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Abstract The neutrino and Higgs sectors in the SU(2)1 ×
SU(2)2 × U(1)Y model with lepton-flavor non-universality
are discussed. We show that active neutrinos can get Majo-
rana masses from radiative corrections, after adding only new
singly charged Higgs bosons. The mechanism for the genera-
tion of neutrino masses is the same as in the Zee models. This
also gives a hint to solving the dark matter problem based on
similar ways discussed recently in many radiative neutrino
mass models with dark matter. Except the active neutrinos,
the appearance of singly charged Higgs bosons and dark mat-
ter does not affect significantly the physical spectrum of all
particles in the original model. We indicate this point by
investigating the Higgs sector in both cases before and after
singly charged scalars are added into it. Many interesting
properties of physical Higgs bosons, which were not shown
previously, are explored. In particular, the mass matrices of
charged and CP-odd Higgs fields are proportional to the coef-
ficient of triple Higgs coupling μ. The mass eigenstates and
eigenvalues in the CP-even Higgs sector are also presented.
All couplings of the SM-like Higgs boson to normal fermions
and gauge bosons are different from the SM predictions by
a factor ch , which must satisfy the recent global fit of exper-
imental data, namely 0.995 < |ch | < 1. We have analyzed a
more general diagonalization of gauge boson mass matrices,
then we show that the ratio of the tangents of the W–W ′ and
Z–Z ′ mixing angles is exactly the cosine of the Weinberg
angle, implying that number of parameters is reduced by 1.
Signals of new physics from decays of new heavy fermions
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and Higgs bosons at LHC and constraints of their masses are
also discussed.

1 Introduction

One of the most important purposes of the LHC is to search
for manifestations of new physics (NP). It seems that some
clues have appeared with massive neutrinos and recent obser-
vations of lepton-flavor non-universality (LNU). Recall that
the lepton family replication is assumed in the Standard
Model (SM). Therefore, the lepton-flavor is universal in the
latter. For the recent two decades, neutrino and Higgs physics
are hot topics in Particle Physics. With increasing luminos-
ity and beam energy, the LHC becomes a powerful tool for
searching for NP. With larger masses, the third generation
seems to be more interesting, in the sense of the sensitivity
to NP. Nowadays, there are two kinds of anomalies in the
semileptonic B meson decays which are captivating for the
LNU. The first one is the class of the following ratios of
branching fractions:

RD∗ = �(B̄ → D∗ τ ν̃)

�(B̄ → D∗ l ν̃)
= 0.310 ± 0.015 ± 0.008,

RD = �(B̄ → D τ ν̃)

�(B̄ → D l ν̃)
= 0.403 ± 0.040 ± 0.024,

l = e, μ, (1)

which show 3.5σ deviations from the corresponding SM pre-
dictions [1],

RD∗ = 0.252 ± 0.004 , RD = 0.305 ± 0.012. (2)
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The above results provide hints for violation of the lepton
flavor universality (LFU).

The second kind of anomalies1 is the interesting LNU
ratio reported recently by LHCb [2], namely,

RK = �(B → K μ+ μ−)

�(B → K e+ e−))
= 0.745+0.090

−0.074 ± 0.036, (3)

which has 2.6σ deviation from the SM value RK = 1.0003±
0.0001 in the dilepton mass squared bin (1 ≤ q2 ≤ 6) GeV2.

From the physical point of view, the mass of a particle
plays a quite important role in its characteristic properties. To
justify this, let us mention some well-known examples. The
first is that the proton and neutron have a tiny mass difference
(940 vs. 938) MeV, but the proton is long-lived while the
neutron is unstable with its mean lifetime of just under 15 min
(881.5 ± 1.5 s). The second example is the situation with the
electron and the muon. Both particles are leptons with just a
mass difference (0.511 vs. 105.6) MeV, the electron is stable
while the muon is unstable with the mean lifetime of 2.2 µs.
So one may expect that the third generation of quarks and
leptons where particles are heavier, has to be different from
the first two ones. Within this context, the above data showing
the LNU look quite understandable. In other words it is quite
natural to expect that the third fermion generation is more
strongly coupled to some New Physics than the first two
ones. Recently the RD and RD∗ were subjects of intensive
studies mostly in scalar leptoquark models [4–11].

One of the beyond the SM models satisfying the recent
experimental data of LNU is the model based on the SU(2)1×
SU(2)2 × U(1)Y (G221) gauge group [12,13] (more kinds
of G221 models can be found in Ref. [14]). In Refs. [12,13]
the authors have mainly concentrated on explanation of LNU
in the lepton sector. But at present, any theoretical model in
particle physics has to deal with neutrino masses, the baryon
asymmetry of the universe (BAU) and the dark matter (DM).

The aim of this work is to study further details in the
gauge, Higgs and neutrino sectors of the model presented in
Refs. [12,13]. We will show that the problems of the active
neutrino mass and DM in this model can be solved without
any changes of results of allowed parameter regions satis-
fying all constraints of the flavor physics, tau decays, elec-
troweak precision data, and recent anomalies in B decays,
which were indicated in Refs. [12,13]. In particular, the active
neutrinos get Majorana masses from radiative corrections,
where new lepton-number violating interactions have to be
introduced. The simplest way is the Zee method [15,16],
where a pair of singly charged scalars transformed as singlets
under both SU(2) gauge groups is introduced. Like in the Zee
models, where a second SU(2)L Higgs doublet is necessary
for creating a nonzero triple coupling of two Higgs doublets
and a singly charged Higgs singlet, the SU(2)1 Higgs doublet

1 The SM value for RK has been first obtained in Ref. [3].

φ′ in this G221 model plays the role of the second SU(2)L
Higgs doublet. Hence, no new breaking scales need to appear,
implying that there are no new mass terms contributing to
the fermion and gauge boson sectors. This explains why all
results investigated in Refs. [12,13] are unchanged, there-
fore we can use them to study the coupling properties of the
Higgs and gauge bosons with fermions. In addition, it sug-
gests that the ways of generating active neutrino masses in
many recent radiative neutrino mass models can be applied
to the G221 model. Many of these models have DM candi-
dates that are neutral fermion singlets and have odd charges
under a new Z2 symmetry. To avoid complicate Higgs sec-
tors, where just new charged Higgs bosons are included, we
will not pay much attention to models solving the DM prob-
lems in this work. We will discuss in detail the mechanism of
generating neutrino masses from the Zee mechanism, and the
Higgs potential with the appearance of two singly charged
Higgs singlets. In the gauge boson sector, we will apply gen-
eral method to diagonalize neutral and charged gauge boson
sectors, and from this we get a consequence that the tangents
of the mixing angles in two sectors are proportional. This
will reduce the number of the model parameters by 1. In
the Higgs sector, the physical Higgs spectrum is presented.
Then the SM-like Higgs boson and its couplings to other
SM-like particles are identified and compared with the SM
predictions. A comparison between properties of the Higgs
spectrum in the G221 model and the minimal supersymmet-
ric model (MSSM) and two Higgs doublet models (THDM)
will also be discussed in this work. Based on these properties
and the constraints of parameters given in [12,13], we will
discuss the bounds of new Higgs boson masses as well as
promoting decay channels of the Higgs bosons and fermions
that can be searched for at modern colliders such as the LHC.

This paper is organized as follows. In Sect. 2, after a brief
review of the model, we present a more careful considera-
tion of charged lepton masses and the Zee method for the
generation of neutrino masses. In Sect. 2.2 we suggest two
possibilities of appearance of DM candidates in the G221
model. The first is based on a radiative neutrino mass model
introduced previously. This way will not change the results
of parameter constraints in Refs. [12,13]. The second way
is different, because a new scalar SU(2)2 triplet is included.
It contains a new neutral component with nonzero vacuum
expectation value (VEV), leading to a new mass scale con-
tributing to gauge boson masses. But this model may predict
some active neutrinos playing the role of DM candidates. A
more careful diagonalization of squared mass matrices and
mixing parameters of gauge bosons is presented in Sect. 2.3.
In this section, the relation between the tangents of the W–
W ′ and Z–Z ′ mixing angles, is derived. Then a validation
of ρ parameter under recent experimental constraint will be
shown at TeV scale of SU(2)1 breaking scale. Section 3 is
devoted to charged and neutral currents in the model. Here
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we notice their difference from the SM ones. For the further
discussion of the NP searches at colliders, the couplings of
Z and W gauge bosons with fermions are given. In Sect. 4 a
detailed analysis of the Higgs sector is presented. This section
covers both versions of the Higgs sector content without and
with the mentioned charged scalars. And the SM-like Higgs
boson is identified. Interesting properties of singly charged
Higgs bosons are also discussed. In Sect. 5, we review briefly
the allowed regions of parameters given in [12,13], which
resulted from a specific numerical illustration in the limit
of two vector-like fermion generations and simple textures
of Yukawa couplings. Following the searches for new heavy
particles at the LHC, we use these allowed regions to investi-
gate lower bounds of masses and promoting decay channels
of new fermions and Higgs bosons predicted by this model.
Conclusions are given in the last Sect. 6.

2 Brief review of the model

The model is based on the gauge group SU(2)1 × SU(2)2 ×
U(1)Y with the following gauge couplings, fields and gener-
ators [12,13]:

SU(2)1 : g1, W1
i , T1

i ,

SU(2)2 : g2, W2
i , T2

i , (4)

U(1)Y : g′, B, Y,

where i = 1, 2, 3 is the SU(2) index. All the chiral fermions
transform as

qL ∼
(
3,1,2,

1

6

)
, �L ∼

(
1, 1, 2,−1

2

)
,

uR ∼
(
3, 1, 1,

2

3

)
, eR ∼ (1, 1, 1,−1) ,

dR ∼
(
3, 1, 1,−1

3

)
, (5)

where the numbers in brackets refer to SU(3)C, SU(2)1,
SU(2)2, and the hypercharge. The electric charge operator
is determined in the form

Q = (T 1
3 + T 2

3 ) + Y. (6)

For the subgroup SU(2)1 there are nV L generations of vector-
like fermions which are transformed as its doublets, while
they are singlets for the SU(2)2,

QL ,R ≡
(
U
D

)
L ,R

∼
(
3, 2, 1,

1

6

)
; LL ,R ≡

(
N
E

)
L ,R

∼
(
1, 2, 1,−1

2

)
. (7)

The vector-like fermion generation number is greater than
one in order to explain successfully the LNU, and it was

fixed by nV L = 2 for simplicity in numerical illustration
[12,13].

The Higgs sector consists of two doublets φ and φ′ and
one self-dual bidoublet 	 (i.e., 	 = σ2	

∗σ2 where σ2 is the
usual Pauli matrix)

φ ∼
(
1,1,2,

1

2

)
, φ′ ∼

(
1,2,1,

1

2

)
, 	 ∼ (1, 2, 2̃, 0),

(8)

with components as

φ =
(

ϕ+
ϕ0

)
, φ′ =

(
ϕ′+
ϕ′0

)
, 	 = 1√

2

(
	0 	+

−	− 	̃0

)
,

(9)

with 	̃0 = (	0)∗. The scalar fields develop VEVs

〈φ〉 = 1√
2

(
0
vφ

)
, 〈φ′〉 = 1√

2

(
0

vφ′

)
,

〈	〉 = 1

2

(
u 0
0 u

)
. (10)

The spontaneous symmetry breaking (SSB) of the model fol-
lows the pattern

SU(2)1 × SU(2)2 × U(1)Y
u−→ SU(2)L × U(1)Y

vφ, vφ′−→ U(1)Q . (11)

The main phenomenology of the model concerned B-decay
anomalies and the lepton-flavor non-universality has been
presented in [12,13]. However, the current physical model
has to satisfy Higgs and neutrino physics as well as DM
candidate.

With the above breaking chain, the VEVs are assumed to
satisfy the relation

u � vφ, vφ′ . (12)

Yukawa Lagrangian, fermion mass matrices, and diago-
nalization steps to construct physical states and masses of
fermions were presented in detail in [12,13]. Hence, we will
summarize here only important results and focus on new
features of generating active neutrino masses from loop cor-
rections.

2.1 Charged fermion masses

The chiral fermions couple to the SM Higgs-like φ doublet

− Lφ = q̄L ydφ dR + q̄L yu φ̃ uR + �̄L y� φ eR + H.c.,

(13)

where φ̃ ≡ iσ2φ
∗. The matrices yd , yu, y� are 3×3 matrices.

