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Abstract. We show that the neutrino mass matrix of the Zee-Babu model is able to fit the recent data on neutrino
masses and mixing with non-zero θ13 in the inverted neutrino mass hierarchy. The results show that the Majorana
phases are equal to zero and the Dirac phase (δ ) is predicted to either 0 or π , i. e, there is no CP violation in the
Zee-Babu model at the two loop level. The effective mass governing neutrinoless double beta decay and the sum of
neutrino masses are consistent with the recent analysis.
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I. INTRODUCTION

At present, neutrino and Higgs physics are hot topics in Particle Physics. The neutrino mass
and mixing are the first evidence of beyond Standard Model (SM) physics. Despite the Higgs
boson has been discovered by the ATLAS [1] and the CMS [2] but to which model it belongs still
an open question. For the aforementioned reasons, the search for an extended model coinciding
with the current data on neutrino physics is one of our top priorities. In our opinion, the model
with the simplest particle content is preferred. By this criterion, the Zee-Babu model [3–5] is
very attractive. In our previous work [6], we have derived the exact solution for the neutrino mass
matrix in the model under consideration and derived some regions of the parameters in the normal
neutrino mass hierarchy.

As far as we know at present the values of the absolute neutrino masses as well as the mass
ordering of neutrinos are still an open problem. The mass ordering of neutrino depends on the sign
of ∆m2

31 which is currently unknown. In the case of 3-neutrino mixing, the two possible signs of
∆m2

31 corresponding to two types of neutrino mass spectrum can be provided as follows
(1) Normal hierarchy (NH): |m1| ' |m2|< |m3|, ∆m2

31 = m2
3−m2

1 > 0.
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(2) Inverted hierarchy (IH): |m3|< |m1| ' |m2|, ∆m2
31 = m2

3−m2
1 < 0.

In this paper, we focus on the effective mass governing neutrinoless double beta decay and
the sum of neutrino masses. As will be discussed below, the model can give some regions of the
parameters where neutrino mixing angles and the inverted neutrino mass hierarchy obtained con-
sistent with the recent experimental data. Indeed, by starting from the neutrino mass matrix in the
Zee-babu model [3–5], we get the exact solution, i.e., the eigenstates and the eigenvalues. Com-
paring the model results with the experimental data we get the model parameters. The effective
mass governing neutrinoless double beta decay and the sum of neutrino mass are consistent with
the recent analysis.

This paper is organized as follows. In Sec. II, we briefly present the Zee-Babu model and
its neutrino mass matrix. Sec. III is devoted for the solution and phenomenology with focus on
the inverted spectrum. We summarize our result in the last section - Sec. IV.

II. ZEE-BABU MODEL AND NEUTRINO MASS MATRIX

With just two SU(2)L singlet Higgs fields, a singly charged field h− and a doubly charged
field k−− and without right-handed neutrinos, the new Yukawa interactions in the Zee-Babu model
[4] are

LY = fab(ψaL)CψbLh++h′ab(laR)ClbRk+++H.c., (1)

where ψL stands for the left-handed lepton doublet, lR for the right-handed charged lepton singlet
and (a,b = e,µ,τ) being the generation indices, a superscript C indicating charge conjugation.
Note that fab is antisymmetric ( fab = − fba) and h′ab is symmetric (h′ab = h′ba). In terms of the
component fields, the interaction Lagrangian is given by

LY = 2
[

feµ(ν̄c
e µL− ν̄c

µeL)+ feτ(ν̄c
e τL− ν̄c

τ eL)+ fµτ(ν̄c
µτL− ν̄c

τ µL)
]

h+

+
[
heeēceR +hµµ µ̄cµR +hττ τ̄cτR +heµ ēcµR +heτ ēcτR +hµτ µ̄cτR

]
k++ (2)

+ H.c.

where we have used haa = h′aa,hab = 2h′ab for a 6= b. In Eq. (1), the lepton number is conserved,
and neutrino mass will be generated due to the Higgs potential given by:

V (φ ,h+,k++) = µ(h−h−k+++h+h+k−−)+ · · ·. (3)

