
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 921 (2017) 159–180

www.elsevier.com/locate/nuclphysb

Lepton flavor violating Higgs boson decays in seesaw 

models: New discussions

N.H. Thao a, L.T. Hue b,c,∗, H.T. Hung a, N.T. Xuan a

a Department of Physics, Hanoi Pedagogical University 2, Phuc Yen, Vinh Phuc, Viet Nam
b Institute for Research and Development, Duy Tan University, Da Nang City, Viet Nam

c Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Viet Nam

Received 24 March 2017; received in revised form 25 April 2017; accepted 18 May 2017
Available online 25 May 2017

Editor: Hong-Jian He

Abstract

The lepton flavor violating decay of the Standard Model-like Higgs boson (LFVHD), h → μτ , is 
discussed in seesaw models at the one-loop level. Based on particular analytic expressions of Passarino–
Veltman functions, the two unitary and ’t Hooft Feynman gauges are used to compute the branching ratio 
of LFVHD and compare with results reported recently. In the minimal seesaw (MSS) model, the branching 
ratio was investigated in the whole valid range 10−9–1015 GeV of new neutrino mass scale mn6 . Using 
the Casas–Ibarra parameterization, this branching ratio enhances with large and increasing mn6 . But the 
maximal value can reach only order of 10−11. Interesting relations of LFVHD predicted by the MSS and 
inverse seesaw (ISS) model are discussed. The ratio between two LFVHD branching ratios predicted by the 
ISS and MSS is simply m2

n6
μ−2

X
, where μX is the small neutrino mass scale in the ISS. The consistence 

between different calculations is shown precisely from analytical approach.
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1. Introduction

After the Higgs boson was observed by ATLAS and CMS [1], the LFVHD has been searched 
experimentally [2], where upper bounds for branching ratios (Brs) of the decays h → μτ, eτ are 
order of O(10−2). Signals of LFVHD at future colliders have been discussed, where sensitivities 
for detecting these channel decays are shown to be 10−5 in the near future [3]. Up to now, the 
lepton flavor violating (LFV) decays of the standard-model-like and new Higgs bosons have been 
investigated in many models beyond the standard model (SM) [4–14]. Among them, the MSS 
[15] is the simplest that can explain successfully the recent neutrino data. Naturally, the mixing 
between different flavor neutrinos leads to many LFV processes from loop corrections. But it 
predicts very suppressed branching ratios (Br) of LFV decays of charged leptons. Recent studies 
on the Br of LFVHD were also shown to be very small [6]. In contrast, the ISS [16], another 
simple extension of the SM, predicts much larger values of LFV branching ratios, including 
those of LFVHD [7,8]. In fact, the Br of LFVHD in the ISS were calculated in many different 
ways in order to guarantee the consistence of the LFVHD amplitudes.

We stress that understanding the mechanism for generating loop corrections to Brs of LFVHD 
in simple models like the MSS and ISS is very important for studying LFVHD processes in other 
complicated models. That is why LFVHD predicted by these two models were discussed in 
many works, for example [4–9]. In the ISS, recent results in [7] showed that branching ratios of 
LFVHD increase with increasing values of very heavy neutrino masses when the Casas–Ibarra 
method [17] was applied to formulating the Yukawa couplings of heavy neutrinos.1 But the 
Brs are always constrained by upper bounds because of the perturbative limit of the Yukawa 
couplings. Using the mass insertion approximation, a recent study [8] also calculated the Br of 
LFVHD in the ISS model in both unitary and ’t Hooft Feynman, where previous results in [7]
were confirmed to be well consistent in the region of parameters containing large new neutrino 
mass scale mn6 . The above discussions indicate that although one-loop contributions in both MSS 
and ISS arise from the same set of Feynman diagrams, the two models predict very different Br 
values. The reason is the appearance of a small mass scale μX in the ISS, which gives tiny 
contributions to the heavy neutrino masses, but affects strongly on the neutrino mixing matrix. 
Hence there should exist simple relations between two expressions of Brs predicted by the two 
models. These interesting relations were not discussed previously, therefore will be focused in 
this work. We will show that if mn6 is large enough, the ratio between Brs of LFVHD of the 
ISS and MSS is order of m2

n6
μ−2

X , enough to explain clearly the LFVHD difference between two 
models.

Regarding the MSS, LFVHD was discussed mainly in ranges of 102–107 GeV [4,6], while 
the valid range of the new neutrino mass scale is from O(10−9) GeV to O(1015) GeV. In ad-
dition, a good estimation made in Ref. [4] suggested that the Br may enhance with increasing 
masses of heavy neutrinos, even when the Casas–Ibarra parameterization is used. We note that 
this parameterization are now still widely used to investigate the signal of seesaw models at re-
cent colliders [18]. As a result, possibilities that large Brs of LFVHD may exist in ranges of 
new neutrino mass scales that were not mentioned previously. Therefore, studies the LFVHD 
in the whole valid range as well as new approaches to compare well-known results and confirm 
consistent analytic formulas for calculating Br of LFVHD in seesaw models are still interesting 
and necessary. These are main scopes of this work. In particular, in order to guarantee the stabil-

1 We thank Dr. E. Arganda for this comment.
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ity of numerical results at very large values of mn6 , LFVHD processes will be computed using 
analytic expressions of Passarino–Veltman functions (PV functions) given in ref. [13]. Using a 
Mathematica code based on these functions, we found that it is much easier and more convenient 
to increase the precision than using available numerical packages such as Looptools [27]. This 
makes our calculation different from all previous works. In addition, the one-loop contributions 
to LFVHD in both unitary and ’t Hooft Feynman gauges will be constructed using notations in 
[13]. Then we cross-check the consistence between total amplitudes calculated in two gauges, 
and the ones established in previous works [4,6,7]. A detailed checking divergence cancellation 
will be presented analytically. For the MSS, after showing that Br of LFVHD is suppressed with 
small mn6 , we will pay attention mainly to the region with large mn6 . To guarantee the con-
sistence of our investigation on LFVHD in the MSS, the connection between analytic formulas 
of LFVHD amplitudes in the two models MSS and ISS will be discussed deeply. In this work, 
Yukawa couplings of new neutrinos are only investigated following the Casas–Ibarra parame-
terization [17]. This parameterization was used to investigate independently LFVHD processes 
predicted by the MSS and ISS in Refs. [6,7], where other important properties of LFVHD were 
presented in details.

Our work is arranged as follows. Sec. 2 establishes notations and couplings of a general see-
saw model needed for studying LFVHD. In Sec. 3, we construct LFVHD amplitudes in two 
unitary and ’t Hooft Feynman gauges using notations of PV functions given in [13]. Then we 
prove the divergent cancellation and the consistence between two expressions of the LFVHD 
amplitudes. In Sec. 4, we show the choice of parameterizing the neutrino mixing matrices. After 
that, the Brs of LFVHD are numerically investigated. We will focus on new results of LFVHD 
in the MSS, and interesting relations between the Brs predicted by two models MSS and ISS. 
Sec. 5 summarizes new results of this work.

2. General formalism and couplings for LFVHD

The general seesaw model is different from the Standard Model (SM) by K additional right-
handed neutrinos, NR,I ∼ (1, 1, 0) with I = 1, 2, ..., K [19]. The new Lagrangian part is

−�L = Yν,aIψL,aφ̃NR,I + 1

2
(NR,I )cMN,IJ NR,J + h.c., (1)

where a = 1, 2, 3; I, J = 1, 2, ..., K ; ψL,a = (νL,a, eL,a)
T are SU(2)L lepton doublets and 

(NR,I )
c = CNR,I

T
. The Higgs bosons are also doublets φ = (G+

W, (h +iGZ +v)/
√

2)T and ̃φ =
iσ2φ

∗. Each of them consists of three Goldstone bosons of W± and Z bosons; a neutral CP-even 
Higgs boson h and the vacuum expectation value (VEV), 〈φ〉 = v√

2
= 174 GeV (v = 246 GeV). 