The vector-like fermions can have gauge-invariant Dirac
mass terms

− LM = Q̄L MQ QR + L̄ L ML LR + H.c. (14)
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Other contributions are

−L	 = Q̄R λ†
q 	 qL + L̄ R λ

†
� 	 �L + H.c., (15)

−Lφ′ = Q̄L ỹdφ
′ dR + Q̄L ỹu φ̃′ uR + L̄ L ỹ� φ′ eR + H.c.,

(16)

where λ
†
q, � and ỹu, d, � are nV L × 3 Yukawa matrices. After

the SSB, the above couplings will induce mixing between the
vector-like and the SM chiral fermions. This is crucial for
the phenomenology of the model.

For the sake of simplicity one can assume a softly broken
discrete Z2 symmetry under which only φ′ is odd, making
unnecessary Yukawa couplings vanish, i.e., ỹu, d, � � 0 [12,
13]. There is another charge assignment that also forbids
Lagrangian in (16), while keeps φ′ even: only QL and LL are
odd. This is necessary for generating active neutrino masses
by the Zee method considered in this work.

We combine the chiral and vector-like fermions as

U I
L ,R ≡ (uiL ,R,Uk

L ,R)T , D I
L ,R ≡ (diL ,R, Dk

L ,R)T , E I
L ,R

≡ (eiL ,R, Ek
L ,R)T , (17)

where i = 1, 2, 3, k = 1, . . . , nV L and I = 1, . . . , 3 + nV L .
After the SSB, the fermion mass Lagrangian has the form

− L f
mass = ŪLMUUR + D̄LMDDR + ĒLMEER + H.c.(18)

Here, all above mass matrices are (3 + nV L) × (3 + nV L)

and have the form

MU =
(

1√
2
yuvφ

1
2λqu

1√
2
ỹuvφ′ MQ

)
, MD =

(
1√
2
ydvφ

1
2λqu

1√
2
ỹdvφ′ MQ

)
,

ME =
(

1√
2
y�vφ

1
2λ�u

1√
2
ỹ�vφ′ ML

)
. (19)

In the limit ε = v/u 
 1, these matrices are blocked-
diagonalized perturbatively via two steps. After that, the SM
parts are separated from the total. The transformations of
fermion states are: UL → V †

QV
†
u UL , DL → V †

QV
†
d DL ,

EL → V †
L V

†
e EL , UR → W †

uUR , DR → W †
dDR , and

ER → W †
e ER , where VF (F = Q, L), V f ( f = e, u, d),

and W f are (3 + nVL ) × (3 + nVL ) unitary matrices [12,13].
At the first step where v = 0, every MF (F = U ,D, E) is
diagonalized by an exact VF depending on u, MF and λ�,q .
At the second step, transformations V f and W f are expanded

in terms of power series of ε, V f = 1 + iε2H f
V + · · · and

W f = 1+ iεH f
W +1/2(iεH f

W )2 +· · · They were listed pre-
cisely in [12,13]. After the two steps, all original mass matri-
ces in (19) will be transformed into block-diagonal forms
M̂F = V f VFMFW †

f . One of the blocks in every M̂F is
identified with a SM fermion block, which is diagonalized by
3×3 unitary transformations: fL → S†

f fL and fR → U †
f fR .

Only the CKM matrix, VCKM = Su S
†
d , appears in the gauge

couplings [12,13]. We can fix Se = Ue = I3.

For studying Higgs boson phenomenology satisfying
the allowed regions of parameters given in [12,13], which
resulted from a specific assumption of two new lepton fam-
ilies and textures of Yukawa couplings λq,�, we will present
more detailed masses and eigenstates of charged leptons. The
quark sector can be derived similarly. In the flavor basis E
of charged leptons, the mass matrix ME in (19) is 5 × 5.
Following Refs. [12,13], a simple texture of λ� is chosen as

λ� = 2cβ ′

⎛
⎝ M̃L1 0

0 M̃L2�μ

0 M̃L2�τ

⎞
⎠ , (20)

where new parameters �μ and �τ will be considered as free
parameters; while M̃L1 , M̃L2 are “reduced” masses of new
charged leptons, mEk � uM̃Lk [12,13],

M̃L = diag
(
M̃L1 , M̃L2

) =
√

M†
LML

u2 + λ
†
�λ�

4
. (21)

We recall here important properties of charged lepton
parameters used in constructing radiative active neutrino
masses. According to [12,13], physical masses (mei ,mEk )

related to ME in (19) by VeVLMEW †
e = diag(mei , mEk ),

the mass bases of left-and right-handed leptons E (d)I
L ,R ≡

(e(d)i
L ,R, E (d)k

L ,R )T are defined as EL = V †
L V

†
e E (d)

L and ER =
W †

e E (d)
R . The product VeVL can be found from the relation

VeVLMEM†
E (VeVL)† = diag(m2

ei , m2
Ek

). Non-diagonal
elements of VL may be large because those of ME are at
the SU(2)1 scale. In contrast, those of Ve and We are at least
one order of vφ

u , because these elements of VLME are order
of the electroweak scale. Hence, Ve and We are nearly identi-
cal when u � vφ . They only play the role of generating light
charged lepton masses of e, μ, and τ . Hence, in many cases
we can use the approximationsEL = V †

LE (d)
L andE I

R = E (d)I
R .

We can see that the VL is exactly the mixing matrix of neu-
trinos if they are all considered as the pure Dirac particles.
Formula of VL is written in the block form, namely [12,13]

VL =
⎛
⎝V 11

L =
√
I3 − 1

4λ�M̃
−2
L λ

†
� V 12

L = − u
2V

11
L λ�M

−1
L

V 21
L = 1

2 M̃
−1
L λ

†
� V 22

L = 1
u M̃

−1
L M†

L

⎞
⎠,

(22)

where analytic expression of V i j
L , with i, j = 1, 2, corre-

sponding to λ� in Eq. (20) are given in Appendix A. The
Yukawa coupling matrix y� (13) is also mentioned, with a
requirement that the SM block of the charged leptons is diag-
onal after the block-diagonalization. It does not affect results
obtained in Refs. [12,13], which depend mainly on the gauge
couplings.

Hereafter, many calculations to discuss on phenomenol-
ogy of Higgs bosons will ignore small mixing between
different flavor quarks. We will apply the same results
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of the charged lepton sector to the quarks. The equiv-
alences between notations are: V i j

L , λ�, M̃L1,2 ,�μ,τ →
V i j
Q , λq , M̃Q1,2 ,�b,s , which were given in [12,13].
Next, we will discuss another possibility that neutrinos

can get Majorana mass terms.

2.2 Neutral lepton masses

Unlike charged leptons, where the SM-like charged leptons
have their own right-handed partners, the SM-like neutrinos
do not. In addition, the neutral leptons may inherit Majorana
mass terms, for example 1

2 (νL)cmννL for active neutrinos.
Hence, it is more convenient to write the mass matrix of neu-
tral leptons in the form discussed in the seesaw models [17],
which is different from [12,13]. At the beginning νL , NR and
NL will be considered as independent fields, where the left-
and right-handed bases are N ′I

L = (νL , (NR)c, NL)T and
(N ′I

L )c = ((νL)c, NR, (NL)c)T , respectively. The mass

term in the Lagrangian is now −LN
mass = 1

2N ′
LMN (N ′

L)c +
h.c. For nVL = 2, the mass matrix of the neutral leptons is a
7 × 7 symmetric matrix having the following form:

MI
N =

⎛
⎝ 0 mD 0
mT

D 0 MT
L

0 ML 0

⎞
⎠ , (23)

where mD ≡ 1
2λ�u and ML are 3 × 2 and 2 × 2 matri-

ces, respectively. Similarly to seesaw models, (NL)c and
NR are additional right-handed neutrinos. The matrix (23)
can be generally diagonalized through the transformation
�TMI

N� = diag(m̂, M̂), where � is an unitary 7 × 7
matrix; m̂ = diag(mν1 ,mν2 ,mν3) are light Majorana neu-
trino masses and M̂ gives Dirac masses for heavy neutri-
nos. Unfortunately, all light neutrinos are massless. This
can be proved as follows. The neutral neutrino masses are
mI = √

x where the values of x are roots of the equa-
tion, det[x × I7 − MI†

N MI
N ] = 0. For arbitrary forms

of the mD and ML , there are always three massless val-
ues of x . The matrices ML = diag(ML1 , ML2) and
λ� in (20) result in four other solutions: x4 = x5 =
u2M̃2

L1
and x6 = x7 = u2M̃2

L2
. A pair of two degen-

erate values corresponds to one Dirac mass of a heavy
Dirac neutrino, the same as that mentioned in [12,13]. The
mixing matrix of neutrinos is derived from (22) as fol-
lows:

�T ≡
⎛
⎝ V 11

L 0 V 12
L

0 1 0
V 21
L 0 V 22

L

⎞
⎠→ �TMI

N� =
⎛
⎝ 0 0 0

0 0 uM̃L
0 uM̃L 0

⎞
⎠,

(24)

where new neutrino masses are pure Dirac. In addition, new
lepton masses in each family are nearly degenerate. Equa-
tion (24) gives the relations between the original and mass

(νL)c
a

νLb

eLc eRd

δ+ ϕ+

ϕ0

ϕ′0Φ0

λδ

fac

(y )cd

(y )db

Fig. 1 One loop correction to active neutrino masses

bases NL = V †
LN (d)

L and NR = N (d)
R , which are the same

as those of the charged leptons.
To keep the lepton spectrum being unchanged and look-

ing for a solution of active neutrino mass problem, the mass
terms of active neutrinos must come from the effective Majo-
rana terms 1

2 (νL)c mννL + h.c. Because the active neutrino
masses are tiny, their effect on the mixing parameters with
heavy neutrinos is negligible. Based on the mechanism of the
neutrino mass generation in the Zee model [15,16], in this
model only one pair of new singly charged Higgs bosons,
denoted as δ± ∼ (1, 1, 1)±1 carrying even Z2 charges, is
introduced. New couplings for generating one-loop radiative
neutrino masses are

− �L = fi j (�Li )
c(iσ2)�L j δ

+ + √
2λδ(iσ2φ

′)T	φδ−

+ f ′
kl(LLk )

c(iσ2)LLl δ
+ + H.c., (25)

where i, j = 1, 2, 3; and k, l = 1, 2. In the general case,
k, l = 1, 2, . . . , nVL . We stress that all terms in (25) are
simultaneously survival only when both φ′ and δ± are even
under Z2 symmetry.

The terms in the first line of (25) violate the lepton num-
bers, exactly in the same way as in the Zee model, where
φ′ plays a similar role as the second Higgs doublet. Simi-
larly to the Zee model, the trilinear coupling is λδu after the
first step of the spontaneous breaking. An one-loop diagram
generating active neutrino masses is shown in Fig. 1.

Following [15,18,19], the effective mass matrix of light
neutrinos is derived in Appendix B, where ϕ± and δ± are
assumed to be the physical Higgs bosons. But in the model
under consideration, ϕ± and δ± are not mass eigenstates. As
we will discuss later, the physical fields in the Higgs sector
are h±

1,2, and there are some useful relations: ϕ± ∼ cζ h
±
1 ,

	± ∼ sζ cξh
±
1 − sξh

±
2 , and δ± ∼ sζ sξh

±
1 + cξh

±
2 . The

parameters cξ , sξ , cζ , and sζ involve with mixing parameters
ξ and ζ of the Higgs bosons, defined in Eqs. (60) and (76),

123



 346 Page 6 of 20 Eur. Phys. J. C   (2017) 77:346 

as we will present below. The Higgs coupling in (25) can be
rewritten as follows:

−1

2
λδvcβ

[
2sζ sξ

(
ucζ + vsβsζ sξ

)
h+

1 h
−
1 − 2sξ cξ vh

+
2 h

−
2

+
(
ucζ cξ + vsβsζ (c

2
ξ − s2

ξ )
) (

h+
2 h

−
1 + H.c.

)]

⊂ −√
2λδ(iσ2φ

′)T	φδ− + H.c., (26)

where vφ = vsβ , vφ′ = vcβ and tβ ≡ tan β = sβ/cβ , which
are defined in [12,13].