Here, the lepton number is violated by two units, hence one expects the Majorana neutrino masses.
From Eq.(1), it follows both h− and k−− carry lepton number two, so the coefficient µ in (3)
also carries lepton number two. Therefore it is expected that the Majorana neutrino masses are
generated by loop quantum effects. At the two-loop level, the mass matrix for Majorana neutrinos
is given by

Mab = 8µ fach∗cdmcmdIcd( f+)db, (4)

where Icd has the form [7]

Icd =
∫ d4k

(2π)4

∫ d4q
(2π)4

1
k2−m2

c

1
k2−M2

h

1
q2−m2

d

× 1
q2−M2

h

1
(k−q)2−M2

k
. (5)
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Assuming masses of new Higgses are much larger than lepton ones, we can evaluate Icd as follows

Icd ' I =
1

(16π2)2
1

M2
π2

3
Ĩ(r), M ≡max(Mk,Mh). (6)

Here Ĩ(r) is a function of the ratio of the masses of the charged Higgses r ≡M2
k /M2

h ,

Ĩ(r) =
{

1+ 3
π2 (log2 r−1) for r� 1

1 for r→ 0,
(7)

which is close to 1 for a wide range of scalar masses.
The neutrino mass matrix in (4) is symmetric and given by [8]

Mν =−Iµ f 2
µτ× ε2ωττ +2εε ′ωµτ + ε ′2ωµµ εωττ + ε ′(ωµτ − εωeτ − ε ′ωeµ) −ε ′ωµµ − ε(ωµτ + εωeτ + ε ′ωeµ)

? ωττ + ε ′2ωee−2ε ′ωeτ εε ′ωee−ωµτ − εωeτ + ε ′ωeµ

? ? ωµµ +2εωeµ + ε2ωee


(8)

where we have redefined parameters:

ε ≡ feτ

fµτ

, ε
′ ≡

feµ

fµτ

ωab ≡ mah∗abmb. (9)

Let us denote [6, 9]

ω
′
ττ ≡ ωττ + ε

′2
ωee−2ε

′
ωeτ ,

ω
′
µτ ≡ ωµτ + εωeτ − ε

′
ωeµ − εε

′
ωee,

ω
′
µµ ≡ ωµµ +2εωeµ + ε

2
ωee,

then the neutrino mass matrix can be rewritten in the compact form

Mν =−Iµ f 2
µτ

 ε2ω ′ττ +2εε ′ω ′µτ + ε ′2ω ′µµ εω ′ττ + ε ′ω ′µτ −εω ′µτ − ε ′ω ′µµ

? ω ′ττ −ω ′µτ

? ? ω ′µµ

 . (10)

Next we turn to solution and implication to current neutrino data with a rather large θ13.

III. SOLUTION AND PHENOMENOLOGY

To begin this section, let us present the recent data on neutrino mass and mixing. The best
fit values of neutrino mass squared differences and the leptonic mixing angles in [10] have been
given to be slightly deviation from Tri-bimaximal mixing form in the inverted spectrum, as shown
in Tab. 1 with a rather large θ13.

The matrix Mν in (10) has three exact eigenvalues given by

λ1 = 0,

λ2,3 =
1
2

(
−kF±

√
k2
[
F2 +4(1+ ε2 + ε ′2)(ω ′2µτ −ω ′µµω ′ττ)

])
, (11)
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Table 1. The experimental values of neutrino mass squared splittings and leptonic mixing
parameters, taken from [10] for inverted hierarchy.

Parameter Best fit 1σ range 2σ range

∆m2
21(10−5eV2) 7.62 7.43−7.81 7.27−8.01

∆m2
13(10−3eV2) 2.43 2.37−2.50 2.29−2.58

sin2
θ12 0.32 0.303−0.336 0.29−0.35

sin2
θ23 0.60 0.569−0.626 0.39−0.65

sin2
θ13 0.025 0.0223−0.0276 0.02−0.03

where we have denoted

k = µI f 2
µτ , F = (1+ ε

′2)ω ′µµ +2εε
′
ω
′
µτ +(1+ ε

2)ω ′ττ . (12)

The massless eigenstate is given by

ν1 =
1√

f 2
eµ + f 2

eτ + f 2
µτ

( fµτνe− feτνµ + feµντ).