Notations for flavor states of active neutrinos are νL = (νL,1, νL,2, νL,3)
T and (νL)c ≡

((νL,1)
c, (νL,2)

c, (νL,3)
c)T . Notations for new neutrinos are NR = (NR,1, NR,2, ..., NR,K)T , 

and (NR)c = ((NR,1)
c, (NR,2)

c, ..., (NR,K)c)T . In the bases of the original neutrinos, ν′
L ≡

(νL, (NR)c)T and (ν′
L)c = ((νL)c, NR)T , the Lagrangian part (1) generates the following mass 

term for neutrinos,

−Lν
mass ≡ 1

2
ν′
LMν(ν′

L)c + h.c. = 1

2
ν′
L

(
0 MD

MT
D MN

)
(ν′

L)c + h.c., (2)

where MN is a symmetric and non-singular K ×K matrix, and MD is a 3 ×K matrix, (MD)aI =
Yν,aI 〈φ〉. The matrix Mν is symmetric, therefore it can be diagonalized via (K + 3) × (K + 3)

matrix, Uν , satisfying the unitary condition, Uν†Uν = I . We define
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UνT MνUν = M̂ν = diagonal(mn1 ,mn2 ,mn3 ,mn4 , ...,mn(K+3)
), (3)

where mni
(i = 1, 2, ..., K + 3) are mass eigenvalues of the (K + 3) mass eigenstates nL,i , i.e. 

physical states of neutrinos. Three light active neutrinos are nL,a with a = 1, 2, 3. The relation 
between the flavor and mass eigenstates are

ν′
L = Uν∗nL, and (ν′

L)c = Uν(nL)c, (4)

where nL ≡ (nL,1, nL,2, ..., nL,K+3)
T .

In calculation, we will use a general notation of four-component (Dirac) spinor, ni (i =
1, 2, .., K + 3), for all active and exotic neutrinos. Specifically, a Majorana fermion ni is de-
fined as ni ≡ (nL,i , (nL,i)

c)T = nc
i = (ni)

c. The chiral components are nL,i ≡ PLni and 
nR,i ≡ PRni = (nL,i)

c , where PL,R = 1±γ5
2 are chiral operators. The similar definitions for the 

original neutrino states are νa ≡ (νL,a, (νL,a)
c)T , NI ≡ ((NR,I )

c, NR,I )
T , and ν′ = (ν, N)T . 

The relations in (4) are rewritten as follows,

PLν′
i = ν′

L,i = Uν∗
ij nL,j , and PRν′

i = ν′
R,i = Uν

ijnR,j , i, j = 1,2, ...,K + 3, (5)

where more precise expressions are νL,a = PLν′
a = Uν∗

ai nL,i , (NR,I )
c = PLν′

I+3 = Uν∗
(I+3)j nL,j , 

(νL,a)
c = PRν′

a = Uν
ainR,i , and NR,I = PRν′

I+3 = Uν
(I+3)j nR,j (I = 1, 2, 3, .., K).

As usual, the covariant derivative is Dμ = ∂μ − igT aWa − ig′YBμ. We emphasize that the 
signs in Dμ will result in signs of couplings hG±

WW± and eaνaW
−. Correspondingly, the lepton 

flavor violating (LFV) couplings of W± boson to leptons are,

Llep
kin = iψL,aγ

μDμψL,a ⊃ g√
2

(
νL,aγ

μeL,aW
+
μ + eL,aγ

μνL,aW
−
μ

)
= g√

2

(
Uν

ajnjγ
μPLeaW

+
μ + Uν∗

aj eaγ
μPLnjW

−
μ

)
, (6)

where a = 1, 2, 3; and j = 1, 2, ..., K + 3.
The Yukawa couplings that contribute to LFVHD are

−Llep
Y = yeaψL,aφeR,a + Yν,aIψL,aφ̃NR,I + h.c.

⊃ mea

v
heaea +

√
2mea

v

(
Uν

ajG
+
WnL,j eR,a + Uν∗

aj G−
WeR,anL,j

)
+ Yν,aI

[−G−
WeL,aNR,I − G+

WNR,I eL,a

]
+ 1

v
√

2
h
[
(MD)aI νL,aNR,I + (MD)∗aINR,I νL,a

]
. (7)

Using (MD)aI = Mν
a(I+3), and NR,I = ν′

R,(I+3), the last line in (7) changes in to the new form, 
1
v
hni

[
Mν

a(I+3)
Uν

aiU
ν
(I+3)j

PR + Mν∗
a(I+3)

Uν∗
(I+3)i

Uν∗
aj PL

]
nj . It can be proved that

Mν
a(I+3)U

ν
aiU

ν
(I+3)jPR + Mν∗

a(I+3)U
ν∗
(I+3)iU

ν∗
aj PL =

(
3∑

a=1

Uν
aiU

ν∗
aj

)(
mni

PL + mnj
PR

)
,

(8)

which was given in [6,7]. A proof is as follows, based on the following properties of Mν and Uν

defined in Eqs. (2) and (3),
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Table 1
Couplings relating with LFVHD in seesaw models. Here, Cij = ∑3

c=1 Uν
ci

Uν∗
cj

. The p0, p+ and p− are incoming 
momenta of h, G+

W
and G−

W
, respectively.

Vertex Coupling Vertex Coupling

hW+μW−ν igmW gμν hG+
W

G−
W

− igm2
h

2mW

hG+
W

W−μ ig
2 (p+ − p0)μ hG−

W
W+μ ig

2 (p0 − p−)μ

nieaW+
μ

ig√
2
Uν

ai
γ μPL eaniW

−
μ

ig√
2
Uν∗

ai
γ μPL

nieaG+
W

− ig√
2mW

Uν
ai

(
mea PR − mni

PL

)
eaniG

−
W

− ig√
2mW

Uν∗
ai

(
mea PL − mni

PR

)
hninj

−ig
2mW

[
Cij

(
PLmni

+ PRmnj

)
+ C∗

ij

(
PLmnj

+ PRmni

)] heaea − igmea
2mW

Mν
ab = 0, Mν

(I+3)(J+3) = (mN)IJ , Mν
a(I+3) = (MD)aI , Mν

(I+3)a = (MT
D)Ia,

Uν†Uν = I, Mν = Uν∗M̂νUν†, and Mν∗ = UνM̂νUνT . (9)

The first term in the left hand side of Eq. (8) will change exactly into the second term in the right 
hand side of Eq. (8), after mediate steps of transformation, namely

Mν
a(I+3)U

ν
aiU

ν
(I+3)j =

(
Uν∗M̂νUν†

)
a(I+3)

Uν
aiU

ν
(I+3)j = Uν∗

ak mnk
U

ν†
k(I+3)U

ν
aiU

ν
(I+3)j

= Uν∗
ak Uν

aimnk

(
K+3∑
l=1

U
ν†
kl Uν

lj −
3∑

b=1

U
ν†
kb Uν

bj

)
= Uν∗

ak Uν
aimνk

(
δkj − U

ν†
kb Uν

bj

)
= Uν∗

aj Uν
aimnj

− Uν
aiU

ν
bj

(
Uν∗

ak mnk
U

ν†
kb

)
= Uν∗

aj Uν
aimnj

− Uν
aiU

ν
bjM

ν∗
ab

= Uν
aiU

ν∗
aj mnj

. (10)

From (10), the second term in the left hand side of (8) can be derived easily, Mν∗
a(I+3)U

ν∗
(I+3)i ×

Uν∗
aj =

[
Mν

a(I+3)U
ν
ajU

ν
(I+3)i

]∗ =
[
Uν

ajU
ν∗
ai mni

]∗ = Uν
aiU

ν∗
aj mni

. Finally, the Feynman rule for 

the vertex (8) with two Majorana leptons hninj must be expressed in a symmetric form,2

namely − g
4mW

∑
i,j ni

[(
mni

Cij + mnj
C∗

ij

)
PL +

(
mnj

Cij + mni
C∗

ij

)
PR

]
nj , where Cij =∑3

c=1 Uν
ciU

ν∗
cj [4,21].