Charged leptons ec in the loop will be considered as mass
eigenstates with masses mec . Therefore, the Yukawa terms
should be written in terms of physical charged lepton states,
and light neutrinos are massless states after the rotation VL .
For simplicity, we will assume that V 11

L is real and Ve,We �
I. In addition, we ignore one-loop contributions to heavy
neutrino masses because they are extremely smaller than the
tree level masses. Then the one-loop corrections are mainly
from light leptons, namely

faceLc (νLa )
c = fac(VL)I h(V

T
L )cJE (d)I

L (N J
L )c

→ fgh(VL)ch(V
T
L )gaeLc (νLa )

c

= (V 11
L f V 11

L )aceLc (νLa )
c,

and f ′
kl LLk (NLl )

c → (V 12
L f ′V 12T

L )aceLc (νLa )
c. Herea, c, g,

h = 1, 2, 3; I, J = 1, 2, . . . , 7; f and f ′ are 3 × 3 and 2 × 2
antisymmetric matrices, respectively. Similarly, we have

(y�)bcνLbeRc =
√

2

vsβ
(ME )bc (VL)JbN J

L eRc

�
√

2

vsβ

(
V †
Ldiag(mEI )

)
bc

(VL)JbN J
L eRc ,

→
√

2

vsβ
(V T

L )dc(VL)bdmecνLbeRc

=
√

2

vsβ
(VLV

T
L )bcmecνLbeRc .

The effective mass matrix mν of active neutrinos is derived
based on (B3),

(mν)ba = λδ

√
2

16π2tβ
× u

m2
h±

1

3∑
c=1

m2
ec

[
(V 11

L f V 11
L + V 12

L f ′V 12T
L )ac(V

11
L V 11T

L )bc

+ (V 11
L f V 11

L + V 12
L f ′V 12T

L )bc(V
11
L V 11T

L )ac

]

×
⎛
⎝[cζ cξ + v

u
sβsζ (c

2
ξ − s2

ξ )
] m2

h±
1

m2
h±

1
− m2

h±
2

ln

⎡
⎣m2

h±
2

m2
h±

1

⎤
⎦− 2sζ sξ

[
cζ + v

u
sβsζ sξ

]⎞⎠

≡ 1

m0

{([
V 11
L f V 11

L + V 12
L f ′V 12T

L

]
M2

e V
11T
L V 11

L

)
ab

+
([
V 11
L f V 11

L + V 12
L f ′V 12T

L

]
M2

e V
11T
L V 11

L

)
ba

}
,

(27)

where Me ≡ diag(me, mμ, mτ ).
Including loop contributions (27), the SM block of (24)

will be changed from zero into mν : �TMI
N� ⊃ mν =

U∗
PMNSm̂νU

†
PMNS, where m̂ν = diag(mν1, mν3, mν3) con-

sisting of three active neutrino masses, andUPMNS is the well-
known neutrino mixing matrix. If V 11

L = I3 and V 12
L = 0,

Eq. (27) is the same as (B3). Like in the Zee models, the
parameters arising from the Higgs sector affect the order of
the neutrino masses only. But the masses and mixing angles
of active neutrinos depend on unknown parameters in f, f ′,
and V 11

L . As a result, the model under consideration is less
restrictive in fitting the neutrino data than the Zee models.
Because these models are still valid [20,21], the neutrino
sector mentioned here is realistic. In general, fitting recent
neutrino data needs at least five free parameters, in agreement
with three mixing angles and two squared mass differences.
Because two of four parameters, namely m0 and three fab,
determine the order of the lightest neutrino mass, there are
two free parameters left. When nVL ≥ 3, there are at least
three additional parameters f ′

kl , enough for fitting neutrino
data without constraints on V 11

L . Interestingly, the neutrino
fitting results in [20,21] would be applied to the model under
consideration if LL carries evenZ2 charge which will survive
the lepton coupling matrix ỹ� in (16).

Regarding nVL = 2, there is only one parameter f ′
12 =

− f ′
21. Therefore two parameters in V 11

L may be involved with
fitting neutrino data. Our numerical investigation showed that
the allowed regions in Refs. [12,13], controlled by the tex-
ture λ� (20), seems much more constrained. Note that the mν

in (27) keep only main contributions from loops containing
light charged leptons, where mixing terms with order O(ε)

are ignored. With u around 1 TeV and light new charged
leptons, contributions from these lepton mediations to mν

will be significant, implying that their masses can be free
parameters for fitting neutrinos data without much changes
of �μ,τ . Finding exact allowed regions should be done else-
where.

When the neutrino data is fitted, the results in Refs. [12,13]
for B-decay anomalies are still unchanged because the anal-
ysis considered here addresses only effects of tree con-
tributions from heavy gauge bosons, where other contri-
butions from the light lepton masses are suppressed. The
unique changes may come from the gauge couplings of active
neutrinos with charged gauge bosons. Following [12,13],
after the block-diagonalization these gauge couplings are
proportional to Wμ

l νLγμeL and Wμ
h νLγμ��eL , where Wl

and Wh are light and heavy charged gauge bosons. In the
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neutrino mass basis they become Wμ
l νLU

†
PMNSγμeL and

Wμ
h νLU

†
PMNS��γμeL , resulting in the same factor (U †

PMNS)i i
for coupling νi ei with a diagonal �� obtained from the
texture of λ� in (20). This factor will not appear in final
results presenting the ratios of B-decay anomalies, as given
in [12,13].

In general, active neutrino mass generation from radiative
corrections mentioned above affects only the lepton sector.
Furthermore, it does not affect mixing parameters controlling
the λ� structure at the first breaking step, hence suggests that
the orders of numerical values in allowed regions will not
change after neutrino data is fitted.

The above discussion just refers to a simple extension
that can generate active neutrino masses through radiative
corrections. The problems of neutrino masses and DM can
be solved by models with more charged Higgs bosons and
singlet right-handed neutral leptons, such as [22–24]. Fol-
lowing the structures of these models, apart from δ±, at least
one pair of singly charged Higgs bosons S± and a neutral
lepton FR ∼ (1, 1, 1)0 have to be introduced, where S+ ∼
(1, 1, 1)1. In addition, only S± and FR are odd under a new
Z2 discrete symmetry, {S±, FR} → {−S±, −FR}. There-
fore, FR can play the role of DM. It has a Majorana mass
term of the form 1

2 (FR)cmFFR . Active neutrinos get mass
from loop corrections, which arise from a new Yukawa term,
−�LY = fi j (�Li )

c(iσ2)�L j δ
+ +gi (FR)ceRi δ

+ +H.c., and

a coupling of charged Higgs bosons, 1
4λδS(δ

+)2(S−)2+H.c..
This kind of models seems to be less interesting because
the origin of neutrino masses is not related to the new lep-
tons.

New ingredients for generating radiative corrections to
active neutrinos do not change both results of the gauge sec-
tor and LNU discussed in [12,13], because no new breaking
scale contributes to the masses of gauge Higgs bosons. If
we add a new SU(2)1 triplet, denoted as � ∼ (1, 3, 1)1,
creating an Yukawa term like −Y�(LL)ciσ2�LL + H.c.,
a neutral component of this triplet will develop a non-zero
VEV v�, which contributes a new mass term of the form
1
2μX NL(NL)c + H.c. to the neutrino mass matrix (23). This
matrix has the same form shown in the inverse seesaw mod-
els [17,25–27]. Hence the active neutrino masses will be non-
zero. In addition, some new neutrinos may get light masses
and play the role of DM [28–30]. These models seem interest-
ing because they may give connections between the SU(2)1
leptons with neutrino masses and DM. But the appearance
of the new vev v� will contribute to masses and mixing
parameters of the Higgs and gauge bosons, consequently
it will affect the results shown in [12,13]. This extension
is beyond our scope, and should be thoroughly studied in
another work.

Now we turn to one of the most important elements: gauge
bosons.

2.3 Gauge boson masses

Gauge boson masses arise from the piece

Lgauge boson mass = (Dμ〈φ〉)†Dμ〈φ〉 + (Dμ〈φ′〉)†Dμ〈φ′〉
+ Tr[(Dμ〈	〉)†Dμ〈	〉], (28)

where the covariant derivative of 	 is determined as
(
Dμ	

)β
α

= ∂μ	β
α − i

2
g1W

1
iμ(σi )

γ
α (	)βγ

+ i

2
g2(	)γαW

2
iμ(σi )

β
γ . (29)

With the help of the notation

Wi
μ ≡ 1

2

3∑
α=1

Wi
αμσα = 1

2

(
Wi

3

√
2 W+

i√
2 W−

i −Wi
3

)
μ

,

W±
i ≡ 1√

2
(Wi

1 ∓ iW i
2), i = 1, 2, (30)

contributions to masses of gauge bosons are

Tr[(Dμ〈	〉)†Dμ〈	〉]
= u2

16

[
2(g1W

1
3 − g2W

2
3 )2 + 4(g1W

+
1 − g2W

+
2 )μ

× (g1W
−
1 − g2W

−
2 )μ

]
,

(Dμ〈φ〉)†Dμ〈φ〉 = v2
φ

4

[
g2

2W
+
2 W−

2 + 1

2
(g2W

3
2 − g′B)2

]
,

(Dμ〈φ′〉)†Dμ〈φ′〉 = v2
φ′

4

[
g2

1W
+
1 W−

1 + 1

2
(g1W

3
1 − g′B)2

]
.

From this, masses and eigenstates of gauge bosons can be
found in agreement with those presented in Refs. [12,13].
We will review important aspect then discuss some new prop-
erties when masses and mixing angles are calculated up to
order of O(ε2).

2.4 Neutral gauge bosons

In the basis (W 1
3 ,W 2

3 , B) the squared mass matrix of neutral
gauge boson is M2

nb. At the first step, where vφ, vφ′ → 0,
only two states W 1

3 and W 2
3 are rotated through a rotation

C1 so that C1M2
nbC

T
1 |vφ,vφ′=0 = Diag(0, 0, 1

4 (g2
1 + g2

2)u2).
Elements of C1 depend on a mixing angle β ′ defined by

tan β ′ ≡ g1

g2
, cβ ′ = cos β ′ = g2/n1, sβ ′ = sin β ′ = g1/n1,

(31)

where n1 =
√
n2

1 + n2
2 was used already in [12,13].

The first breaking step implies the following transfor-
mation of the neutral gauge bosons: (W 1

3 ,W 2
3 , B)

u−→
(B,W3, Zh), where (B,W3) are the SM gauge bosons.
We have (W 1

3 ,W 2
3 , B)T = CT

1 (B,W3, Zh)
T , i.e. W3 =

cβ ′W 1
3 + sβ ′W 2

3 and Zh = sβ ′W 1
3 − cβ ′W 2

3 , where g =

123
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g1g2/n1 and g′ are identified as the SM gauge couplings;
vφ = vsβ , vφ′ = vcβ [12,13]. Note that v � 246 GeV,
g′ = gsW /cW , and sW is the sine of the Weinberg angle.
From now on, n1, g1, g2 and n2 will be written as

n1 = g

cβ ′sβ ′
, n2 = g

cW
, g1 = g

cβ ′
, g2 = g

sβ ′
.

(32)

At the second step, the mixing matrix C2 is the SM rota-
tion of only B and W 3, giving a new basis (A, Zl , Zh)

T =
C2(Zh,W3, B)T = C2C1(W 1

3 ,W 2
3 , B)T , where A and Zl

are the photon and SM gauge boson. The respective matrix
M ′2

nb is

M ′2
nb = C2C1M

2
nb(C2C1)

T

= g2

4

⎛
⎜⎜⎜⎜⎝

0 0 0

0 v2

c2
W

(
c2β−c2β′

)
v2

cW s2β′

0

(
c2β−c2β′

)
v2

cW s2β′
4u2+

(
1−2c2βc2β′+c2

2β′
)
v2

s2
2β′

⎞
⎟⎟⎟⎟⎠ .

(33)

The mass eigenstates (Z , Z ′) relates with the Zl–Zh mixing
angle defined as

t2Z ≡ tan(2Z) = −2
(
M ′2

nb

)
23(

M ′2
nb

)
33 − (M ′2

nb

)
22

= 2s2β ′
(
c2β ′ − c2β

)
ε2

cW

4 +
(

1 − 2c2βc2β ′ + c2
2β ′ − s2

2β′
c2
W

)
ε2

, (34)

where ε ≡ v
u . The Zl–Zh mixing vanishes when β ′ = β,

where tan β = sβ/cβ .
The masses of the physical eigenstates (Z , Z ′) are

M2
Z = g2

4

⎡
⎣ v2

c2
W

c2
Z +

⎛
⎝4u2 +

(
1 − 2c2βc2β ′ + c2

2β ′
)

v2

s2
2β ′

⎞
⎠ s2

Z

+ 2

((
c2β − c2β ′

)
v2

cW s2β ′

)
s2Z

]
,

M2
Z ′ = g2

4

⎡
⎣ v2

c2
W

s2
Z +

⎛
⎝4u2 +

(
1 − 2c2βc2β ′ + c2

2β ′
)

v2

s2
2β ′

⎞
⎠ c2

Z

− 2

((
c2β − c2β ′

)
v2

cW s2β ′

)
s2Z

]
.

