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A model of a neutrino mixing with an A4 × Z3 × Z4 flavor symmetry is suggested. In addition to the
standard model fields, the present model contains six new fields that transform under different
representations of A4 × Z3 × Z4. The model is constructed to slightly deviate from a tribimaximal model
in agreement with the current experimental data; thus, all analysis can be done in the base of the
perturbation method. Within this model, as an application, a relation between the mixing angles (θ12, θ23,
θ13) and the Dirac CP-violation phase (δCP) is established. This relation allows a prediction of δCP and the
Jarlskog parameter (JCP). The predicted value δCP is in the 1σ region of the global fit for both the normal
and inverse neutrino mass ordering and gives JCP to be within the bound jJCPj ≤ 0.04. For an illustration,
the model is checked numerically and gives values of the neutrino masses (of the order of 0.1 eV) and the
mixing angle θ13 (about 9°) very close to the current experimental data.
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I. INTRODUCTION

After the discovery of the Higgs boson, called also the
Brout-Englert-Higgs boson, [1,2] by the LHC collabora-
tions ATLAS and CMS (for a review, see, for example, [3]),
the particle content of the standard model (SM) seems to
have been completely confirmed by the experiment. The SM
is an excellent model of elementary particles and their
interactions as it can explain and predict many phenomena,
at least until the energy scale around the top quark mass.
However, there are open problems that cannot be solved
within the SM and thus call for modifying or extending the
latter. The problem of neutrino masses and mixings [4–9] is
among such problems beyond the SM. This problem is
important for not only particle physics but also nuclear
physics, astrophysics, and cosmology; therefore, it has
attracted much interest [10–14]. The neutrino mixingmeans
that the flavor neutrinos (flavor eigenstates of neutrinos) are
superpositions of massive neutrinos (mass eigenstates of
neutrinos) encoded in the so-called Pontecorvo-Maki-
Nakagawa-Sakata (PMNS)matrix in terms ofmixing angles
θij and a given number of phases, while in the SM the
neutrinos aremassless and notmixing.One of theways to try
to explain this phenomenon is to add a flavor symmetry to
the gauge symmetrySUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY of the SM
(see [15,16] for a review). A popular flavor symmetry
intensively investigated in the literature is that described
by the group A4 (see, for instance, [16–24]) allowing one to

obtain a tribimaximal (TBM) neutrino mixing correspond-
ing to the mixing angles θ12 ≈ 35.26° (sin2 θ12 ¼ 1=3),
θ13 ¼ 0°, and θ23 ¼ 45° (see [25]). The recent experimental
data such as those from T2K [26,27], RENO [28],
DOUBLE-CHOOZ [29], and DAYA-BAY [30,31] showing
a nonzero mixing angle θ13 and a possible nonzero Dirac
CP-violation (CPV) phase δCP, reject, however, the TBM
scheme [32,33]. There have been many attempts to explain
these experimental phenomena. In particular, for this pur-
pose, various models with a discrete flavor symmetry
[15,34–36], including an A4 flavor symmetry, have been
suggested [15–24,37–47].
In general, themodels, based onA4 flavor symmetry, have

extended lepton and scalar sectors containing new fields in
addition to the SM ones that now may have an A4 symmetry
structure. Therefore, besides undergoing the SM symmetry,
these fields may also transform under A4. At the beginning,
the A4-based models were build to describe a TBM neutrino
mixing (see, for example, [18]) but latermany attempts, such
as those in [15–17,19–24,38,39,43–46], to find a model
fitting the non-TBM phenomenology, were made. On these
models, however, are often imposed some assumptions, for
example, the vacuum expectation values (VEVs) of some of
the fields, especially those generating neutrino masses, have
a particular alignment [40–44]. These assumptionsmay lead
to a simpler diagonalization of a mass matrix but restrict the
generality of the model. Since, according to the current
experimental data, the discrepancy of a phenomenological
model from a TBM model (i.e., a model in which the
neutrino mixingmatrix has a TBM form [25]) is quite small,
we can think about a perturbation approach to building a
new, realistic, model [45].
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The perturbative approach has been used by several
authors (see, for example, [48,49]) but their methods
mostly are model independent, that is, no model realizing
the experimentally established neutrino mixing has been
shown. On the other hand, most of the A4-based models are
analyzed in a nonperturbative way. There are a few cases
such as [50] where the perturbativemethod is applied but the
authors’ approach is different from ours and their analysis,
sometimes, is not precise (for example, the conditions
imposed in Sec. IV of [50] are not always possible).
Besides that, in many works done so far, the neutrino
mixing has been investigated with a less general vacuum
structure of scalar fields.
In this paper we introduce an A4 flavor symmetric