The couplings relating with G±
W are proved the same way, namely

Yν,aI eL,aNR,IG
−
W =

√
2

v
(MD)aI eL,aNR,IG

−
W = g√

2mW

Uν∗
ai eaPRniG

−
W .

The vertices relating to LFVHD are collected in Table 1. We note that the coupling hG+
WG−

W in 
Table 1 is consistent with that given in [8,25].

The effective Lagrangian of the LFVHD is written as LLFV = h (�LμPLτ + �RμPRτ) +
h.c., where �L,R are scalar factors arising from loop contributions. The partial decay width is

2 We thank Dr. E. Arganda for showing us this point.
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Fig. 1. Feynman diagrams contributing to LFVHD in the unitary gauge.

�(h → μτ) ≡ �(h → μ−τ+) + �(h → μ+τ−) � mh

8π

(
|�L|2 + |�R|2

)
, (11)

where mh � m2, m3 and m2, m3 being masses of muon and tau, respectively. The on-shell con-
ditions for external momenta are p2

a = m2
a (a = 2, 3) and p2

h ≡ (p2 +p3)
2 = m2

h, mh = 125 GeV. 
Next, �L,R with be calculated at one-loop level, in two gauges of unitary and ’t Hooft Feynman.

3. Analytic amplitudes and divergence cancellation

3.1. Amplitude in the unitary gauge and divergence cancellation

In the unitary gauge, the Feynman diagrams for a decay h → e−
a e+

b (a < b) are presented 

in Fig. 1. The loop contributions are written as �L,R = �
(a)
L,R + �

(b)
L,R + �

(c+d)
L,R , where the 

three terms come from private contributions of diagrams 1a), 1b), and sum of contributions from 
two diagrams c) and d), respectively. The analytic expressions of contributions from the three 
diagrams 1a), c), and d) can be derived directly from [13], except the diagram 1b) containing the 
coupling hninj . An analytic expression of �(b)

L,R is derived in Appendix C. We have used Form 
[23] to cross-check our results. In addition, the total �L,R is consistent with the result calculated 
in the ’t Hooft Feynman gauge, as we will show later. Expressions of LFVHD contributions in 
the unitary gauge are

�
(a)
L = − g3ma

64π2m3
W

K+3∑
i=1

Uν∗
ai Uν

bi

{
m2

ni

(
B

(1)
1 − B

(1)
0 − B

(2)
0

)
− m2

bB
(2)
1

+
(

2m2
W + m2

h

)
m2

ni
C0 −

[
2m2

W

(
2m2

W + m2
ni

+ m2
a − m2

b

)
+ m2

ni
m2

h

]
C1

+
[
2m2

W

(
m2

a − m2
h

)
+ m2

bm
2
h

]
C2

}
,

�
(a)
R = − g3mb

64π2m3
W

K+3∑
i=1

Uν∗
ai Uν

bi

{
−m2

ni

(
B

(2)
1 + B

(1)
0 + B

(2)
0

)
+ m2

aB
(1)
1

+
(

2m2
W + m2

h

)
m2

ni
C0 −

[
2m2

W

(
m2

b − m2
h

)
+ m2

am
2
h

]
C1

+
[
2m2

W

(
2m2

W + m2
ni

− m2
a + m2

b

)
+ m2

ni
m2

h

]
C2

}
,

�
(b)
L = − g3ma

64π2m3
W

K+3∑
Uν∗

ai Uν
bj

{
Cij

[
m2

ni
B

(1)
1 + m2

nj
B

(12)
0 − m2

nj
m2

WC0
i,j=1
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+
[
2m2

ni
m2

nj
+ 2m2

W

(
m2

ni
+ m2

nj

)
− (m2

ni
m2

b + m2
nj

m2
a)
]
C1

]
+ C∗

ijmni
mnj

[
B

(12)
0 + B

(1)
1 − m2

WC0 +
(

4m2
W + m2

ni
+ m2

nj
− m2

a − m2
b

)
C1

]}
,

�
(b)
R = − g3mb

64π2m3
W

K+3∑
i,j=1

Uν∗
ai Uν

bj

{
Cij

[
−m2

nj
B

(2)
1 + m2

ni
B

(12)
0 − m2

ni
m2

WC0

−
[
2m2

ni
m2

nj
+ 2m2

W(m2
ni

+ m2
nj

) − (m2
ni

m2
b + m2

nj
m2

a)
]
C2

]
+ C∗

ijmni
mnj

[
B

(12)
0 − B

(2)
1 − m2

WC0 −
(

4m2
W + m2

ni
+ m2

nj
− m2

a − m2
b

)
C2

]}
,

(12)

and

�
(c+d)
L = g3ma

64π2m3
W

K+3∑
i=1

Uν∗
ai Uν

bi

m2
b

(m2
a − m2

b)

[(
2m2

W + m2
ni

)(
B

(1)
1 + B

(2)
1

)
+ m2

aB
(1)
1 + m2

bB
(2)
1 − 2m2

ni

(
B

(1)
0 − B

(2)
0

)]
, (13)

�
(c+d)
R = ma

mb

�
(c+d)
L . (14)

Regarding �(b)
L,R , the contributions from B(1)

1 = B
(1)
1 (m2

W, m2
ni

) and B(2)
1 are zeros because, for 

example, B(1)
1 contains a factor 

∑
j Uν

bjmnj
Uν

cj =
(
Uν∗M̂νUν†

)∗
bc

= Mν∗
bc = 0.

Divergence cancellation in the total amplitude is explained as follows. From divergent parts 
of the PV functions in Appendix A, the divergent parts of �(a)

L and �(b)
L are

Div[�(a)
L ] = − g3ma

64π2m3
W

K+3∑
i=1

Uν∗
ai Uν

bi

[
m2

ni

(−3

2
�ε

)
+ m2

b

1

2
�ε

]

= 3g3ma

128π2m3
W

�ε

K+3∑
i=1

Uν∗
ai Uν

bim
2
ni

,

Div[�(b)
L ] = − g3ma

64π2m3
W

⎡⎣K+3∑
i,j=1

3∑
c=1

Uν∗
ai Uν

ciU
ν∗
cj Uν

bj

(
m2

ni

1

2
�ε + m2

nj
�ε

)

+
K+3∑
i,j=1

3∑
c=1

Uν∗
ai Uν∗

ci Uν
cjU

ν
bjmni

mnj
�ε

⎤⎦
= g3ma

128π2m3
W

�ε

⎡⎣K+3∑
i,j=1

3∑
c=1

Uν∗
ai Uν

ciU
ν∗
cj Uν

bj

(
m2

ni
+ 2m2

nj

)

+
K+3∑
i,j=1

3∑
c=1

Uν∗
ai Uν∗

ci Uν
cjU

ν
bj 2mni

mnj

⎤⎦ , (15)

where the unitary property of Uν is used to cancel the second term of Div[�(a)
L ], namely ∑K+3

Uν∗Uν = (
UνUν†

) = 0. The second term of Div[�(b)] vanishes because
i=1 ai bi ab L
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∑
i U

ν∗
ai Uν∗

ci mni
=
(
Uν∗M̂νU

ν†
)

ac
= Mν

ac = 0 with all a, c = 1, 2, 3. We simplify the first term 

of Div[�(b)
L ] based on the following equalities

K+3∑
i,j=1

3∑
c=1

m2
ni

Uν∗
ai Uν

ciU
ν∗
cj Uν

bj =
K+3∑
i=1

3∑
c=1

m2
ni

Uν∗
ai Uν

ci

K+3∑
j=1

Uν∗
cj Uν

bj

=
K+3∑
i=1

3∑
c=1

m2
ni

Uν∗
ai Uν

ci(U
νUν†)3c =

K+3∑
i=1

m2
ni

Uν∗
ai Uν

bi . (16)

Similarly, we have 
∑K+3

i,j=1
∑3

c=1 2m2
nj

Uν∗
aj Uν

ciU
ν∗
cj Uν

bj = ∑K+3
i=1 2m2

ni
Uν∗

ai Uν
bi . Inserting these 

two results into Div[�(b)
L ] will give Div[�(b)

L ] + Div[�(a)
L ] = 0. With �(c+d)

L , the divergent parts 

of the two terms m2
aB

(1)
1 and m2

bB
(2)
1 vanish because of the GIM mechanism, while two sums 

[B(1)
1 + B

(2)
1 ] and [B(1)

0 − B
(2)
0 ] are finite. Hence, �L is finite. �R has the same conclusion.

