ϕ1 + ϕ2 − ϕ3)

+2{x2y2 cos (2ϕ1) + z2t2 cos[2 (ϕ2 − ϕ3)]
−2xyzt cos (ϕ1 − ϕ2 + ϕ3)} cos θ, (44)

F 1010 =
(
x2 − z2

)2 + (y2 − t2)2 − 2
(
x2 − z2

)
(y2 − t2) cos θ, (45)

F 1011 = 2(x2y2 + z2t2) − 4xyzt cos (ϕ1 + ϕ2 − ϕ3)

−2{x2y2 cos (2ϕ1) + z2t2 cos[2 (ϕ2 − ϕ3)]
−2xyzt cos (ϕ1 − ϕ2 + ϕ3)} cos θ, (46)

F 1100 = 2(x2z2 + y2t2) − 2x2z2 cos (2ϕ2)

−2y2t2 cos[2 (ϕ1 − ϕ3)]
−8xyzt sin (ϕ2) sin (ϕ1 − ϕ3) cos θ, (47)

F 1101 = 2(x2t2 + y2z2) − 4xyzt cos (ϕ1 − ϕ2 − ϕ3)

−2{x2t2 cos (2ϕ3) + y2z2 cos[2 (ϕ1 − ϕ2)]
+2xyzt cos (ϕ1 − ϕ2 + ϕ3)} cos θ, (48)
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F 1110 = 2
(
x2z2 + y2t2

)
− 2x2z2 cos (2ϕ2)

−2y2t2 cos[2 (ϕ1 − ϕ3)]
+8xyzt sin (ϕ2) sin (ϕ1 − ϕ3) cos θ, (49)

F 1111 = 2(x2t2 + y2z2) − 4xyzt cos (ϕ1 − ϕ2 − ϕ3)

+2{x2t2 cos (2ϕ3) + y2z2 cos[2 (ϕ1 − ϕ2)]
−2xyzt cos (ϕ1 − ϕ2 + ϕ3)} cos θ. (50)
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Kl. 71 (1897)

27. Zyczkowski, K., Sommers, H.J.: Induced measures in the space of mixed quantum states. J. Phys. A
Math. Gen. 34, 7111 (2001)


	On the Role of the Controller in Controlled Quantum Teleportation
	Abstract
	Introduction
	The One-bit Control Case
	The Two-bit Control Case
	Conclusion
	Acknowledgments
	Appendix I  
	References