The relation between the two bases (W1,W2, B) and (A, Z ,

Z ′) is⎛
⎝W1

W2

B

⎞
⎠ =

⎛
⎝ sW cβ ′ cW cβ ′ sβ ′
sW sβ ′ cW sβ ′ −cβ ′
cW −sW 0

⎞
⎠
⎛
⎝ 1 0 0

0 cZ −sZ
0 sZ cZ

⎞
⎠
⎛
⎝ A

Z
Z ′

⎞
⎠ ,

(35)

where (C2C1)
T is the first matrix in the right hand side of

(35).
Using the new notations of (32), the parameter ζ in [12,13]

can be expressed as ζ ≡ s2
β − g2

1
g2

2
c2
β = 1

2c2
β

(c2β ′ − c2β). In

addition, fromm2
Z � g2

4c2
W

v2 � g2

4c2
W
u2ε2,m2

Z ′ � g2

4c2
β′ s2

β′
u2 =

g2

s2
2β′

u2 and g
n2

g2
g1

= cβ′cW
sβ′ , we can deduce an approximate

form ξZ � 1/2 tan 2ξZ in the limit ε 
 1, consistent with
the expression of tan 2ξZ shown in (34).

2.5 Charged gauge bosons

In the basis (W+
1 ,W+

2 ) the squared mass matrix of charged
gauge bosons was given in Refs. [12,13]. Setting v = 0,
we can define a new basis: W+

l = (cβ ′W+
1 + sβ ′W+

2 ) and
W+

h = (sβ ′W+
1 −cβ ′W+

2 ), where the corresponding squared
mass matrix is

M2
c = g2

4

⎛
⎜⎜⎝

v2

(
c2β−c2β′

)
v2

s2β′(
c2β−c2β′

)
v2

s2β′
4u2+

(
1−2c2βc2β′+c2

2β′
)
v2

s2
2β′

⎞
⎟⎟⎠ . (36)

The SM-like boson W± is identified with W± ≡ W±
l with

massmWl = gv/2. The mixing W+
l −W+

h is defined through
the mixing angle ξW satisfying

t2ξW ≡ tan(2ξW ) = −2
(
M2

c

)
12(

M2
c

)
22 − (M2

c

)
11

= 2s2β ′
(
c2β ′ − c2β

)
ε2

4 + (1 − 2c2βc2β ′ + c4β ′
)
ε2

= cW t2Z . (37)

From (37), it follows that the ratio of the tangents of W–W ′
and Z–Z ′ mixing angles is cW . This will reduce the number
of parameters in the model by 1.

The physical mass eigenstates (W±,W ′±) are given by
(
W±
W ′±

)
=
(

cξW sξW
−sξW cξW

)(
W±

l
W±

h

)
(38)

with cξW ≡ cos ξW , sξW ≡ sin ξW , and masses

M2
W = g2

4

⎡
⎣v2c2

ξW
+
⎛
⎝4u2 +

(
1 − 2c2βc2β ′ + c2

2β ′
)

v2

s2
2β ′

⎞
⎠ s2

ξW

+ 2

((
c2β − c2β ′

)
v2

s2β ′

)
s2ξW

⎤
⎦ ,

M2
W ′ = g2

4

⎡
⎣v2s2

ξW
+
⎛
⎝4u2 +

(
1 − 2c2βc2β ′ + c2

2β ′
)

v2

s2
2β ′

⎞
⎠ c2

ξW

− 2

((
c2β − c2β ′

)
v2

s2β ′

)
s2ξW

⎤
⎦ . (39)
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Note that Z and W are the SM-like gauge bosons.
We will derive the approximate formulas for the mixing

angles and masses of the SM-like gauge boson up to the
order of v2 × O(ε2) because the corrections at this order
to the masses may contribute significantly to precision tests
such as the ρ parameter. Because t2Z , t2ξW ∼ ε2, we have
sZ � t2Z/2, sξW � t2ξW /2. From (34) and (37), we get

sZ � tZ � s2β ′
(
c2β − c2β

)
4cW

ε2, sξW � sZ cW . (40)

This means that s2
Z , s2

ξW
∼ ε4, hence c2

Z = 1 − s2
Z = 1 −

O(ε4) = 1, c2
ξW

= 1. For this reason, the masses of the
gauge bosons in (35) and (39) can be written as

M2
Z � g2v2

4c2
W

[
1 + (c2β − c2β ′)2ε2

4

]
,

M2
W � g2v2

4

[
1 + (c2β − c2β ′)2ε2

4

]
,

M2
Z ′ � M2

W ′ � g2

4

4u2 +
(

1 − 2c2βc2β ′ + c2
2β ′
)

v2

s2
2β ′

. (41)

Then we have
M2

W
M2

W ′
� s2

2β′ ε2

4 � c2
W

M2
Z

M2
Z ′

. In addition, at the

tree level the ρ parameter satisfies ρ = M2
W

c2
W M2

Z
= 1 +O( v4

u4 ).

Hence, a TeV scale of u gives a contribution to (ρ − 1) =
O( v4

u4 ) ∼ 10−4, in agreement with the recent experimental
constraint on ρ parameter [31].

3 Currents

The Lagrangian L fermion = i
∑

f f̄ γ μDμ f contains inter-
actions of the gauge bosons with the fermions. Let us firstly
consider neutral currents. From Eq. (35), one gets

LNC =
∑
f

f̄ γμA
μ

{
g′cWY + g1g2sW

n1
(T 1

3 + T 2
3 )

}
f

(42)

+
∑
f

f̄ γμZ
μ
l

{
−g′sWY + g1g2cW

n1
(T 1

3 + T 2
3 )

}
f

(43)

+
∑
f

f̄ γμZ
μ
h

(
g2

1

n1
T 1

3 − g2
2

n1
T 2

3

)
f. (44)

Using e = g′cW = gsW , etc., the expression in (42) gives
the well-known electromagnetic current Lem = Aμ J

μ
em =

eAμ

∑
f f̄ γ μQ f , where Q is the electric charge operator

defined in (6).

Neutral currents are defined as LZl ,Zh
NC = Zμ

l Jμ(Zl) +
Zμ
h J

μ(Zh), where Jμ(Zl) and Jμ(Zh) can be found from
(43) and (44). Recall that physical neutral gauge bosons are
Z and Z ′ defined from the Zl–Zh mixing angle (34), leading
to the respective neutral currents

Jμ(Z) = cZ g

cW

∑
f

f̄ γ μ
(
T 1

3 + T 2
3 − s2

W Q
)
f

+ sZ g

tβ ′

∑
f

f̄ γ μ
(
t2
β ′T 1

3 − T 2
3 )
)
f (45)

and

Jμ(Z ′) = cZ g

tβ ′

∑
f

f̄ γ μ
(
t2
β ′T 1

3 − T 2
3 )
)
f

− sZ g

cW

∑
f

f̄ γ μ
(
T 1

3 + T 2
3 − s2

W Q
)
f. (46)

The second term in (45) is the NP contribution.
Let us write explicitly the neutral current of the Z boson

Jμ(Z) = cZ g

cW

∑
ψ=q,�

ψ̄γμ

(
T 2

3 − s2
W Q

)
ψ (as SM)

− gsZ
2tβ ′

(
ν̄LγμνL + ūLγμuL − l̄LγμlL − d̄LγμdL

)

+ cZ g

cW

[
1

2
N̄γμN + Ēγμ

(
−1

2
+ s2

W

)
E

+ Ūγμ

(
1

2
− 2

3
s2
W

)
U + D̄γμ

(
−1

2
+ 1

3
s2
W

)
D

]

+ gsZ tβ ′

2

(
N̄γμN − ĒγμE + ŪγμU − D̄γμD

)
,

(47)

where T 1
3 = 0 and T 2

3 = 1
2σ3 for the SM fermion doublets,

and T 1
3 = 1

2σ3, T 2
3 = 0 for the extra fermion doublets. Only

interactions in the first line of (47) are the SM ones. The
remaining provides NP effects. Note that interactions of new
vector-like fermions include both PL and PR parts (as vector).

Let us write the couplings of the Z boson with physical
fermion states in the form

LNC (Z , f ) = cZ g

cW
Zμ f̄ γ μ(gL PL + gR PR) f, (48)

where PL ,R = (1 ∓ γ5)/2. The couplings gL and gR are
listed in Table 1, where we denote

ρμτ ≡
√

1 − c2
β ′(�2

μ + �2
τ ),

ρsb ≡
√

1 − c2
β ′(�2

s + �2
b). (49)

Here we keep only significant contributions to gR , in
which they contain both factors of heavy masses and ε,
as shown in the two last lines of Table 1. We can see that
although new fermions are all vector-like in the flavor bases,
they are not vector-like in the mass bases because they are
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Table 1 Couplings of Z boson with fermions, � = e, μ, τ and �e = �d = 1

f gL gR gV gA

ν�
1
2 −

(
1−�2

�

)
cW tZ

2tβ′ 0 1
2 −

(
1−�2

�

)
cW tZ

2tβ′
1
2 −

(
1−�2

�

)
cW tZ

2tβ′

� = e, μ, τ − 1
2 + s2

W +
(
1−�2

�

)
cW tZ

2tβ′ s2
W − 1

2 + 2s2
W +

(
1−�2

�

)
cW tZ

2tβ′ − 1
2 +

(
1−�2

�

)
cW tZ

2tβ′

μτ, τμ −�μ�τ cW tZ
2tβ′ 0 −�μ�τ cW tZ

2tβ′ −�μ�τ cW tZ
2tβ′

q = u, c, t 1
2 − 2

3 s
2
W − (1−�2

q )cW tZ
2tβ′ − 2

3 s
2
W

1
2 − 4

3 s
2
W − (1−�2

q )cW tZ
2tβ′

1
2 − (1−�2

q )cW tZ
2tβ′

q = d, s, b − 1
2 + 1

3 s
2
W + (1−�2

q )cW tZ
2tβ′

1
3 s

2
W − 1

2 + 2
3 s

2
W + (1−�2

q )cW tZ
2tβ′ − 1

2 + (1−�2
q )cW tZ

2tβ′

N1
1
2 − cW tZ

t2β′
1
2 + cW tZ tβ′

2 1 + cW (1−3c2β′ )tZ
2s2β′ − cW tZ

2tβ′

N2
1
2 − (�2

μ+�2
τ )cW tZ

t2β′
1
2 + cW tZ tβ′

2 1 + cW
[
s2
β′ −c2

β′ (�2
μ+�2

τ )
]
tZ

s2β′ − (�2
μ+�2

τ )cW tZ
2tβ′

E1 − 1
2 + s2

W + cW tZ
t2β′ − 1

2 + s2
W − cW tZ tβ′

2 −1 + 2s2
W + (1−2t2

β′ )cW tZ
2tβ′

cW tZ
2tβ′

E2 − 1
2 + s2

W −
(
ρ2

μτ −c2
β′
)
cW tZ

s2β′ − 1
2 + s2

W − cW tZ tβ′
2 −1 + 2s2

W + (ρ2
μτ −c2β′ )cW tZ

s2β′
(�2

μ+�2
τ )cW tZ

2tβ′

eE1, νeN1 ± cW tZ
2 0 ± cW tZ

2 ± cW tZ
2

νμN2, ντ N2 −�μ,τ ρμτ cW tZ
2sβ′ 0 −�μ,τ ρμτ cW tZ

2sβ′ −�μ,τ ρμτ cW tZ
2sβ′

μE2, τ E2
�μ,τ ρμτ cW tZ

2sβ′ 0 �μ,τ ρμτ cW tZ
2sβ′

�μ,τ ρμτ cW tZ
2sβ′

U1
1
2 − 2

3 s
2
W − cW tZ

2t2β′
1
2 − 2

3 s
2
W + cW tZ tβ′

2 1 − 4
3 s

2
W + (1−2t2

β′ )cW tZ
2tβ′ − cW tZ

2tβ′

U2
1
2 − 2

3 s
2
W + (ρ2

sb−c2
β′ )cW tZ

2sβ′ cβ′
1
2 − 2

3 s
2
W + cW tZ tβ′

2 1 − 4
3 s

2
W + (ρ2

sb−c2β′ )cW tZ
2sβ′ cβ′ − (�2

s+�2
b)cW tZ

2tβ′

D1 − 1
2 + 1

3 s
2
W + cW tZ

t2β′ − 1
2 + 1

3 s
2
W − cW tZ tβ′

2 −1 + 2
3 s

2
W + (1−2t2

β′ )cW tZ
2tβ′

cW tZ
2tβ′

D2 − 1
2 + 1

3 s
2
W − (ρ2

sb−c2
β′ )cW tZ

2sβ′ cβ′ − 1
2 + 1

3 s
2
W − cW tZ tβ′

2 −1 + 2
3 s

2
W − (ρ2

sb−c2β′ )cW tZ
2sβ′ cβ′

(�2
s+�2

b)cW tZ
2tβ′

dD1, uU1 ± cW tZ
2 0 ± cW tZ

2 ± cW tZ
2

cU2, tU2 −�s,bρs,bcW tZ
2sβ′ −�s,bmc,t cβ′ ε

2vρsbsβ M̃Q2

sD2, bD2
�s,bρs,bcW tZ

2sβ′
�s,bms,bcβ′ ε
2vρsbsβ M̃Q2

mixed with the chiral SU(2)2 leptons through Yukawa inter-
actions (16).