3.2. Amplitude in the ’t Hooft Feynman gauge

In the ’t Hooft Feynman gauge, there are ten form factors F (i)
L,R , (i = 1, 2, .., 10) corresponding 

to ten diagrams shown in Fig. 1 of Refs. [6,7]. The total contribution is �L,R = ∑10
i=1 F i

L,R . 

Formulas of F (i)
L,R in terms of PV functions defined in [13] are as follows,

F
(1)
L = − g3ma

64π2m3
W

K+3∑
i,j=1

BaiB
∗
bj

{
Cij

[
m2

nj

(
B

(12)
0 + m2

WC0

)
−

(
m2

am
2
nj

+ m2
bm

2
ni

− 2m2
ni

m2
nj

)
C1

]
+ mni

mnj
C∗

ij

[
B

(12)
0 + m2

WC0 +
(
m2

ni
+ m2

nj
− m2

a − m2
b

)
C1

]}
,

F
(1)
R = − g3mb

64π2m3
W

K+3∑
i,j=1

BaiB
∗
bj

{
Cij

[
m2

ni

(
B

(12)
0 + m2

WC0

)
+

(
m2

am
2
nj

+ m2
bm

2
ni

− 2m2
ni

m2
nj

)
C2

]
+ mni

mnj
C∗

ij

[
B

(12)
0 + m2

WC0 −
(
m2

ni
+ m2

nj
− m2

a − m2
b

)
C2

]}
,

F
(2)
L = g3ma

64π2m3
W

K+3∑
i,j=1

BaiB
∗
bj × 2m2

W

×
{
Cij

[
m2

nj
C0 −

(
m2

ni
+ m2

nj

)
C1

]
+ mni

mnj
C∗

ij (C0 − 2C1)
}

,

F
(2)
R = g3mb

64π2m3
W

K+3∑
i,j=1

BaiB
∗
bj × 2m2

W

×
{
Cij

[
m2

n C0 +
(
m2

n + m2
n

)
C2

]
+ mni

mnj
C∗

ij (C0 + 2C2)
}

, (17)

i i j
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F
(3)
L = g3ma

64π2m3
W

K+3∑
i=1

BaiB
∗
bi

[
4m4

WC1

]
, F

(3)
R = g3mb

64π2m3
W

K+3∑
i=1

BaiB
∗
bi

[
−4m4

WC2

]
,

F
(4)
L = − g3ma

64π2m3
W

K+3∑
i=1

BaiB
∗
bi × m2

W

[
−m2

ni
C0 +

(
2m2

b − m2
ni

)
C1 − m2

bC2

]
,

F
(4)
R = − g3mb

64π2m3
W

K+3∑
i=1

BaiB
∗
bim

2
W

[
B

(12)
0 + 3m2

ni
C0 +

(
2m2

h − 2m2
b − m2

a

)
C1

+
(
m2

ni
+ 2m2

b

)
C2

]
,

F
(5)
L = − g3ma

64π2m3
W

K+3∑
i=1

BaiB
∗
bim

2
W

[
B

(12)
0 + 3m2

ni
C0 −

(
m2

ni
+ 2m2

a

)
C1

−
(

2m2
h − m2

b − 2m2
a

)
C2

]
,

F
(5)
R = − g3mb

64π2m3
W

K+3∑
i=1

BaiB
∗
bim

2
W

[
−m2

ni
C0 + m2

aC1 −
(

2m2
a − m2

ni

)
C2

]
,

F
(6)
L = − g3ma

64π2m3
W

K+3∑
i=1

BaiB
∗
bi × m2

h

[
m2

ni
(C0 − C1) + m2

bC2

]
,

F
(6)
R = − g3mb

64π2m3
W

K+3∑
i=1

BaiB
∗
bi × m2

h

[
m2

ni
(C0 + C2) − m2

aC1

]
, (18)

F
(7)
L = g3ma

64π2m3
W

K+3∑
i=1

BaiB
∗
bi

(D − 2)m2
Wm2

b

(m2
a − m2

b)
B

(1)
1 , F

(7)
R = ma

mb

F
(7)
L ,

F
(9)
L = g3ma

64π2m2
W

K+3∑
i=1

BaiB
∗
bi

(D − 2)m2
Wm2

b

(m2
a − m2

b)
B

(2)
1 , F

(9)
R = ma

mb

F
(9)
L , (19)

F
(8)
L = − g3ma

64π2m3
W

K+3∑
i=1

BaiB
∗
bi

m2
b

(m2
a − m2

b)

[
2m2

ni
B

(1)
0 −

(
m2

ni
+ m2

a

)
B

(1)
1

]
,

F
(8)
R = − g3mb

64π2m3
W

K+3∑
i=1

BaiB
∗
bi

1

(m2
a − m2

b)

×
[
m2

ni

(
m2

a + m2
b

)
B

(1)
0 − m2

a

(
m2

ni
+ m2

b

)
B

(1)
1

]
,

F
(10)
L = g3ma

64π2m3
W

K+3∑
i=1

BaiB
∗
bi

1

(m2
a − m2

b)

[
m2

ni

(
m2

a + m2
b

)
B

(2)
0 + m2

b

(
m2

ni
+ m2

a

)
B

(2)
1

]
,

F
(10)
R = g3mb

64π2m3

K+3∑
BaiB

∗
bi

m2
a

(m2 − m2)

[
2m2

ni
B

(2)
0 +

(
m2

ni
+ m2

b

)
B

(2)
1

]
, (20)
W i=1 a b
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where Bai = Uν∗
ai , B∗

bj = Uν
bj , Cij = ∑3

c=1 Uν
ciU

ν∗
cj , and D = 4 − 2ε is the integral dimension 

defined in Appendix A. Although F (7)
L,R and F (9)

L,R contain B-functions, they are finite because of 

the GIM mechanism. Hence it can be replaced with D = 4. Because B(12)
0 = B

(12)
0 (m2

W, m2
W) in 

F
(4)
R and F (5)

L do not depend on mni
, therefore vanish because of the GIM mechanism. They will 

be ignored from now on.
Although our notations of PV functions are different from those in [6,7], transformations 

between two sets of notations are, (see a detailed proving in Appendix B)

C0 ↔ C0, C1 ↔ C12 − C11, C2 ↔ C12,

B
(12)
0 ↔ B0(m

2
W,m2

W), B0(m
2
ni

,m2
nj

), B
(1,2)
0 (M2

0 ,M2) ↔ B0(m
2
lk,m

,M2
0 ,M2),

B
(1)
1 (M2

0 ,M2) ↔ −B1(m
2
lk
,M2

0 ,M2), B
(2)
1 (M2

0 ,M2) ↔ B1(m
2
lm

,M2
0 ,M2). (21)

The PV functions used in our work were checked to be consistent with Looptools [27], see details 
in [14]. The differences between our results and those shown in [7] are minus signs in F(4)