(13)

Until now values of neutrino masses (or the absolute neutrino masses) as well as the mass ordering
of neutrinos are unknown. An upper bound on the absolute value of neutrino mass was found from
the analysis of the cosmological data [11]

mi ≤ 0.6eV, (14)

while the upper limit on the sum of neutrino mass is given in Ref. [12]
3

∑
i=1

mi ≤ 0.66eV. (15)

In the inverted hierarchy, three neutrino masses are chosen as follows:

m1 = λ3, m2 = λ2, m3 = 0, (16)

with λi (i = 1,2,3) is defined in (11), and the corresponding eigenstates put in the neutrino mixing
matrix:

UνI =


A2√

1+A2
2+B2

2
− A1√

1+A2
1+B2

1

1√
1+ε2+ε ′2

B2√
1+A2

2+B2
2
− B1√

1+A2
1+B2

1
− ε√

1+ε2+ε ′2

1√
1+A2

2+B2
2
− 1√

1+A2
1+B2

1

ε ′√
1+ε2+ε ′2

 , (17)

where [6]

A1,2 =
−k
[
ε(ε ′2−1)ω ′µµ +2ε ′(1+ ε2)ω ′µτ + ε(1+ ε2)ω ′ττ

]
± ε
√

k2F ′

2k
[
εε ′ω ′µµ +(1+ ε2)ω ′µτ

] , (18)

B1,2 ≡
k(1+ ε ′2)ω ′µµ − k(1+ ε2)ω ′ττ ±

√
k2F ′

2k
[
εε ′ω ′µµ +(1+ ε2)ω ′µτ

] , (19)
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and

F ′ = F2 +4(1+ ε
2 + ε

′2)(ω ′2µτ −ω
′
µµω

′
ττ). (20)

The eigenstates νi corresponding to the eigenvalues mi (i = 1,2,3) are found to be

ν1 =
A2√

1+A2
2 +B2

2

νe +
B2√

1+A2
2 +B2

2

νµ +
1√

1+A2
2 +B2

2

ντ ,

ν2 = − A1√
1+A2

1 +B2
1

νe−
B1√

1+A2
1 +B2

1

νµ −
1√

1+A2
1 +B2

1

ντ ,

ν3 =
1√

f 2
eµ + f 2

eτ + f 2
µτ

( fµτνe− feτνµ + feµντ). (21)

Some useful relations are in order [6]

A1A2 +B1B2 +1 = 0,
A1− εB1 + ε

′ = 0,
A2− εB2 + ε

′ = 0,
(A1−A2)/(B1−B2) = ε. (22)

One also has

A1A2 =
(ε ′2− ε2)ω ′µτ + εε ′(ω ′ττ −ω ′µµ)

εε ′ω ′µµ +(1+ ε2)ω ′µτ

,

B1B2 = −
(1+ ε ′2)ω ′µτ + εε ′ω ′ττ

εε ′ω ′µµ +(1+ ε2)ω ′µτ

. (23)

In the standard Particle Data Group (PDG) parametrization, the neutrino mixing matrix (UPMNS)
can be parametrized as [13]

UPMNS =

 c12c13 s12c13 s13e−iδ

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13

s12s23− c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13

×P, (24)

where P = diag
(

1,ei α21
2 ,ei α31

2

)
, and ci j = cosθi j, si j = sinθi j with θ12, θ23 and θ13 being the solar,

atmospheric and the reactor angles, respectively, the angles θi j = [0, π

2 ]. δ = [0,2π] is the Dirac
CP violation phase and α21,α31 are two Majorana CP violation phases. It is to be mentioned that
in our previous work [6], the Majorana has been included in a simple form.
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By comparing Eqs. (17) and (24), all the parameters in the lepton mixing matrix in (17) can
be parameterized in terms of three Euler’s angles θi j as follows:

ε =

c13

(
B2√

1+A2
2+B2

2
+ s12c23

)
c12s2

13
, ε
′ =−c23

s23
.ε, (25)

ei α21
2 = − 1

s12c13

A1√
1+A2

1 +B2
1

,

ei α31
2 = − 1

c13s23

ε√
1+ ε2 + ε ′2

,

eiδ = − s13

c13s23
ε, (26)

and two solutions with A2,B2:

A2 =
c12c13

s12s23 + c12s13c23
≡ A+

2 ,

B2 =
c12s12c13 + s23c23(c2

12c2
13−1)

s2
12 + c2

23(c
2
12c2

13−1)
≡ B+

2 , (27)

or

A2 =
c12s12c13

s2
12s23− c12s12s13c23

≡ A−2 ,

B2 =
−c12s12c13 + s23c23(c2

12c2
13−1)

s2
12 + c2

23(c
2
12c2

13−1)
≡ B−2 . (28)

Let us consider both the solution in Eqs. (27) and (28).