In contrast to [12,13], in our work the neutral currents are
written in the basis of physical neutral gauge bosons, SM Z
and extra Z ′, from which their decays can easily be studied.

3.1 Charged currents

The Lagrangian of charged currents is

LCC = 1√
2

{
ν̄Lγ μg2W

+
2μlL + N̄L ,Rγ μg1W

+
1μEL ,R

+ ūLγ μg2W
+
2μdL + ŪL ,Rγ μg1W

+
1μDL ,R

}
+ H.c..

(50)

In the physical states of charged gauge bosons, it is

LCC = gcξW√
2

(
1 − tξW

tβ ′

)
W+

μ

(
ν̄Lγ μlL + ūLγ μdL

)

+ gcξW√
2

(
1 − tξW

tβ ′

)
W+

μ (N̄γ μE + Ūγ μD)

− gcξW√
2

(
1

tβ ′
+ tξW

)
W ′+

μ

(
ν̄Lγ μlL + ūLγ μdL

)
(51)

+ gcξW√
2

(
1

tβ ′
+ tξW

)
W ′+

μ (N̄γ μE + Ūγ μD)+H.c.

(52)

If the W boson part of the Lagrangian is written as L =
gcξW√

2
Wμ f γ μ (gL PL + gR PR) f ′+H.c., the couplings of the

W boson with physical fermions are shown in Table 2.
New-physics interactions are in (51). Within the exper-

imental data on the W decay width, ones can get con-
straints on the mixing angles. That was discussed in detail in
Refs. [12,13].
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Table 2 Couplings of W boson with fermions

f gL gR

ν��, � = e, μ, τ 1 − �2
� tξW 0

ui di , i = 1, 2, 3 1 − �2
di
tξW 0

N1E1, U1D1 1 − 2tξW
t2β′ 1 + tξW tβ ′

N2E2, U2D2 1 + ρ2
μτ,sbtξW 1 + tξW

tβ′

νe E1, uD1, N1e, U1d −tξW 0

U2s, U2b − ρsb�s,btξW
sβ′ − cβ′ �s,b

ρsbsβ M̃Q2
× ms,b

v
× ε

cD2, t D2 − ρsb�s,btξW
sβ′ − cβ′ �s,b

ρsbsβ M̃Q2
× mc,t

v
× ε

4 Higgs sector

From

	 = 1√
2

(
	0 	+

−	− 	̃0

)
→ 	† = 1√

2

(
	̃0 −	+
	− 	0

)
,

(53)

the potential is given as

V = μ2
φφ†φ + μ2

φ′φ′†φ′ + μ2
	Tr(	†	)

+ λ1

2
(φ†φ)2 + λ2

2
(φ′†φ′)2 + λ3

2
[Tr(	†	)]2

+ λ4(φ
†φ)(φ′†φ′) + Tr(	†	)

[λ5(φ
†φ) + λ6(φ

′†φ′)] − μ(φ′†	φ + H.c.). (54)

Because the μ parameter is proportional to the squared
masses of the charged and CP-odd Higgs bosons, it must
be positive with the minus sign before it in the potential (54).

The neutral scalars are expanded as

ϕ0 = 1√
2
(vφ + Sφ + i Aφ), ϕ′0 = 1√

2
(vφ′ + Sφ′ + i Aφ′),

φ0 = 1√
2
(u + S	 + i A	). (55)

At the tree level, the minimum conditions of the Higgs poten-
tial are similar to the ones in Refs. [12,13], except the oppo-
site signs of μ.

μ2
φ + 1

2

(
λ1v

2
φ + λ4v

2
φ′ + λ5u

2 − uμ

tβ

)
= 0,

μ2
φ′ + 1

2

(
λ2v

2
φ′ + λ4v

2
φ + λ6u

2 − uμtβ
)

= 0, (56)

μ2
	 + 1

2

(
λ5v

2
φ + λ6v

2
φ′ + λ3u

2 − μ

u
vφvφ′

)
= 0 .

Based on the minimum conditions, the parameter μ2
φ,φ′,	 can

be expressed as a function of the Higgs-self couplings u, v

and β. Next, the masses, mass eigenstates, and couplings of
Higgs bosons will be calculated by inserting these functions
into the Higgs potential (54).

4.1 Squared mass matrices of the Higgs bosons

In the original bases of singly charged and CP-odd neu-
tral Higgs bosons φ± = (ϕ±, ϕ′±, 	±)T and A =
(Aφ, Aφ′ , A	)T , the corresponding squared mass matri-
ces are

M2
h± = μ

2

⎛
⎜⎝

ucβ
sβ

−u vcβ
usβ
cβ

−vsβ
v2sβcβ

u

⎞
⎟⎠ ,

M2
A = μ

2

⎛
⎜⎝

ucβ
sβ

−u −vcβ
usβ
cβ

vsβ
v2sβcβ

u

⎞
⎟⎠ . (57)

In the basis of CP-even Higgs bosons S = (Sφ, Sφ′ , S	)T

the squared mass matrix M2
S corresponding the mass term

1
2 S

T M2
S S is

M2
S =

⎛
⎜⎝

uμcβ
2sβ

+ λ1v
2s2

β − 1
2uμ + λ4v

2sβcβ − 1
2 vμcβ + λ5uvsβ

uμsβ
2cβ

+ λ2v
2c2

β − 1
2 vμsβ + λ6uvcβ

v2μsβcβ
2u + λ3u2

⎞
⎟⎠ .

(58)

The above matrices are consistent with those given in [12,13]
after using the relations (56).

4.2 Physical spectrum of Higgs bosons and their couplings

We will find the Higgs bosons masses in two steps. At the
first step, where v → 0, all the three squared mass matrices
are diagonalized through the same transformation

C1 =
⎛
⎝ sβ cβ 0

0 0 1
cβ −sβ 0

⎞
⎠ . (59)

In the second step, it is easy to determine rotations diago-
nalizing the squared mass matrices of charged and CP-odd
neutral Higgs bosons. By defining the mixing angle ζ as

sin ζ ≡ vsβcβ√
u2 + (vsβcβ)2

, cos ζ ≡ u√
u2 + (vsβcβ)2

,

(60)

the total mixing matrices used to diagonalize mass matrices
in (57) are

Ch± =
⎛
⎝−cβsζ sβsζ cζ

sβ cβ 0
cβcζ −sβcζ sζ

⎞
⎠ ,CA =

⎛
⎝ cβsζ −sβsζ cζ

sβ cβ 0
cβcζ −sβcζ −sζ

⎞
⎠ .

(61)

Mass eigenstates of the charged and CP-odd Higgs bosons,
denoted as H± = (G±

1 , G±
2 , h±)T and HA = (GZ1 , GZ2 ,
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ha)T , relate with the original states through the following
equations:

φ± = CT
h± H±, and A = CT

A HA. (62)

Two linear combinations of G±
1 and G±

2 are Goldstone
bosons eaten up by the W ′± and W± gauge bosons. Sim-
ilarly, linear combinations of GZ1 and GZ2 are eaten up by
Z and Z ′. There are two physical charged Higgs bosons h±
and one physical CP-odd neutral Higgs boson ha with masses
m2

h± and m2
A, respectively. They satisfy Ch±M2

h±CT
h± =

diag(0, 0,m2
h±) and CAM2

AC
T
A = diag(0, 0,m2

A), where

m2
h± = m2

A =
μ
(
u2 + v2s2

βc
2
β

)
2usβcβ

. (63)

Regarding the CP-even neutral Higgs bosons, after the rota-
tion (59), the squared mass matrix is M ′2

S = C1M2
SC

T
1 , which

is a 3 × 3 matrix with the following elements:

(
M ′2

S

)
11 = v2

(
λ1s

4
β + λ2c

4
β + 2λ4s

2
βc

2
β

)
,

(
M ′2

S

)
12 = (

M ′2
S

)
21 = v

[
u
(
λ5s

2
β + λ6c

2
β

)
− μsβcβ

]
,

(
M ′2

S

)
13 = (

M ′2
S

)
31 = v2sβcβ

[
(λ4 − λ1) s

2
β + (λ2 − λ4) c

2
β

]
,

(
M ′2

S

)
22 = λ3u

2 + μv2sβcβ

2u
,

(
M ′2

S

)
23 = (

M ′2
S

)
32 = v

2

[(
c2
β − s2

β

)
μ + (λ6 − λ5) u2sβcβ

]
,

(
M ′2

S

)
33 = μu

2sβcβ

+ (λ1 + λ2 − 2λ4) v2s2
βc

2
β . (64)

In general, M ′2
S is complicated and it cannot be diagonalized

exactly. Instead, using the parameter ε ≡ v/u 
 1, we will
find approximate solutions for mass eigenvalues, keep terms
up to the order of the electroweak scale. This is reasonable
because the SM-like Higgs boson mass was found to be 125
GeV. Approximate solutions was used earlier to find con-
sistent masses of the lightest CP-even neutral Higgs bosons
in supersymmetric models [40,41]. The mixing matrix will
also be determined approximately, corresponding to the mass
eigenvalues.

We start from finding the eigenvalues of the matrix M ′2
S

by solving the equation Det
(
M ′2

S − λI3
) = 0, where λ is

expanded as λ = u2(λ0 + λ1ε
2) to keep it up to the order of

electroweak scale v. We assume that λ0, λ1 ∼ O(1). Using
v = uε, we can write Det

(
M ′2

S − λI3
) = a0 + a1ε

2 +
O(ε4) = 0 where a0 = a0(λ0) and a1 = a1(λ0, λ1). We
will consider only the two following equations:

a0(λ0) = −λ0

(
λ0 − μu

2sβcβ

)(
λ0 − λ3u

2
)

,

a1(λ0, λ1)

∣∣∣
λ0=0

∼ u2
[(

λ1s
4
β + λ2c

4
β + 2λ4s

2
βc

2
β

)

− 1

λ3

(
λ5s

2
β + λ6c

2
β − μ

u
sβcβ

)2
]

.

(65)

The first equation in (65) shows that the largest contributions
to Higgs masses are the solutions of a0(λ0) = 0, giving one
zero and two non-zero values, λ0 = μu

2sβcβ
and λ0 = λ3u2.