L,R and 

F
(5)
L,R . Our formulas are consistent with the results presented in Ref. [8],3 where the authors 

confirmed that these signs do not affect the results given in Ref. [7].
Now we will check the consistence between total amplitudes calculated in two gauges. Re-

garding to triangle diagrams with two internal neutrino lines, the deviation of contributions in 
two gauge are determined as follows,

δ1 = �
(b)
L −

(
F

(1)
L + F

(2)
L

)
= − g3

4m3
W

ma

16π2

K+3∑
i,j=1

BaiB
∗
bjCijm

2
ni

B
(1)
1 (m2

W,m2
ni

)

= − g3

4m3
W

ma

16π2

K+3∑
i=1

BaiB
∗
bim

2
ni

(
B

(1)
0 (m2

ni
,m2

W) − B
(1)
1 (m2

ni
,m2

W)
)

, (22)

where useful equalities of B-functions are used [22]. In addition, Cij in the first line of (22) is 
simplified using the same trick given in (16). Similarly, other deviations are

δ2 = �
(a)
L −

6∑
k=3

F
(k)
L

= − g3

4m3
W

ma

16π2

K+3∑
i=1

BaiB
∗
bi

[
−m2

bB
(2)
1 − m2

ni

(
B

(1)
0 − B

(1)
1 + B

(2)
0

)]
,

δ3 = �
(c+d)
L −

10∑
k=7

F
(k)
L = − g3

4m3
W

ma

16π2

K+3∑
i=1

BaiB
∗
bi

[
m2

bB
(2)
1 + m2

ni
B

(2)
0

]
, (23)

where B0,1,2 ≡ B0,1,2(m
2
ni

, m2
W). Then, it can be seen easily that δ1 + δ2 + δ3 = 0. Hence, the 

total amplitudes calculated in two gauges are the same.

3 The correct Feynman rule for the coupling hninj gives consistent F(1,2) with those in Ref. [7].

L,R
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4. LFVHD in the minimal and inverse seesaw models

4.1. Parameterization the neutrino mixing matrix

To start, we consider a general expression of the neutrino mixing matrix Uν [19],

Uν = �

(
U O
O V

)
, (24)

where O is a 3 × K null matrix, U and V are 3 × 3 and K × K unitary matrices, respectively. 
The � is a (K + 3) × (K + 3) unitary matrix that can be formally written as

� = exp

(
O R

−R† O

)
=
(

1 − 1
2RR† R

−R† 1 − 1
2R†R

)
+O(R3), (25)

where R is a 3 × K matrix where absolute values of all elements are smaller than unity. The 
unitary matrix U = UPMNS is the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [30].

The mass matrices of neutrinos are written as follows,

M̂N = diag(mn4 , mn5 , ..., mnK+3),

mν = U∗
PMNSdiag(mn1 , mn2 , mn3)U

†
PMNS = U∗

PMNSm̂νU
†
PMNS, (26)

where mni
is the physical masses of all neutrinos,

UPMNS =
⎛⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞⎠
× diag(1, eiα, eiβ), (27)

and cab ≡ cos θab , sab ≡ sin θab . In the normal hierarchy scheme, the best-fit values of neutrino 
oscillation parameters are given as [20]4

�m2
21 = 7.50 × 10−5 eV2, �m2

31 = 2.457 × 10−3 eV2,

s2
12 = 0.304, s2

23 = 0.452, s2
13 = 0.0218, (28)

where �m2
a1 = m2

na
− m2

n1
(a = 2, 3). In this work, other parameters will be fixed as δ = α =

β = 0.
The condition of seesaw mechanism for neutrino mass generation is |MD| � |MN |, where 

|MD| and |MN | denote characteristic scales of MD and MN , resulting in useful relations5 [19],

R∗ � MDM−1
N , mν � −MDM−1

N MT
D,

V ∗M̂NV † � MN + 1

2
RT R∗MN + 1

2
MNR†R. (29)

Based on the second relation in (29), the matrix MD can be parameterized via a general K × 3
matrix ξ , which satisfies the only condition ξT ξ = I3 [6,17,19], namely

4 Updated neutrino data can be found in [28]. But our main results are unchanged.
5 We thank LE Duc Ninh for pointing out factors 1/2 in the last relation in (29).
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MT
D = iU∗

N

(
Md

N

)1/2
ξ
(
m̂ν

)1/2
U

†
PMNS, (30)

where UN is an unitary matrix diagonalizing MN , UT
NMNUN = Md

N = diag(M1, M2, ..., MK).
In the MSS mentioned in [4,6], the particle content is different from the Standard Model 

(SM) by three additional right-handed neutrinos (K = 3), NR,I ∼ (1, 1, 0) with I = 1, 2, 3. New 
notations of neutrino mass matrices are mD ≡ MD , and mM ≡ MN . They are the respective 
3 × 3 Dirac and Majorana mass matrices corresponding to the first and second term of (1), 
(mD)iJ = Yν,iJ 〈φ〉, and (mM)iJ = mM,iJ . The matrix mM is real, symmetric and non-singular.

The mixing matrix in the ISS model considered in ref. [7] can be found approximately using 
the above general discussion with K = 6. Relations of notations between two parameterizations 
in [7] and [19] are

MD = (mD, O), MN =
(

O MR

MT
R μX

)
, mν = Mlight, (31)

where O is the 3 × 3 matrix with all elements being zeros. From the definition of the inverse 
matrix, M−1

N MN = MNM−1
N = I6, we derive that

M−1
N =

(
−M−1

(
MT

R

)−1

M−1
R 0

)
, (32)

where M is defined as M = MRμ−1
X MT

R [7]. From (29), we then find that [19]

R∗ = MDM−1
N =

(
−mDM−1, mD

(
MT

R

)−1
)

,

mν = −MDM−1
N MT

D = mD

(
MT

R

)−1
μXM−1

R mT
D = mDM−1mT

D. (33)

These two expressions are consistent with those given in [7,19], giving a parameterization of mD

as follows,

mT
D = U∗

Mdiag(
√

M1,
√

M2,
√

M3)ξ
′√m̂νU

†
PMNS, (34)

where UM satisfies M = U∗
Mdiag(M1, M2, M3)U

†
M and ξ ′ is a complex orthogonal matrix sat-

isfying ξ ′ξ ′ T = I3. The mixing matrix Uν now is a 9 × 9 matrix.
In order to compare and mark relations between LFVHD in two MSS and ISS models, we 

will pay attention to only simply cases of choosing parameters. In the MSS model, the choice is 
ξ = UN = I3, leading to following simple expressions of Eqs. in (29), namely

Md
N = MN, R = −iUPMNS m̂1/2

ν

(
Md

N

)−1/2
, V = I3, M̂N = Md

N + m̂ν. (35)

In the ISS model, from (34) we see that mD is parameterized in terms of many free parameters, 
hence it is enough to choose that μX = μXI3. This parameter is a new scale making the most 
important difference between the neutrino mixing matrices in the ISS and MSS. We also assume 
that MR = M̂R = diag(MR1, MR2, MR3) and ξ ′ = I3. With |μX| � |MR| we have

UM = I3, Md
N =

(
M̂R 0

0 M̂R

)
, V � 1√

2

(−iI3 I3
iI3 I3

)
. (36)

We can see that both M̂R (ISS) and MN (MSS) play roles as exotic neutrino mass scales. There-
fore, they are identified as neutrino masses in both models, M̂R = MN = diag(mn , mn , mn ). 
4 5 6
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Fig. 2. Left panel: Br(h → eaeb) as functions of mn6 with non-degenerate heavy neutrino masses. Right panel: The 
dependence of Br(h → eaeb) on the mixing matrix Uν up to an order O(Rk) with k = 2, 4, 6, 8.

The differences between two models now are two mixing matrix V in (36) and R, and the μX

scale, which does not appear in the MSS model. The μX plays special roles in the ISS model via 
its appearance in the second sub-matrix of the mixing matrix R given in (33). A simple relation 
between largest elements of R matrices in two models is

RISS ∼
√

mn6

μX

RMSS, (37)

where mn6 now is considered as exotic neutrino mass scale, mn4 ≤ mn5 ≤ mn6 . The relation (37)
is the main reason that explains why the Br of LFVHD predicted from the ISS is much larger 
than that from the MSS.