III.1. The solution with A+
2 ,B

+
2

It is easily shown that, in this case, the model is consistent because the five experimental
constraints on the mixing angles and squared mass differences of neutrinos can be respectively
fitted with all parameters of the model. Indeed, with A2 = A+

2 ,B2 = B+
2 given in Eq. (27), taking

the data in Ref. [10] given in Tab. 1, we obtain

A1 = −0.95944, A2 = 1.56394, B1 =−1.01484, B2 =−0.49319, (29)

ε = 4.83735, ε
′ =−3.94968,

ε

ε ′
=−1.22474, (30)

ei α21
2 = 1, ei α31

2 =−1, eiδ =−1. (31)

Eq. (31) implies α21 = 0, α31 = 2π , δ = π , i.e, there is no CP-violation. The neutrino mixing
matrix then takes the form:

UνI =

 0.81425 0.55857 0.15811
−0.25678 0.59082 −0.76485
0.52064 −0.58218 −0.62450

 . (32)
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The physical neutrino masses are obtained as

m1 =
√

∆m2
13 = 4.9295×10−2 eV,

m2 =
√

m2
1−∆m2

21 = 4.8516×10−2 eV, m3 = 0, (33)

and the effective masses 〈mee〉,mβ governing neutrinoless double beta decay [14–18] as well as
the sum of the neutrino masses are given by:

〈mee〉=|
3

∑
i=1

U2
eimi |= 0.04782eV, (34)

mβ =
3

∑
i=1
|Uei |2 m2

i = 0.04843eV, (35)

m1 +m2 +m3 = 0.09781eV. (36)

As before, we assume ω ′µµ = ω ′ττ = ω ′ [6]. Substituting ε,ε ′ in Eq. (30) into (11) and (16) yields

ω
′
µτ = 1.07194ω

′, k =−0.0200278
ω ′

, (37)

or

ω
′
µτ = 1.07399ω

′, k =−0.0197385
ω ′

. (38)

Eq. (31) shows that in this case one the Dirac and one Majorana phase is nonzero, however, there
is no CP violation phase. Our next step is the second case.

III.2. The solution with A−2 ,B
−
2

In this case, taking the data in [10] given in Tab. 1, we obtain

A1 =−0.80333, A2 = 2.28904, B1 =−0.65043, B2 =−1.2897, (39)

ε =−4.83735, ε
′ = 3.94968,

ε

ε ′
=−1.22474, (40)

ei α21
2 = ei α31

2 = eiδ = 1. (41)

Eq. (41) implies α21 = α31 = δ = 0. Then, the neutrino mixing matrix is

UνI =

 0.81425 0.55857 0.15811
−0.45877 0.45225 0.76485
0.35572 −0.69532 0.6245

 . (42)

Three neutrino masses are given in (36), and the effective masses 〈mee〉,mβ governing neutrinoless
double beta decay as well as the sum of the neutrino masses are given by (34), (35) and (36). The
relation between ω ′µτ ,k and ω ′ are given in Eqs.(37) and (38). Note that in this case, all Dirac and
Majorana violation phases are vanished.
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IV. CONCLUSION

In this paper we have derived the exact eigenvalues and eigenstates of the neutrino mass
matrix in the Zee-Babu model in which the most recent data on neutrino masses and mixing with
large θ13 are updated. For the inverted spectrum, one phase (α31) takes the value 2π and the Dirac
phase (δ ) is predicted to either 0 or π , i. e, there is no CP violation in the Zee-Babu model at the
two loop level. Taking into account of the effective mass governing neutrinoless double beta decay
and the sum of neutrino, we have showed that this model fits well with the recent experimental
data in inverted spectrum. Therefore we conclude that the Zee-Babu model is fascinating one for
neutrino physics.
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