standard model, which can generate a neutrino mixing,
deviating from the TBM scheme slightly, as requested and
explained above. Since the deviation is small we can use a
perturbation method in elaborating such a non-TBM
neutrino mixing model. The model field content is that
of the SM extended with six new fields, all are SUð2ÞL
singlets (isosinglets), transforming under different repre-
sentations of A4: an A4 triplet fermion N, two A4 triplet
scalars φE and φN , and three A4 singlet scalars ξ, ξ0, and ξ00.
In order to exclude unwanted interactions two additional
symmetries, namely,Z3 andZ4, are imposed, and, as a result,
the model is based on an A4 × Z3 × Z4 flavor symmetry
times the SM symmetry (see Table I for more detailed group
transformations of the lepton and scalar fields in this
extended model). For generality we consider a scalar sector
containing all possible representations of A4. The presence
of the fields ξ0 and ξ00 guarantees a nontrivial mass matrix of
the charged leptons; otherwise, the latter would become
massless. The corresponding neutrino mass matrix can be
developed perturbatively around a neutrino mass matrix
diagonalizable by a TBMmixing matrix. As a consequence,
a relation between the Dirac CPV phase δCP and the mixing
angles θij, i, j ¼ 1, 2, 3 (for a three-neutrino mixing model)
are established. Based on the experimental data of the
mixing angles, this relation allows us to determine δCP
numerically in both normal ordering (NO) and inverse
ordering (IO). It is very important as the existence of a
Dirac CPV phase indicates a difference between the prob-
abilities Pðνl → νl0 Þ and Pðν̄l → ν̄l0 Þ, l ≠ l0, of the neutrino
and antineutrino transitions (oscillations) in vacuum νl →
νl0 and ν̄l → ν̄l0 , respectively, thus, a CP violation in the

neutrino subsector of the lepton sector. We should note that
for a three-neutrino mixing model, as considered in this
paper, the mixing matrix in general has one Dirac and two
Majorana CPV phases [51] (for a more general, n-neutrino
mixing, case, see [52,53]). Since the Majorana CPV phases
do not effect these transition probabilities they are not a
subject of detailed analysis here.
In the framework of the suggested model and the

perturbation method our approach allows us to obtain δCP
within the 1σ region of the best fit value [33]. This approach
is different but our result is quite consistent with that
obtained by other authors (see, for example, [54–60] and
references therein). Further, knowing δCP we can determine
the Jarlskog parameter (JCP) measuring aCP violation. The
determination of δCP and JCP represents an application of
the present model and, in this way, verifies the latter (of
course, it is not a complete verification). A numerical test
of the model gives values of the neutrino masses, the mixing
angle θ13 and the Dirac CP-violation phase consistent with
the current experimental results.
This paper has the following plan. A brief introduction to

the representations of A4 and their application to building
an extended standard model is made in the next section.
Neutrino masses and mixing within this model are con-
sidered in Sec. III via a perturbation method. Section IV is
devoted to the investigation of the Dirac CPV phase and
Jarlskog parameter. The last section is designed for some
discussions and conclusions.

II. EXTENDED STANDARD MODEL WITH AN
A4 × Z3 × Z4 FLAVOR SYMMETRY

Here, we deal with an extended SM acquiring an
additional A4 flavor symmetry. An extra Z3 × Z4 symmetry
is also introduced to constrain the model not to deviate too
much from the SM. As mentioned above, the flavor
symmetry, in particular, that is based on the group A4,
has attracted much interest during the last ten years or so
(see [15,16] for a review). Let us first summarize here
representations of A4 [15,22,61] and then review briefly the
model that is considered.

A. Summary of representations of A4

The group A4 is a group of even permutations on four
objects and thus it has 12 elements (12 ¼ 4!=2). This group
is also called the tetrahedral group as it can describe the
orientation-preserving symmetry of a regular tetrahedron. It
can be generated by two basic permutations S and T having
properties

S2 ¼ T3 ¼ ðSTÞ3 ¼ 1: ð1Þ
The group representations are relatively simple and include
three one-dimensional unitary representations 1, 10, and 100
with the generators S and T given, respectively, as follows,

TABLE I. Lepton and scalar sectors of the model and their
group transformations, where ωk ¼ e2kπ=3, k ¼ 0, 1, 2.

lL ~eR ~μR ~τR ϕh N φE φN ξ ξ0 ξ00

SUð2ÞL 2 1 1 1 2 1 1 1 1 1 1
A4 3 1 10 100 1 3 3 3 1 10 100
Z3 ω2 1 1 1 ω2 ω 1 ω ω ω ω2

Z4 i 1 1 1 1 i i −1 −1 i i
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1∶ S ¼ 1; T ¼ 1; ð2aÞ