In the following, we will discuss on LFVHD in the MSS model. The results of LFVHD in the 
ISS model can be derived from discussion in the MSS model based on (37).

4.2. Discussion on LFVHD

In the MSS model, our investigation will use three physical masses of exotic neutrinos, 
mn4,5,6 , as free parameters. The matrix MD can be derived from relations (30), i.e. MD =
iU∗

PMNS

(
Md

N m̂ν

)1/2
. As a result, the mixing matrix Uν is written as a function of physical 

neutrino masses and UPMNS. To determine constrains of heavy neutrino masses mn6 , we base on 
relations in (29), which suggest that mn6 × mn3 � |MD|2 < 6π × 1742, because of the perturba-
tive limit of the Yukawa couplings Yν,ij [7]. Combing with the active neutrino data given in (28), 

where at least one active neutrino mass is not smaller than 
√

�m2
31 = 5 × 10−11 GeV, we get 

an upper constrain, mn6 < 8 × 1015 GeV, when mn1 �
√

�m2
31. The lower constrain is mn6 >

|MD| > mn3 > 5 × 10−11 GeV. Numerical illustrations are shown in Fig. 2, where three heavy 

neutrino masses are non-degenerate, 3mn4 = 2mn5 = mn6 , and mn1 = 10−12 GeV �
√

�m2
31.

The left panel of Fig. 2 presents Br(h → eaeb) as functions of mn6 . Unlike previous 
works such as [4,6], heavy neutrinos masses were not considered at the interesting scale 
above 1010 GeV, where leptogenesis can be successful explained in the MSS frame work 
[29]. More important, large values of heavy neutrinos may give large Br of LFVHD, as we 
have seen numerically. Unfortunately, values of mn6 ≤ 8 × 1015 GeV gives an upper bound 
Br(h → μτ) ≤ O(10−11). For other two decays, we get the relations Br(h → eτ) � Br(h →
μτ) = (m2

τ /m2
μ)Br(h → eμ) � 287 × Br(h → eμ). Hence, we just focus on the Br(h → μτ).
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The right panel of Fig. 2 shows values of Br(h → μτ) in the whole valid range of mn6 , namely 
10−10 < mn6 < 8 × 1015 [GeV], where Uν is considered up to O(Rk). Each curve separates into 
three different parts. In the part with very heavy exotic neutrino masses, m2

n6
� m2

h, m
2
W , i.e. 

mn6 >O
(
104

)
, we found a simple relation: Br(h → μτ) = 6.3 ×10−44m2

n6
[GeV2]. On the other 

hand, for the part with very small exotic neutrino masses, m2
n6

� m2
μ, m2

τ , i.e. mn6 < O
(
10−3

)
, 

there appears a new relation: Br(h → μτ) = 8.7 × 10−52

(mn6 GeV)4
, when the matrix � is calculated up to 

O(R2). This will lead to the maximal values of Br(h → μτ) ≤ 10−11, the same order with large 
mn6 ∼ O(1015) GeV. If the matrix � is calculated more exactly, the Br(h → μτ) will decrease 
significantly with small mn6 , but will not change with large mn6 . This can be explained from the 
conditions of the matrix �, which is written in terms of the power series in R. If mn6 is small, 
R ∼ √|mν |/mn6 will be large as mn6 → |MD| → |mν |. The calculation will be less accurate 
with smaller power k included in �. We consider more cases of Uν where the matrix � in (25) is 
considered up to order O(R8). We conclude that the Br(h → μτ) is very suppressed with small 
masses of exotic neutrinos. In contrast, large mn6 results in |R| � 1. Therefore, it is enough 
to consider the mixing matrix Uν with order of O(R2) in the region where mn6 ≥ 0.1 GeV. In 
conclusion, to find large Br(h → μτ), we just consider the region with large mn6 .

To explain why large Br(h → μτ) corresponds to large mn6 , we pay attention to the prop-
erties of the mixing matrix Uν , the PV-functions and factors relating with them in the expres-
sions of �(a)

L,R , �(b)
L,R , and �(c+d)

L,R . When m2
nI

� m2
h, m

2
W , the terms with factors m2

nI
will give 

dominant contributions. The PV functions containing m2
nI

will have the following properties: 
B0,1,2(m

2
ni

) = O(10), C0,1,2(m
2
ni

) ∼ ln(m2
n6

)/m2
n6

. Hence the largest contributions will come 

from m2
n6

B0,1,2 ∼ m2
n6

in �(a+c+d,b)
L,R and m4

n6
C0,1,2 ∼ [ln m2

n6
]m2

n6
in �(b)

L,R . The largest com-

ponent of the matrix R satisfies R ∼ O
(√

|m̂ν |
mn6

)
. As a result, the mixing matrix elements in 

�
(a+c+d)
L,R and �(b)

L,R will results in the following factors: Uν∗
a(I+3)U

ν
b(I+3) = |RaI |2 ∼ |m̂ν |

mn6
. There 

are new factors in the �(b)
L,R : Uν∗

a(I+3)U
ν
c(I+3)U

ν∗
c(J+3)U

ν∗
b(J+3) ∼ |m̂ν |2

m2
n6

. Hence the largest contri-

bution to the total gives �L,R ∼ mn6 with very large mn6 , implying Br(h → μτ) ∼ m2
n6

. The 
correlations between terms with and without factors m2

ni
are shown in the Fig. 3. Terms without 

factors m2
ni

are dominant with tiny mn6 but they are very suppressed with large mn6 .
The above discussions lead to new interesting results for LFVHD predicted by the MSS 

model, which were not concerned previously: i) the Br can reach values of order 10−11 with 
large values of heavy neutrino masses satisfying the perturbative limit; ii) the Br enhances with 
increasing mn6 above 105 GeV. In addition, the maximal Br(h → μτ) reaches the values of 
10−33–10−32 with mn6 ∈ [102, 104] GeV. We will show the relation between these interesting 
values and maximal values of Br(h → μτ) predicted by the ISS.

We realize that the property of Br(h → μτ) ∼ m2
n6

agrees very well with the approximate 
expression shown in [4]. In particular, Br(h → μτ) ∼ m4

n6
× |FN |2, where FN ∼ R2 ∼ m−1

n6

relating with active-heavy neutrino mixing elements in Uν . We believe that large values of the 
Br predicted in [4] arise from the reason that recent neutrino oscillation data could not be applied 
at that times. The numerical values of FN chosen in [4] may keep large contributions that should 
vanish because of the GIM mechanism.
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Fig. 3. Comparing different contributions to Br(h → μτ) as functions of heaviest exotic neutrino mass mn6 , where 
3mn4 = 2mn5 = mn6 , f1 = (no terms with m2

ni
)/total, and f2 = (only terms with m2

ni
)/total.

Although the maximal Br of LFVHD predicted by the MSS is much smaller than the pre-
diction from the ISS model given in [6,7], the behave of the curve presenting Br(h → μτ)

shown in Fig. 3 have the same form with Br(h → μτ) calculated in the ISS. The reason is 
as follows. If the exotic neutrino masses are fixed the same values in the two models, mM =
MR = diag(mn4 , mn5 , mn6), the important quantity making different contributions to LFVHD is 
the parametrization of mD , see two Eqs. (30) and (34) for the MSS and ISS, respectively. This 
leads to the different structures of the R matrices. The largest components of R in the MSS are 

RMSS
aI ∼

√
|m̂ν |
|mn6 | with I > 3, while those in the ISS are RISS

aI ∼
√

|m̂ν |
μX

. Hence, in general the ISS 

mixing factors are larger than those of MSS a common factor 

√
|m̂n6 |
|μX | . It makes the prediction of 

Br of LFVHD by the ISS be much larger than the prediction by the MSS, provided large mn6

but small μX . Unlike the MSS, where mass scale mn6 can be as large as O(1015) GeV, values of 
mn6 in the ISS are constrained by relation (33), i.e. m2

n6
|m̂ν |/μX = |mD|2 < 1742 × 6π [GeV]2. 