Hence there are two heavy CP-even neutral Higgs bosons
with the corresponding masses m2

h0
2

= λ3u2 + O(v2) and

m2
h0

3
= μu

2sβcβ
+O(v2), which equal the largest contributions

of the two last diagonal entries of M ′2
S shown in (64). A light

CP-even neutral Higgs boson corresponds to λ0 = 0. Its mass
comes from the second equation of (65):

m2
h0

1
� v2

[(
λ1s

4
β + λ2c

4
β + 2λ4s

2
βc

2
β

)

− 1

λ3

(
λ5s

2
β + λ6c

2
β − μ

u
sβcβ

)2
]

. (66)

We stress that m2
h0

1
�= (

M ′2
S

)
11, i.e. contributions from non-

diagonal entries of M ′2
S tom2

h0
1

cannot be ignored. The mixing

matrix in this case can be found based on a mixing angle
defined by ch ≡ cos ξh and sh ≡ sin ξh satisfying

t2h = tan 2ξh = − 2
(
M ′2

S

)
12(

M ′2
S

)
22 − (M ′2

S

)
11

∼ v

u
= ε. (67)

It can be checked that after this rotation the light Higgs
boson mass is consistent with (66). Therefore, the mixing
matrix relating two original and physical bases S and H0 =
(h0

1, h
0
2, h

0
3)

T is S = CT
h H0, where

Ch � C1Ch2 =
⎛
⎝ sβch cβch sh

−sβsh −cβsh ch
cβ −sβ 0

⎞
⎠ . (68)

The light Higgs boson h0
1 is identified with the SM-like Higgs

boson found by the LHC. The recent experimental data shows
that the SM predictions perfectly agree with the observation
within 1 sigma [32]. Hence, couplings of h0

1 with other SM
particles must be consistent with this data. The relevant cou-
plings of h0

1 are shown in Table 3, including couplings with
h±

2 needed to generate active neutrino masses. We can see
easily that all couplings with the SM-like particles are differ-
ent from the SM predictions by a common factor ch . So, |ch |
should be close to unity, i.e., |sh | should be small. Its upper
bound can be found as follows. Consider the h0

1 productions
at LHC, new heavy quarks can play the roles of the top quark
in gluon–gluon fusion mechanism, where their couplings are
proportional to sh or ε. A significant contribution related to
ε may come from the quarks U2 where the couplings contain
a factor (�bmt )

2ε/v2. But the constraint from [12,13] gives
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Table 3 h0
1 couplings , where

fi = ei , ui , di ; qi = ui , di
(i = 1, 2, 3); q1 = u, d;
Q1 = U1, D1; F1 = E1,U1, D1

Vertex Coupling

h0
1 fi fi − chmei

v

h0
1F1F1, −shc2

β ′ M̃L1,Q1

h0
1E2E2 −shc2

β ′ (�2
μ + �2

τ )M̃L2

h0
1U2U2, h0

1D2D2 −shc2
β ′ (�2

s + �2
b)M̃Q2 − chc2

β′ (�2
s m

2
c,s+�2

bm
2
t,b)×ε

sβv2 M̃Q2 ρ2
sb

h0
1eE1, h0

1q1Q1 −shsβ ′cβ ′ M̃L1,Q1 PL

h0
1μE2, h0

1τ E2 −�μ,τ cβ ′
[
sh M̃L2 ρμτ PL + chmμ,τ

vρμτ
PR

]

h0
1q2Q2, h0

1q3Q2 −�s,bcβ ′
[
sh M̃Q2 ρsb PL + chmq2,3

vρsb

(
PR + mq2,3

vM̃Q2 sβ
εPL

)]

h0
1ZμZν

gμνg2v

2c2
W

ch

h0
1W

+
μ W−

μ
gμνg2v

2 ch

h0
1W

′+
μ W ′−

μ

gμνg2
[
4ush+chv

(
1−2c2βc2β′ +c2

2β′
)]

8c2
β′ s2

β′

h0
1h

+
1 h

−
1 −shu

[
μ
u cβsβ −

(
λ5c2

β + λ6s2
β

)]
−

chv
[

μ
u cβsβ + (λ1 + λ2)s2

βc
2
β + λ4(s4

β + c4
β)
]

h0
1h

+
2 h

−
2 −ushλ′

3 − vch
(
λ′

2c
2
β + λ′

1s
2
β

)

(�bmt )
2ε/v2 ∼ 10−4ε, which is suppressed. Now, the pro-

duction of h0
1 through gluon–gluon fusion at lowest order is

[42,43]

σ 0
h0

1
= GFα2

s

288
√

2π

∣∣∣∣∣
3

4

∑
q

ghqqv

mq
A1/2(tq)

∣∣∣∣∣
2

, (69)

where tq =
m2
h0

1
4m2

q
, mq is a quark mass; ghqq = ch

mq
v

,

shc2
β ′ M̃Q1 , and shc2

β ′
(
�2

s + �2
b

)
M̃Q2 for SM-like quarks;

new quarks U1, D1; and new quarks U2, D2, respectively.
The form factor A1/2(t) is determined as

A1/2(t) = 2 [t + (t − 1) f (t)] t−2, (70)

where

f (t) ≡
{

arcsin2
(√

t
)

for t ≤ 1

− 1
4

(
−iπ + ln

[
1+√

1−t−1

1−√
1−t−1

])2
for t > 1.

Using mQ1,2 , mQ1,2 � M̃Q1,2u, as given in [12,13], Eq. (69)
is written as

σ 0
h0

1
= GFα2

s

288
√

2π

∣∣∣∣34ch A1/2(t0) + 3

2
c2
β ′shε

[
A1/2(t1) + (�2

s + �2
b)A1/2(t2)

]∣∣∣2 , (71)

where t0 =
m
h0

1
4m2

t
and t1,2 =

m
h0

1
4m2

Q1,2

. The condition

mt ,mQ1,2 > mh0
1

= 125.09 GeV gives the limit A1/2(t) →

4/3 for all t = 0, 1, 2. The respective signal strength of Higgs
production is

μggF = σ(pp → h0
1)221

σ(pp → h)SM

=
∣∣∣ch + 2c2

β ′shε
[
1 + �2

s + �2
b

]∣∣∣2 , (72)

where we follow the notations of signal strengths defined
in [32]. Similarly, the partial decay width of the channel
h0

1 → gg is determined as

�(h0
1 → gg)221 = μhgg × �(h → gg)SM, (73)

where μhgg = μggF . Because shε = O(ε2) and the branch-
ing ratio of this decay is smaller than 9%, we will use the
naive approximation μggF � c2

h to find a lower bound of
|ch |.

For all remaining decay channels of the SM-like Higgs
boson into SM particles, the tree-level couplings are always
different from the SM prediction the factor ch , therefore
μ f = c2

h for all main decays f = f f̄ , WW ∗, Z Z∗.
The global signal strength defined in [32] can be formulated
approximately as follows:

μ
f
i (global) = μi × μ f � |ch |4 = 1.09 ± 0.11,→ 0.98

≤ |ch |4 ≤ 1.

This gives the constraint

0.995 ≤ |ch | ≤ 1, and |sh | ≤ 0.10. (74)

If we use the constraints of �b,s and cβ ′ given in [12,13], the
values of |sh | satisfying (74) are reasonable for the approxi-
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mation we have just discussed. In addition, the constraint of
sh results in small couplings of h0

1 with the heavy fermions
and W ′ gauge boson, giving their suppressed contributions
to the decay rate h0

1 → γ γ . Couplings h0
1h

±
1,2h

±
1,2 depend on

many unknown Higgs-self couplings, implying that charged
Higgs masses are not constrained from the experimental data
of the decay h0

1 → γ γ , so we will not consider this decay
further.

4.3 Singly charged Higgs bosons with additional δ±

In this section we consider the model including new singly
charged Higgs bosons δ± discussed in the neutral lepton sec-
tor. Apart from the second term in (25), the Higgs potential
has new terms,

�Vh = μ2
4(δ

+δ−) + λ′
0(δ

+δ−)2 + (δ+δ−)

×
[
λ′

1Tr(	†	) + λ′
2φ

†φ + λ′
3φ

′†φ′] . (75)

The appearance of δ± does not change the allowed regions
of parameters discussed in [12,13]. Also, the results derived
for Higgs bosons are unchanged, except the singly charged
Higgs sector. In the basis (ϕ±, ϕ′±,	±, δ±)T , the squared
mass matrix is denoted as M2

h± . We can find a matrix C ′
h± so

thatM′2
h± = C ′

h±M′2
h±C ′

h±T has only the following non-zero

elements:
(M′2

h±
)

34
= (M′2

h±
)

43
= 1

2λδv

√
u2 + (vsβsβ)2,(M′2

h±
)

33
= μ

[
u2+(vsβcβ)2

]
2usβcβ

and
(M′2

h±
)

44
= μ2

4 + 1
2v2(

λ′
1s

2
β + λ′

2c
2
β

)
+ 1

2λ′
3u

2. This matrix is diagonalized by a

transformation relating with a mixing angle ξ satisfying

t2ξ ≡ tan 2ξ = − 2
(M′2

h±
)

34(M′2
h±
)

44
− (M′2

h±
)

33

. (76)

Then the total transformation can be found to be

C± =

⎛
⎜⎜⎝

−cβsζ sβsζ cζ 0
sβ cβ 0 0

cβcζ cξ −sβcζ cξ sζ cξ −sξ
cβcζ sξ −sβcζ sξ −sζ sξ cξ

⎞
⎟⎟⎠ ,

which changes the original basis into the mass eigenstate
basis (G±

1 , G±
2 , h±

1 , h±
2 )T , namely (ϕ±, ϕ′±, 	±, δ±)T

= CT±(G±
1 , G±

2 , h±
1 , h±

2 )T . We note that the Goldstone
bosons G±

1,2 defined in (62) are not affected by the presence
of δ±.

The masses m2
h±

1,2
of h±

1,2 are solutions of the equa-

tion
[
x − (M′2

h±
)

33

] [
x − (M′2

h±
)

44

]
+ (M′2

h±
)2

34
= 0. If(M′2

h±
)

34

 (M′2

h±
)

33
,
(M′2

h±
)

44
, we have h±

1 ≡ h± given

in (62) and h±
2 ≡ δ±, which is used for simple approxima-

tions because Eq. (76) means t2ξ ∼ ε 
 1. The relevant
couplings of the charged Higgs bosons to fermions are col-
lected in Table 4.

Couplings of the charged Higgs bosons with gauge bosons
are shown in Table 5. Only couplings of h±

1 are shown
because the couplings of h±

2 can be derived by the follow-
ing replacements: cξh

±
1 → sξh

±
2 and sξh

±
1 → −cξh

±
2 . We

consider here only the case of ξ → 0.
Some important properties of h±

1 are as follows. Dif-
ferences between couplings of h±

1 and the SM-like Higgs

bosons to normal fermions are gh±
1 �ν�

/gh0
1��

=
√

2cξ cζ
tβ

and

gh±
1 ui di

/gh0
1ui ui

= −
√

2cξ cζ
tβ

(PL − mui
mdi

PR). From Table 5, the

couplings of h±
1 to the SM-like bosons, namely h±

1 ZW and
h±

1 h
0
1W , are extremely small because they contain factors

sZε2 ∼ O(ε4), sZ ∼ O(ε2), and another mixing smaller than
0.02. Other couplings to light fermions are also small because
sξ → 0. With cζ , cξ → 1, the main decays of h±

1 into light
particles are h+

1 → tb. Ifmh±
1

> mW ′ ,mZ ′ , there will appear

two additional large decay modes h+
1 → Z ′W+, ZW ′+.

In contrast to h±
1 , the charged Higgs bosons h±

2 only cou-
ple strongly with leptons and Higgs bosons. Therefore, the
main decay modes are h+

2 → (νei )
ce j with e j = e, μ, τ .

The main processes for h±
2 production at colliders are f f →

γ ∗, h0∗
1,2,3, h

∗
a → h+

2 h
−
2 , f = e, u, d.

We would like to compare the above singly charged
Higgs bosons with the ones predicted by Zee models, where
the charged Higgs sector was investigated thoroughly in
Ref. [33]. The equivalent notations are v1, v2, tan β =
v2/v1 ↔ vφ, vφ′ , 1/tβ = vφ′/vφ , and χ ↔ ξ . With
ζ = O(ε) → 0, the charged components of 	 are Gold-
stone bosons of W ′±. Meanwhile those of φ and φ′ create two
Goldstone bosons of W±, and two other freedoms that mix
with the singlet ones to generate physical states. Hence, the
model under consideration and the Zee models predict very
similar properties of the charged Higgs couplings to SM-like
particles. But the predictions for charged Higgs boson pro-
duction at colliders like the LHC are different, because of the
appearance of new particles, such as new heavy quarks and
Higgs bosons, and the constraints from allowed regions of
parameters indicated in [12,13]. We will review these regions
before discussing the signal of new particles at colliders.