Hence, small μX will give small upper bounds of mn6 , and large Br(h → μτ) will depend com-
plicatedly on these two parameters. The left panel of Fig. 4 shows possible values of Br(h → μτ)

in the allowed regions of μX and mn6 . Our numerical results are well consistent with previous 

work [7]. In addition, by adding a factor 
√ |mn6 |

|μX | into RMSS and using the analytic expressions of 

�MSS
L,R we get a very consistent results of Br(h → μτ) predicted by the ISS, see an illustration in 

the left panel of Fig. 4. This confirms again the consistence of our calculation for LFVHD in the 
MSS and ISS.

There is an interesting relation between two LFVHD amplitudes calculated in the two mod-
els, as drawn in the right panel of Fig. 4. Here, |�ISS

R |μXm−2
n6

and |�MSS
R |m−1

n6
are considered as 

functions of mn6 . We have checked numerically that |�ISS
R |μXm−2

n6
does not depend on μX , and 

consistent with conclusion in [7]. It can be seen as follows. The dependence of mD and RISS on 
MR and μX can be separate into two parts. The first is the correlation between elements of these 
matrices in order to give correct experimental values of active neutrino data. And the second is 
the simple dependence on the scales of mn6 and μX . In the ISS, RISS

aI = Uν
a(I+3) ∼ μ

−1/2
X and 

do not depend on mn6 . Now, if we pay attention to the region with large mn6 , the terms like 
m2

ni
B0,1,2 are dominant contributions to �L,R because of the factors m2

ni
. As a result, �(a+c+d)

L,R

containing a factor Uν∗Uν ∼ μ−1 will give an overall factor μ−1m2
n . Hence �(a+c+d)

μXm−2
n
ai bi X X 6 L,R 6
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Fig. 4. Left panel: contour plot of Br(h → μτ) and |mD | as functions of mn6 and μX , predicted from ISS framework. 
The yellow region is excluded by large |mD | > 174

√
6π GeV. Dashed black curves are from ISS prediction. Green 

curves obtained from modifying MSS. The right panel: a comparison between different contributions from |�MSS
R

|m−1
n6

and |�ISS
R

|μXm−2
n6 . (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)

may be constant, following the property of B-functions. On the other hand, �(b)
L,R contains 

Uν∗
ai Uν∗

cj Uν
ciU

ν
bj ∼ μ−1

X or μ−2
X , depending on both indices i and j or only one larger than 3. 

Because both �(a+c+d)
L,R and �(b)

L,R are still divergent, terms with μ−2
X must vanish in order to guar-

antee a finite �L,R . This results in a common factor μ−1
X m2

n6
for �L,R . In the right panel of Fig. 4, 

values of μXm−2
n6

�
(a+c+d)
L,R and μXm−2

n6
�

(b)
L,R correspond to �ε = 0. But we checked numeri-

cally that μ−1
X m2

n6
�L,R is independent with �ε . In addition, we can see that μXm−2

n6
�

(a+c+d)
L,R

and μXm−2
n6

�
(b)
L,R always have opposite signs, which is consistent with the fact that divergences 

contained in them are really canceled. Two absolute contributions from �(a+c+d)
L,R and �(b)

L,R are 
the same order, and nearly degenerate with large mn6 . They start canceling strongly each other 
from the electroweak range of mn6 , giving a very small μXm−2

n6
�L,R . It is 10−5 times smaller 

than values of μXm−2
n6

�
(b)
L,R .

The above discussion is the same for both models ISS and MSS, where m−1
n6

�L,R is the func-
tion considered in the MSS. The numerical results are also shown in the right panel of the Fig. 4. 
Consider a region 10 ≤ mn6 ≤ 104 GeV, there is an equality that m−1

n6
�MSS

L,R = �ISS
L,RμXm−2

n6
, im-

plying BrISS(h → μτ) = m2
n6

μ2
X

BrMSS(h → μτ). From previous discussion, where BrMSS(h →
μτ) ≤ 10−32, we can derive the maximal BrISS(h → μτ) ≤ 10−32 × O((104/10−9)2) =
O(10−6).

We can also estimate the maximal value of Br(h → μτ) based on the numerical result 
shown in Fig. 4. If mn6 ≥ 105 GeV, we have �R � 10−24μ−1

X m2
n6

, where small �L is ignored. 

Equivalently, we have Br(h → μτ) � 10−45μ−2
X m4

n6
. The condition of perturbative limit gives 

m2
n6

× 5 × 10−11/μX = |mD|2 ≤ 1742 × 6π , leading to μ−2
X m4

n6
≤ O(1036). Hence in the re-

gion of large mn6 ≥ 105 GeV, Br(h → μτ) can reach maximal value of O(10−9). If mn6 < 105

GeV, the allowed region in the left panel of Fig. 4 shows that Br(h → μτ) can reach values of 
O(10−7) only if mn6 is few TeV, μX is order of 10−9 GeV, and mD gets values very close to the 
perturbative limit.
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5. Conclusion

In this work, the LFVHD in the MSS and ISS models have been discussed where we have 
focused on new aspects that were not shown in previous works. We calculated the amplitude of 
the LFVHD using new analytical expressions of PV-functions discussed recently. From this we 
have checked the consistence of our results in many different ways: comparing them with results 
of previous works, calculating in two gauges of unitary and ’t Hooft-Feynman, checking analyt-
ically the divergent cancellation of the total amplitude. In the MSS framework, we investigated 
numerically the Br(h → μτ) in the valid and large range of exotic neutrino mass scale, from 
10−10 GeV to 1016 GeV. When applying the Casas–Ibarra parameterization to Yukwa couplings 
of heavy neutrinos, we found a new result that Br(h → μτ) ∼ m2

n6
with large mn6 , because the 

mixing matrix elements affecting mostly the LFVHD amplitude by factors of m−1/2
n6 . But in the 

valid region of perturbative requiring mn6 < 1016 GeV, the Br(h → μτ) reaches maximal values 
of O(10−11), still far from the recent experimental consideration. Anyway, this may be a hint to 
improve the MSS to more relevant models predicting higher values of Br(h → μτ), for example 
the ISS. In this model, the largest mixing factors contributing to LFVHD amplitude do not depend 
on the exotic neutrino mass scale mn6 but consist of a factor μ−1

X . Hence, if two models have the 
same neutrino mass scale, and the neutrino mixing matrices obey the Casas–Ibarra parameteri-
zation, there will be a very simple relation that BRISS(h → μτ)/BRMSS(h → μτ) � m2

n6
μ−2

X . 
This explains why the signal of LFVHD in the ISS is extremely significant than that in MSS. But 
the perturbative condition does not allow both large mn6 and small μX , which can predict large 
Br(h → μτ). Hence, maximal Br(h → μτ) is still O(10−7) with few TeV of heavy neutrino 
mass scale. Our discussion on LFVHD of the MSS suggests that Br(h → μτ) may be large in 
the extended versions of the MSS which allow very large mn6 . Finally, although we presented 
here a different way to calculate the LFVHD, our numerical results for the ISS are well consistent 
with those noted in previous works [7,8].
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Appendix A. One loop Passarino–Veltman functions

Calculation in this section relates with one-loop diagrams in the Fig. 1. The analytic ex-
pressions of the PV-functions are given in [13] and they were derived from the general forms 
given in [24], using only the conditions of very small masses of tau and muon. They are con-
sistent with [22]. The denominators of the propagators are denoted as D0 = k2 − M2

0 + iδ, 
D1 = (k − p1)

2 − M2
1 + iδ and D2 = (k + p2)

2 − M2
2 + iδ, where δ is infinitesimally a pos-

itive real quantity. The scalar integrals are defined as

B
(i)
0 ≡ (2πμ)4−D

2

∫
dDk

, B
(12)
0 ≡ (2πμ)4−D

2

∫
dDk

,

iπ D0Di iπ D1D2
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C0 ≡ C0(M0,M1,M2) = 1

iπ2

∫
d4k

D0D1D2
,

where i = 1, 2. In addition, D = 4 − 2ε ≤ 4 is the dimension of the integral; M0, M1, M2 are 
masses of virtual particles in the loop. The momenta satisfy conditions: p2

1 = m2
1, p2

2 = m2
2 and 

(p1 +p2)
2 = m2

h. In this work, mh is the SM-like Higgs mass, m1,2 are lepton masses. The tensor 
integrals are

Bμ(pi;M0,Mi) = (2πμ)4−D

iπ2

∫
dDk × kμ

D0Di

≡ B
(i)
1 p

μ
i ,

Cμ = Cμ(M0,M1,M2) = 1

iπ2

∫
d4k × kμ

D0D1D2
≡ C1p

μ
1 + C2p

μ
2 .

The PV functions are B(i)
0,1, B(12)

0 and C0,1,2. The functions C0,1,2 are finite while the remains are 

divergent. We define the common divergent part as �ε ≡ 1
ε
+ ln 4π − γE + lnμ2 where γE is the 

Euler constant. Then the divergent parts of the above scalar factors are Div[B(i)
0 ] = Div[B(12)

0 ] =
�ε , and Div[B(1)

1 ] = −Div[B(2)
1 ] = 1

2�ε .
For simplicity in calculation we use approximative forms of PV functions where p2

1, p
2
2 → 0. 

The function C0 was given in [13] consistent with that discussed on [22], namely

C0 = 1

m2
h

[R0(x0, x1) + R0(x0, x2) − R0(x0, x3)] ,

where R0(x0, xi) ≡ Li2(
x0

x0−xi
) − Li2(

x0−1
x0−xi

), Li2(z) is the di-logarithm function; x1,2 are solu-

tions of the equation x2 −
(

m2
h−M2

1 +M2
2

m2
h

)
x + M2

2 −iδ

m2
h

= 0; x0 = M2
2 −M2

0
m2

h

; and x3 = −M2
0 +iδ

M2
1 −M2

0
.

Based on [26], the B-functions with small absolute values of external momenta can be written 
in stable forms in numerical computations. Defining yij (i, j = 1, 2) are solutions of the equation 
y2p2 − y(p2

i + M2
i − M2

0 ) + M2
i − iδ = 0. New functions fn(y) are defined as follows,

fn(y) ≡ (n + 1)

1∫
0

dt tn ln

(
1 − t

y

)
,

so that they can be evaluated numerically stable way by choosing

fn(x) =
⎧⎨⎩
(
1 − yn+1

)
ln y−1

y
−∑n

l=0
yn−l

l+1 if |y| < 10,

ln
(

1 − 1
y

)
+∑∞

l=n+1
yn−l

l+1 if |y| ≥ 10.

The B-functions now can be expressed in terms of fn(y), namely

B
(i)
0 = �ε − lnM2

i −
2∑

j=1

f0(yij ),

B
(i)
1 = (−1)i

[
1

2

(
�ε − lnM2

i

)
−

2∑
f0(yij ) + 1

2

2∑
f1(yij )

]
.

k=1 k=1
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Finally, the B(12)
0 and C1,2 functions are determined as follows,

B
(12)
0 = �ε − lnM2

1 + 2 +
2∑

k=1

xk ln

(
1 − 1

xk

)
,

C1 = 1

m2
h

[
B

(1)
0 − B

(12)
0 + (M2

2 − M2
0 )C0

]
,

C2 = − 1

m2
h

[
B

(2)
0 − B

(12)
0 + (M2

1 − M2
0 )C0

]
.

In our work above use the following notations, m1 ≡ ma , m2 ≡ mb , p1 ≡ pa and p2 ≡ pb .

Appendix B. Matching with notations in previous works

This section will show the equivalence given in (21). We recall notations used in [6–8] as 
follows. The external momenta are p′

1,(−p′
2), and p′

3 for ingoing Higgs boson, outgoing leptons 
ea and eb, respectively. The prime is used to distinguish from the notions that were used in 
our work, especially those given in Appendix A. Three denominators of the propagators are 
D′

0 = k2 − m2
1, D′

1 = (k + p′
2)

2 − m2
2 and D′

2 = (k + p′
1 + p′

2)
2 − m2

3. The one-loop-three-point 
functions are defined as,∫

d4k

(2π)4
× {1, kμ}

D′
0D

′
1D

′
2

= i

16π2

{
C′

0, C′
μ = C11p

′
2μ + C12p

′
1μ

}
. (B.1)

The equivalence between above notations with those given in Appendix A are p′
1 = p1 + p2, 

p′
2 = −p1, m1,2,3 = M0,1,2. As a result, we get D′

0,1,2 = D0,1,2, leading to C′
0 = C0 and C′

μ =
Cμ. But the scalar factors C11,12 and C1,2 are different, namely C′

μ = C11(−p1μ) + C12(p1μ +
p2μ) = (C12 − C11)p1μ + C12p2μ. Matching this with definition of Cμ defined in Appendix A. 
We obtain the equivalence for C1,2 in (21). Other B-functions is proved easily so we omit here.

Appendix C. Form factors in unitary gauge for LFVHD

The contribution from diagram in Fig. 1b) to the LFVHD amplitude is

iM(b) =
∫

d4k

(2π)4
× ūa

(
ig√

2
Uν∗

ai γ μPL

)
i
[
(−/k + /pa) + mni

]
D1

×
[

−ig

2mW

3∑
c=1

Cij

(
mni

PL + mnj
PR

)+ C∗
ij

(
mnj

PL + mni
PR

)]

× i
[−(/k + /pb) + mnj

]
D2

×
(

ig√
2
Uν

bj γ
νPL

)
vb × −i

D0
×
(

gμν − kμkν

m2
W

)

= −g3

4mW

K+3∑
i,j=1

3∑
c=1

Uν∗
ai Uν

bj ×
∫

d4k

(2π)4

1

D0D1D2
×
(

gμν − kμkν

m2
W

)
× ūaγ

μPL

[
(−/k + /pa) + mni

] [
Cij

(
mni

PL + mnj
PR

)
+ C∗

ij

(
mnj

PL + mni
PR

)] [−(/k + /pb) + mnj

]
γ νPLvb.
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The final result is

iM(b) = i

16π2
× −g3

4m3
W

K+3∑
i,j=1

3∑
c=1

Uν∗
ai Uν

bj

×
{
ma[uaPLvb]

[
Cij

(
m2

ni
B

(1)
1 + m2

nj
B

(12)
0 + 2

[
m2

ni
m2

nj
+ m2

W(m2
ni

+ m2
nj

)
]
C1

−(m2
ni

m2
b + m2

nj
m2

a)C1 − m2
nj

m2
WC0

)
+ C∗

ijmimj

(
B

(12)
0 + B

(1)
1 − m2

WC0 +
[
4m2

W + m2
ni

+ m2
nj

− m2
a − m2

b

]
C1

)]
+ mb[uaPRvb]

[
Cij

(
−m2

nj
B

(2)
1 + m2

ni
B

(12)
0 − 2

[
m2

ni
m2

nj
+ m2

W(m2
ni

+ m2
nj

)
]
C2

+(m2
ni

m2
b + m2

nj
m2

a)C2 − m2
ni

m2
WC0

)
+ C∗

ijmimj

(
B

(12)
0 − B

(2)
1 − m2

WC0 −
[
4m2

W + m2
ni

+ m2
nj

− m2
a − m2

b

]
C2

)]}
.
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