5 Phenomenology

5.1 Properties of masses and mixing parameters of new
particles

In this work, the results of parameter constraints reported in
Refs. [12,13] are still valid. They will be used to discuss the
Higgs phenomenology. These allowed regions are

�s ∈ [−1.16,−0.97], �b ∈ [0.003, 0.007],
�μ ∈ [0.94, 0.99], �τ ∈ [0, 0.11],
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Table 4 Couplings of charged
Higgs boson h+

1 . Couplings of
h±

2 are only different from those
of h±

1 by replacements:
cξh

±
1 → sξh

±
2 and

sξh
±
1 → −cξh

±
2

Vertex Coupling

h+
1 νLi eRi , i = e, μ, τ −

√
2cζmei
tβv

× cξ

h+
1 (νLμ)ceL , h+

1 (νLe )
cμL ∓2sβ ′ sξ

[
f12 − c2

β′ �μ( f12�μ+ f13�τ )
1+ρμτ

]

h+
1 (νLτ )

ceL , h+
1 (νLe )

cτL ∓2sβ ′ sξ

[
f13 − c2

β′ �τ ( f12�μ+ f13�τ )
1+ρμτ

]

h+
1 (νLτ )

cμL , h+
1 (νLμ )cτL ∓2sξ f23ρμτ

h+
1 N1e −√

2sβ ′cβ ′ sζ cξ M̃L1PL −
√

2cζ cξme
tβ tβ′ v PR

h+
1 N2μ, h+

1 N2τ −√
2cξ cβ ′�μ,τ

[
cζmμ,τ

tβvρμτ
PR + sζ ρμτ M̃L2PL

]

h+
1 (NL2 )

ceL −2sβ ′cβ ′ sξ
(
�μ f12 + �τ f13

)
h+

1 (NL1 )
cμL , h+

1 (NL1 )
cτL 2cβ ′ sξ

[
f12,13 − c2

β′ �μ,τ ( f12�μ+ f13�τ )
1+ρμτ

]

h+
1 (NL2 )

cμL , h+
1 (NL2 )

cτL ∓2cβ ′ sξ�τ,μ f23

h+
1 ui di , i = 1, 2, 3

√
2cξ cζ
vtβ

(
mui PL − mdi PR

)

h+
1 U1d1 −√

2sβ ′cβ ′ sζ cξ M̃Q1 PL −
√

2cζ cξmd
tβ tβ′ v PR

h+
1 U2s, h+

1 U 2b −√
2cξ sβ ′�s,b

[
cζms,b
tβvρsb

PR + sζ ρsb M̃Q2 PL
]

h+
1 uD1

√
2cξ cζmu
vtβ tβ′ PL

h+
1 cD2, h+

1 t D2

√
2cξ sζ cβ′mc,t�s,b

vtβ
PL

h+
1 U1D1 −√

2cξ sζ c2
β ′ M̃Q1 PL

h+
1 U2D2 −√

2cξ c2
β ′

[
cζ ε
[
�2

b

(−m2
t PL+m2

b PR
)+�2

s
(−m2

c PL+m2
s PR

)]
v2sβ tβ M̃2

Q2
ρ2
sb

+sζ (�2
s + �2

b)M̃Q2 PL
]

Table 5 Couplings of h+
1 with bosons. Momenta of h+

1 and h0
1 are p+

and p0, respectively

Vertex Coupling

h+
1 ZμW−

ν − gμνgmW cξ s3
β c

3
β s

2
W cZ sZ ε2

2sβ′ cβ′

h+
1 ZμW ′−

ν − gμνgmW cξ sβ cβ
(
s2
W+c2

Z c
2
W

)
cW sβ′ cβ′

h+
1 Z ′

μW
−
ν − gμνgmW cξ sβ cβ

sβ′ cβ′

h+
1 Z ′

μW
′−
ν − gμνgmW cξ sβ cβcζ sζ s2

W
cW sβ′ cβ′

h+
1 h

0
1W

−
μ

gcξ sW sβcβ
2sβ′ cβ′ sZ (ch − shε) (p0 − p+)μ

MZ ′ ∈ [500, 1710] GeV,
g

sβ ′
∈ [1.2, 3.5],

ζ ′ ≡ (s2
β − t2

β ′c2
β) ∈ [0, 0.02], (77)

where g = 2mW
v

� 0.651 is the SM gauge coupling, and ζ ′
satisfies tξW = cW tZ � c3

β ′sβ ′ζ ′ε2 [12,13]. This gives the
constraints

sβ ′ ∈ [0.186, 0.542], tβ ∈ [0.24, 0.654],
and 0 ≤ tZ = tξW

cW
< 8 × 10−3ε2. (78)

We can see that the allowed values of ζ give very small values
of tZ ,ξW , even with large ε < 1. For simplicity, we will also
use the following simple approximations:

|�μ,s | � 1, �τ,b,
�τ,bmτ,t

v

 1,

�2
μ,s + �2

τ,b � 1, ρμτ,bs � sβ ′ . (79)

The simple texture of λ� in (20) gives ML1 = uM̃L1sβ ′ and
ML2 = uM̃L2ρμτ . For the quark sector, MQ1 = uM̃Q1sβ ′
and MQ2 = uM̃Q2ρsb. Now the masses of the heavy particles
are

mE1 = MN1 + m2
e(sβ − 1

2 )

MN1s
2
β t

2
β ′

,

mU1,D1 = uM̃Q1 + m2
u,d(sβ − 1

2 )

uM̃Q1s
2
β t

2
β ′

,

mE2 = MN2 − c2
β ′(�2

μm
2
μ + �2

τm
2
τ )(sβ − 1

2 )

MN2s
2
βρ2

μτ

,

mU2,D2 = uM̃Q2 − c2
β ′(�2

sm
2
c,s + �2

bm
2
t,b)(sβ − 1

2 )

uM̃Q2s
2
βρ2

sb

,
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mW ′ ,mZ ′ � gu

s2β ′
+ s2

2β + (c2β − c2β ′)2

8
mW × ε + O(ε3),

mh0
3
, mA, mh±

1
�
√
uμ

s2β

+ v × O
(

vs2β√
uμ

)
, (80)

and the mixing parameters

sZ � sξW
cW

� t2ξW

2cW
� 1

4
s2β ′

(
c2β − c2β ′

)
ε2,

sζ � sβcβε, cζ � 1 − 1

2
(sβcβ)2ε2,

sh � λ5s2
β + λ6c2

β − μ
u sβcβ

λ3
× ε, ch � 1 − s2

h

2
,

sξ � λδ

2μ2
4/u

2 + μ
(usβcβ)

+ λ′
3

× ε, cξ � 1 − s2
ξ

2
. (81)

Inserting formula of sh into Eq. (66), we have a simple expres-
sion for mh0

1
as follows

m2
h0

1
� v2

(
λ1s

4
β + λ2c

4
β + 2λ4s

2
βc

2
β

)
− λ3u

2s2
h . (82)

In addition, there are two other Higgs bosons with the masses

mh0
2

� √λ3u, and

m2
h±

2
� μ2

4 + v2

2

(
λ′

1s
2
β + λ′

2c
2
β

)
+ λ′

3

2
u2. (83)

The important property is that the model predicts several
groups of new heavy particles having same spins and degen-
erate masses, therefore forbid many decay modes. The new
Yukawa couplings generating heavy mass terms are always
the same for both up and down components of the SU(2)1
fermion doublets in the same families. Mass differences
come only from the Yukawa terms of the electroweak sec-
tor (13), because of the large VQ,L . As shown in (80), a
difference between a pair of new up and down fermions is
O(m f ). Hence, the top quark may give the largest difference
if �bmt < 1.4 is not considered. Hence, the mass differences
are always smaller thanmW . Because of the kinetic condition
and the fermion number conservation, a three-body decay of
a new fermion must decay to at least a light fermion, namely
a SM fermion plus a boson. If a fermion is the lightest among
the new particles, it will decay only to a light fermion and a
SM boson like W , Z or h0

1, leading to large branching ratios,
which can be searched by recent colliders.

5.2 Searches for new fermions at colliders

From the above discussion, if the new fermions are lighter
than all new bosons, including W ′±, Z ′, h0

2,3, h±
1,2, they have

only the following three-body decays:

• For the first family of new fermions:

N1 → νeh
0
1, νe Z , e±W∓;

E±
1 → e±h0

1, e±Z , νeW
∓;

U1 → uh0
1, uZ , dW+; D1 → dh0

1, dZ , uW−,

(84)

• For the second family of new fermions:

N2 → νμ,τh
0
1, νμ,τ Z , μ±W∓ τW∓;

E±
2 → μ±h0

1, τ±h0
1, μ±Z , τ±Z , νμ,τW

∓;
U2 → ch0

1, th0
1, cZ , t Z , bW+, sW+;

D2 → bh0
1, sh0

1, bZ , sZ , cW−, tW−. (85)

Because of the suppressed �τ,b, the main decay modes
are F2 → f2h0

1, f2W, f2Z .

The partial decay widths of decays F → f h0
1, f W, f Z

are

�(F → h0
1 f ) = mF

8π

∣∣∣YF f h0
1

∣∣∣2
⎛
⎝1 −

m2
h0

1

m2
F

⎞
⎠

2

,

�(F → V f ) = m3
F

32πm2
V

∣∣gF f V
∣∣2
(

1 − m2
V

m2
F

)2

, (86)

where V = W, Z , gF f V and YF f h0
1

are, respectively, cou-
plings of fermions with gauge and Higgs bosons given in
Tables 1, 2 and 3. Additional factors 3 are included for
quark decays. The decays listed in (84) and (85) always have
gF f V ∼ ζ ′ε2 and YF f h0

1
∼ sh ∼ ε, leading to the conse-

quence that �(F → V f )/�(F → h0
1 f ) ∼ ζ ′2 ≤ O(10−4),

with ζ ′ satisfying (77). Hence, every heavy fermion will
decay mainly into a light fermion and a SM-like Higgs boson.

Heavy fermions have been being searched for at the LHC
recently, for example the heavy lepton decays into pairs of
light leptons and the SM-like gauge bosons [34], and the null
result is consistent with this investigation. Other heavy quark
decays listed in (85) are U2 → h0

1t [35], U2 → Wb [36–
38], andU2, D2 → Zt, Zb [39]. But the promoting channels
predicted from this discussion are onlyU2 → ch0

1 and D2 →
bh0

1.
In conclusion, we have indicated that the allowed regions

of parameters given in [12,13] predict following main
fermion decays: E1 → h0

1e, U1, D1 → h0
1u, h0

1d, E2 →
h0

1μ, and U2, D2 → h0
1c, h

0
1b. According to our knowledge,

these decay channels were not treated experimentally. We
emphasize that this discussion is valid for heavy fermions
lighter than all other new bosons. Any fermions that are heav-
ier than a heavy gauge boson or a Higgs boson will decay
mainly into light fermions and this boson.
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Table 6 Possible large couplings of h0
2,3 with fermions and charged

Higgs bosons

Vertex Coupling

h0
2F1F1 −chc2

β ′ M̃L1,Q1

h0
2F2F2 −chc2

β ′ (�2
μ,s + �2

τ,b)M̃L2,Q2

h0
2h

+
1 h

−
1 −ch

(
μcβsβ + λ5c2

βu + λ6s2
βu
)

h0
2h

+
2 h

−
2 −chλ′

3u

h0
3 f f

m f
vtβ

h0
3h

+
1 h

−
1 −cβsβ

[
(λ4 − λ1) c2

β + (λ2 − λ4) s2
β

]
v

h0
3h

+
2 h

−
2 cβ

(
λ′

2 − λ′
1

)
v

5.3 Searches for new Higgs bosons at colliders

At the LHC, the promoting possibility of detecting h0
2 cou-

pling strongly with heavy fermions was indicated in [12,13].
These large couplings are shown in Table 6, where only large
couplings of neutral CP-even Higgs bosons are shown for
investigating Higgs productions.

We will focus on the remaining new Higgs bosons, includ-
ing h0

3, ha , h±
1 and h±

2 . It turns out that they inherit many
properties of the new Higgs bosons predicted in THDMs and
the MSSM, except h±

2 . The Higgs sector of the Zee mod-
els can be regarded as the one of a THDM plus a pair of
singly charged Higgs bosons, as investigated thoroughly in

Ref. [33]. And the complete investigation of the Higgs phe-
nomenology of the MSSM was presented in [42,43] includ-
ing a brief comparison with Higgs sector in THDMs. The
Higgs bosons h0

3, ha , and h±
1 have degenerate masses con-

taining the factor of the trilinear Higgs self-coupling μ. This
property is the same as that of the MSSM, but completely
different from THDMs. Both Refs. [33,42,43] considered
the Yukawa part of the THDM type II, where up and down
right-handed singlets of light fermions couple with different
Higgs doublets. In contrast in the model under considera-
tion, all right-handed fermions couple with the same Higgs
doublet φ. This explains why the couplings of the neutral h0

3
and h±

1 with all quarks always contain the same factor 1
tβ

,
and couplings of ha with all SM-like fermions contain the
same factor 1/tβ , as shown in Table 7. While, the couplings
of up and down quarks in the MSSM and THDM type II have
different factors of 1/tβ and tβ , respectively.

The notation β in this work is equivalent to 1/tβ defined
in [33,42,43], where the allowed tβ is consistent with the
constraint (78).

Now the recent searches for Higgs bosons in THDMs
and MSSM will be used for predictions of detecting new
Higgs bosons discussed in this work. We consider only Higgs
bosons heavier than the top quark. Possible main decays are

�(h → f1 f2) = mh

8π
K (x1, x2)

[
1 − (

√
x1 + √

x2)
2
]

× ∣∣Yh f f ∣∣2 ,

Table 7 Couplings of CP-odd
neutral Higgs bosons, where
pa, p+ and p0 are respective
incoming momenta of ha , h+

1,2,

and h0
1

Vertex Coupling

haei ei , ei = e, μ, τ
imei cζ

vtβ
(PL − PR)

haui ui , hadi di , i = 1, 2, 3 ∓ imui ,di cζ
vtβ

(PL − PR)

ha L1L1, haQ1Q1 isζ c2
β ′ M̃L1,Q1 (PL − PR)

ha L2L2 ic2
β ′ (�2

μ + �2
τ )M̃L2 sζ (PL − PR)

haU2U2, haD2D2 ic2
β ′

[
(�2

s + �2
b)M̃Q2 sζ − cβ

(
�2

s m
2
c,s+�2

bm
2
t,b

)
ρ2
sbs

2
βv2

]
(PL − PR)

haνeN1, haeE1 −isζ sβ ′cβ ′ M̃L1 PL

haμE2, haτ E2 −icζ cβ ′�μ,τ

[
mμ,τ

vtβρμτ
PR − ρμτ M̃L2 sζ PL − cβ cζm2

μ,τ

ρμτ s2
β M̃L2 v2 εPL

]

haνμN2, haντ N2 icζ cβ ′�μ,τ ρμτ M̃L2 sζ PL

hauU1, hadD1 −isζ sβ ′cβ ′ M̃Q1 PL

hacU2, hatU2 −icζ cβ ′�s,b

[
mc,t

vtβρsb
PR − ρsb M̃Q2 sζ PL − cβcζm2

c,t

ρsbs2
β M̃Q2 v2 εPL

]

hasD2, habD2 −icζ cβ ′�s,b

[
ms,b

vtβρsb
PR − ρsb M̃Q2 sζ PL − cβcζm2

s,b

ρsbs2
β M̃Q2 v2 εPL

]

hah
+
1 Wμ icξ s2

ζ (pa − p+)μ

hah
+
2 Wμ isξ s2

ζ (pa − p+)μ

hah0
1Z

μ isZ chcζ cβ sβ g(pa−p0)μ
2sβ′ cβ′
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�(h → V1V2) = mh

8π
K (x1, x2)

[
8x1x2 + (1 − x1 − x2)

2
]

× m2
h |ghVV |2

8m2
V1
m2

V2

,

�(h1 → h2V ) = mh1

8π
K (x1, x2)

×
[
(1 − x1)

2 − x2(2 + 2x1 − x2)
]

× m2
h1

|ghhV |2
2m2

V

,

�(h → h1h2) = mh

8π
K (x1, x2) ×

∣∣∣∣λhhhmh

∣∣∣∣
2

, (87)

where K (x1, x2) = [
(1 − x1 − x2)

2 − 4x1x2
] 1

2 ; x1,2 =
m2

1,2

m2
0

; m0 and m1,2 denote the masses of the initial and final

states, respectively. The factor 1/2 is applied if the two
final state particles are identical. A final massless state gives

K (x1, 0) = (1 − x1)
1
2 . Expressions for couplings Yukawa

Yh f f , gauge–Higgs–Higgs ghVV , the Higgs–Higgs–gauge
ghhV , and λhhh were listed in the above Tables. The correla-
tions between the different partial decay widths of a Higgs
boson depend only on the last factors of formulas in (87).
Hence, they will be used to estimate the largest partial decay
widths.

The main decay channels of h±
1 are h+

1 → tb, Z ′W, ZW ′
have relative factors as follows:

∣∣∣Yh±
1 tb

∣∣∣2 =
∣∣∣∣
√

2mt

vtβ

∣∣∣∣
2

� 1

t2
β

,

m2
h±

1

∣∣∣gh±
1 ZW ′

∣∣∣2
8m2

Zm
2
W ′

;

m2
h±

1

∣∣∣gh±
1 Z ′W

∣∣∣2
8m2

Z ′m2
W

� g2

8
×

m2
h±

1

m2
W ′

,

where the allowed values of tβ are given in (78). Hence, if
mh±

1
is not too larger than the heavy gauge boson masses,

the main decay is h+
1 → tb, where the h±

1 tb coupling
is the same as in the MSSM. The LHC has searched for
this decay recently [44,45], through the production channel
pp → tbh±, giving the lower bound of 1 TeV for mh±

1
.

6 Conclusion

Recently, the G221 model has been introduced in Refs. [12,
13] with the main purpose to explain all experimental
data in flavor physics, tau decays, electroweak precision
data, and LNU phenomenology from the anomalies in B
decays. But there are still to crucial questions to this model,
namely, how to generate active neutrino masses and DM?
This work indicated that these problems can be solved

based on the mechanisms of generating the active neu-
trino masses by radiative corrections. In particular, the sim-
plest way to generate the active neutrino masses based
on the Zee models was shown in detail. The model pre-
dicts the existence of a new pair of singly charged Higgs
bosons that have large couplings only with light leptons and
Higgs bosons. The DM problem can be solved by apply-
ing similar mechanisms shown in many radiative neutrino
mass models with DM that were widely investigated previ-
ously.

In this work we have analyzed a more general diagonal-
ization of gauge boson mass matrices. We have found that the
ratio of the tangents of the Z–Z ′ and W–W ′ mixing angles
is the cosine of the Weinberg angle, cos θW . This leads to
the consequence that the number of the model parameters is
reduced by 1.

The most important results of this work were obtained
in the Higgs sector where new interesting properties of
physical Higgs bosons were explored. First, using the min-
imal conditions of the Higgs potential to cancel all mutu-
ally dependent parameters in the potential, we found that
the two squared mass matrices of singly charged and neu-
tral CP-odd Higgs bosons are proportional to the coefficient
of the triple Higgs couplings μ. Second, the masses and
physical states of all Higgs bosons, as well as their mix-
ing matrices, were presented clearly so that all couplings of
the Higgs bosons with the remaining particles can be deter-
mined. From this, the SM-like Higgs boson and its couplings
were easily identified and compared with experimental data,
leading to the important constraint on the mixing parame-
ter ch , namely 0.995 < |ch | < 1. Regarding the new Higgs
bosons, three Higgs bosons h0

1, ha and h±
1 have degener-

ate masses. Namely, the analytic expression for the squared
mass is μu

s2β
+ v2sβcβ , where the main contribution has the

same form as the new Higgs boson masses in the MSSM.
In addition, their coupling properties are the same as in the
THDM of type I. Hence, their behaviors can be predicted
based on well-known studies of the THDM as well as of the
MSSM.

We combined the above results and the allowed regions
of parameters indicated in Refs. [12,13] to predict some pro-
moting decay channels of new fermions and Higgs bosons.
We found that the decays of new heavy particles to SM-
like gauge bosons are very suppressed, due to the very
small mixing of heavy and SM gauge bosons. The main
decays of heavy fermions into two SM-like particles are
the decays F1,2 → h0

1 f1,2. Decays into SM-like fermions
in the third family are very suppressed because the allowed
regions contain the tiny coefficient �τ,b. The main decay of
h±

1 is h± → tb. The latest searches for this decay chan-
nel give a 1 TeV lower bound for the charged Higgs boson
mass.
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The LHC have searched for many decay channels of new
fermions into SM-like fermions of the third family. So the
model will be checked by experiments in coming years.
If these decay channels are detected, the model must be
extended. For example, the third family of new vector-like
fermions should be added to release the allowed regions of
parameters.
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Appendix A: Masses and mixing parameters of charged
leptons

If λ� has the form given in Eq. (20), the precise formula of
V 11
L defined in (22) is

V 11
L =

√
I3 − 1

4
λ�M̃

−2
L λ

†
�

=

⎛
⎜⎜⎜⎝
sβ ′ 0 0

0 1 − c2
β′�2

μ

1+ρμτ
− c2

β′�μ�τ

1+ρμτ

0 − c2
β′�μ�τ

1+ρμτ
1 − c2

β′�2
τ

1+ρμτ

⎞
⎟⎟⎟⎠ , (A1)

where ρμτ =
√

1 − c2
β ′
(
�2

μ + �2
τ

)
. Other submatrices con-

tained in VL are

V 12
L =

⎛
⎜⎜⎜⎜⎝

− s2
β M̃L1u

ML1
0

0 −�μsβ′ M̃L2uρμτ

ML2

0 −�τ sβ′ M̃L2uρμτ

ML2

⎞
⎟⎟⎟⎟⎠ ,

V 21
L =

(
sβ ′ 0 0
0 sβ ′�μ sβ ′�τ

)
,

V 22
L = diag

(
ML1

M̃L1u
,

ML2

M̃L2u

)
.

After the block-diagonalization, the SM blocks of fermions
matrices must satisfy the experimental constraints. In gen-
eral, the SM block of the charged lepton mass matrix
VeVLMEW †

e = M′
E will not be diagonal if the matrix y� in

(13) is assumed to be diagonal for simplicity. Instead of, y�
is chosen so that only mixing on μ − τ sector is non-zero,
the corresponding SM block of M′

E is

M� � vsβ√
2

⎛
⎜⎜⎜⎜⎝

yesβ ′ 0 0

0 yμ

[
1 − c2

β′�μ(�μ+�τ yτμ/yμ)

1+ρμτ

]
yμτ − c2

β′�μ(�μyμτ +�τ yμ)

1+ρμτ

0 yτμ − c2
β′�τ (�μyτμ+�τ yτ )

1+ρμτ
yτ

[
1 − c2

β′�τ (�τ +�μyμτ /yτ )

1+ρμτ

]

⎞
⎟⎟⎟⎟⎠ . (A2)

There exist values of yμτ,τμ such that the matrix (A2) is
diagonal and the result of [12,13] is unchanged. The diagonal
SM block of charged leptons also guarantees that the lepton
flavor violating decay h0

1 → μτ is suppressed, consistent
with experimental constraints. Then yμτ and yτμ are chosen
to satisfy the condition (M�)23 = (M�)32 = 0. Now the
elements of the Yukawa coupling matrix y� can be expressed
as

ye =
√

2me

vsβsβ ′
, yμ,τ =

√
2mμ,τ

vsβ

× 1

�2
τ + �2

μ

[
�2

τ,μ + �2
μ,τ

ρμτ

]
,

yμτ,τμ = −
√

2mτ,μ

vsβ
× �μ�τ

�2
τ + �2

μ

[
1 − 1

ρμτ

]
. (A3)

Appendix B: Neutrino masses from one-loop corrections

First, we consider the simplest case where ϕ±, δ± and
charged leptons in Fig. 1 are all mass eigenstates; the one-
loop amplitude contributing to the neutrino masses is

i
1

2
(mν)baνLb (νLa )

c

≡
∫

d4 p

(2π)4 νLb [−i(y�)db] imed

p2 − m2
ed

[−i2 fda](νLa )
c

× i

p2 − m2
δ

(
−iλδ

uvcβ

2

) i

p2 − m2
ϕ±

, (B1)

where we have used 〈	0〉 = u√
2

, 〈ϕ′0〉 = vcβ√
2

and masses of

the charged leptons med = (y�)cd〈ϕ0〉. The right hand side
of (B1) is rewritten as
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i(m′
ν)ba ≡ 2med fdaλδcβ(y�)dbuv

×
∫

d4 p

(2π)4

1(
p2 − m2

δ

) (
p2 − m2

ϕ±
) (

p2 − m2
ed

)

= 2med fdaλδcβ(y�)db
uv

16π2 × 1

m2
ϕ± − m2

δ

× ln

[
m2

δ

m2
ϕ±

]
,

where

∫
d4 p

(2π)4

1(
p2 − m2

δ

) (
p2 − m2

ϕ±
) (

p2 − m2
ed

)
∣∣∣∣∣∣
m2
ed

→0

= i

16π2 × 1

m2
ϕ± − m2

δ

ln

[
m2

δ

m2
ϕ±

]
. (B2)

Because νLb (νLa )
c = νLa (νLb )

c, the mass matrix (mν)ab
is written in the symmetric form as follows: (mν)ab =
(mν)ba = 1

2

[
(m′

ν)ab + (m′
ν)ba

]
. In the simple case, where

(y�)db = δdbmeb/〈ϕ0〉 = δdbmeb

√
2/(vsβ), we can use the

antisymmetric property fad = − fda to write the neutrino
mass matrix in the following form:

(mν)ba = fbaλδ

√
2

16π2tβ
× u

(
m2

eb − m2
ea

)
m2

ϕ± − m2
δ

ln

[
m2

δ

m2
ϕ±

]
. (B3)

If mδ = mϕ± , then limmδ→mϕ±
1

m2
ϕ±−m2

δ

ln[ m2
δ

m2
ϕ±

] =
− 1

m2
ϕ±

, leading to a simpler form of (B3).
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