10∶ S ¼ 1; T ¼ ei2π=3 ≡ ω; ð2bÞ

100∶ S ¼ 1; T ¼ ei4π=3 ≡ ω2; ð2cÞ

and a three-dimensional unitary representation with the
generators

T ¼

0
B@

1 0 0

0 ω2 0

0 0 ω

1
CA; S ¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA: ð3Þ

Here we use the three-dimensional representation where the
generator T has a diagonal form [18]. The reason for
choosing this representation is that the latter ensures the
diagonal mass matrix of the charged leptons (see the next
section).
Representation theory and applications of a group often

require knowing a multiplication and decomposition rule of
a product of its (irreducible) representations. In the case of
A4 these rules read

1 × 1 ¼ 1; ð4aÞ
10 × 100 ¼ 1; ð4bÞ

100 × 10 ¼ 1; ð4cÞ

10 × 10 ¼ 100; ð4dÞ

100 × 100 ¼ 10; ð4eÞ

3 × 3 ¼ 1þ 10 þ 100 þ 3s þ 3a: ð4fÞ

While the first five rules are trivial, let us give more explicit
expressions for the multiplication and decomposition rule
for a product (4f) between two triplets, say 3a ∼ ða1; a2; a3Þ
and 3b ∼ ðb1; b2; b3Þ. This direct product can be decom-
posed into three singlets and two triplets as follows:

1 ¼ a1b1 þ a2b3 þ a3b2; ð5aÞ

10 ¼ a3b3 þ a1b2 þ a2b1; ð5bÞ

100 ¼ a2b2 þ a1b3 þ a3b1; ð5cÞ

3s ∼
1

3
ð2a1b1 − a2b3 − a3b2; 2a3b3 − a1b2

− a2b1; 2a2b2 − a1b3 − a3b1Þ; ð5dÞ

3a ∼
1

3
ða2b3 − a3b2; a1b2 − a2b1; a1b3 − a3b1Þ: ð5eÞ

The above-given information is used for the construction of
a Lagrangian, as the one in (24), of a model with an A4

symmetry.

B. The model

Compared with the SM, the model studied here contains
an extended lepton and scalar sector (the quark sector is not
considered here yet). The lepton sector includes an A4

triplet N (its components are referred to as right-handed
neutrinos), which is an isosinglet, in addition to the SM
leptons among which the left-handed lepton isodoublets
lL, l ¼ ~e; ~μ; ~τ, all together form an A4 triplet, while the
right-handed lepton isosinglets ~eR, ~μR, and ~τR transform as
A4 singlets 1, 10, and 100, respectively. In general, the basis
l ¼ ~e; ~μ; ~τ, in which the charged lepton mass matrix may
not be diagonal, is different from the standard basis of the
mass states l ¼ e, μ, τ. Besides the original SM Higgs field
ϕh, which is an A4 singlet, the scalar sector of the model has
five additional isosinglet fields: two A4 triplets φE and φN ,
and three A4 singlets ξ, ξ0, ξ00. Our choice of the model field
content thus covers all irreducible representations of A4. To
keep maximally the SM interaction structure (as many of its
consequences have been experimentally verified very well)
an additional Z3 × Z4 symmetry is introduced. The trans-
formation rules under SUð2ÞL, A4, Z3, and Z4 of the leptons
and the scalars in this model are summarized in Table I. Let
us look at a closer distance the scalar and the lepton sector.

1. Scalar sector

The scalar potential has the form

Vðϕh;φE;φN;ξ;ξ0;ξ00Þ ¼V1ðϕhÞþV2ðφE;ξ0;ξ00Þ
þV3ðφN;ϕh;ξ;ξ0;ξ00ÞþV4ðξ;ϕhÞ;

ð6Þ

with

V1ðϕhÞ ¼ μ2hðϕ†
hϕhÞ þ λhðϕ†

hϕhÞ2; ð7Þ

V2ðφE;ξ0;ξ00Þ ¼ α1ðφEφEÞ1ðφEφEÞ1þα2ðφEφEÞ10 ðφEφEÞ100
þα3ðφEφEÞ3sðφEφEÞ3s
þα4ðφEφEÞ3aðφEφEÞ3a
þα5ðφEφEÞ3sðφEφEÞ3a
þ
�
α6
2
ðφEφEÞ1ðξ0ξ00Þ1þH:c:

�
; ð8Þ

V3ðφN;ϕh; ξ; ξ0; ξ00Þ
¼ μ2ðφ†

NφNÞ1 þ λ1ðφ†
NφNÞ21 þ 2λ2ðφ†

NφNÞ10 ðφ†
NφNÞ100

þ λ3ðφ†
NφNÞ3sðφ†

NφNÞ3s þ λ4ðφ†
NφNÞ3aðφ†

NφNÞ3a
þ 2λ5ðφ†

NφNÞ3sðφ†
NφNÞ3a þ γ1ðφ†

NφNÞ1ðξ†ξÞ1
þ γ2ðφ†

NφNÞ100 ðξ00†ξ00Þ10 þ γ3ðφ†
NφNÞ10 ðξ0†ξ0Þ100

þ γðφ†
NφNÞ1ðϕ†

hϕhÞ1; ð9Þ
and
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V4ðξ;ϕhÞ ¼ η21ðξ†ξÞ1 þ χ1ðξ†ξÞ21 þ χ2ðξ†ξÞ1ðϕ†
hϕhÞ1: ð10Þ

Here, the coefficients λ2 and λ5 are multiplied by 2 just for further convenience. The additional Z3 × Z4 symmetry is
introduced in order to avoid interactions between the scalar fields φE and φN , which would be

V5ðφE;φNÞ ¼ ρ1ðφEφEÞ3sðφ†
NφNÞ3s þ ρ2ðφEφEÞ3sðφ†

NφNÞ3a þ ρ3ðφEφEÞ3aðφ†
NφNÞ3s þ ρ4ðφEφEÞ3aðφ†

NφNÞ3a
þ ρ5ðφEφEÞ1ðφ†

NφNÞ1 þ ρ6ðφEφEÞ10 ðφ†
NφNÞ100 þ ρ7ðφEφEÞ100 ðφ†

NφNÞ10 þ H:c:; ð11Þ

V6ðφE;φNÞ ¼ κ1ðφEφEÞ3sφN þ κ2ðφEφEÞ3aφN

þ κ3ðφ†
NφNÞ3sφE þ κ4ðφ†

NφNÞ3aφE þ H:c:;

ð12Þ

and Yukawa interactions involving φE, φN , and charged
leptons,

−Lf
Y ¼ λfeðl̄LϕhÞ~eR

φN

Λ
þ λfμðl̄LϕhÞ00 ~μR

φN

Λ

þ λfτ ðl̄LϕhÞ0 ~τR
φN

Λ
þ gfNðNcNÞφE þ H:c:; ð13Þ

because such interactions would destroy too much the
charged lepton mass structure, which is already described
relatively well by the SM (see more below).

Let us denote the VEVs of these scalar fields ξ, ξ0, ξ00,
φE ≔ ðϕ1;ϕ2;ϕ3Þ and φN ≔ ðφ1;φ2;φ3Þ as follows:

hξi¼ σa; hξ0i ¼ σb; hξ00i ¼ σc;

hϕhi¼ vh; hφEi¼ ðv1;v2;v3Þ; hφNi¼ ðu1;u2;u3Þ:
ð14Þ

Getting a VEVof φE ¼ ðϕ1;ϕ2;ϕ3Þ imposes an extremum
condition on the potential V,

∂V
∂ϕi

����
hϕii¼vi

¼ 0; ði ¼ 1; 2; 3Þ; ð15Þ

leading to the equation system of vi,

8>><
>>:

2ðα1 þ α03Þv31 þ ðα2 − α03Þðv32 þ v33Þ þ 4ðα1 þ α2Þv1v2v3 þ α6rv1σbσc ¼ 0;

2ðα1 þ α2Þv21v3 þ 3ðα2 − α03Þv1v22 þ ð4α1 þ α2 þ 3α03Þv2v23 þ α6rv3σbσc ¼ 0;

2ðα1 þ α2Þv21v2 þ 3ðα2 − α03Þv1v23 þ ð4α1 þ α2 þ 3α03Þv22v3 þ α6rv2σbσc ¼ 0;

ð16Þ

where

α03 ¼
4α3
9

; α6r ¼
1

2
ðα6 þ α�6Þ: ð17Þ

In principle, this equation system has several solutions but
we choose the one satisfying the equality

v21 ¼ v2 ¼ −α6rσbσc
2ðα1 þ α03Þ

; v2 ¼ v3 ¼ 0; ð18Þ

in order to get, as shown below, a diagonalized mass matrix
of the charged leptons. We note that if the fields ξ0 and ξ00
are excluded from the model, the VEV in (18) becomes a
trivial one, v1 ¼ v2 ¼ v3 ¼ 0, leading, as seen in (25), to
massless charged leptons.
Next, for the VEV of φN ¼ ðφ1;φ2;φ3Þ we have the

equations

8>><
>>:

λ0u1 þ 2ðλ1 þ λ03Þu31 þ ð2λ2 − λ03 þ λ05Þðu32 þ u33Þ þ 2ð2λ1 þ 4λ2 − λ05Þu1u2u3 þ β2u3 þ β3u2 ¼ 0;

λ0u3 þ 2ðλ1 þ 2λ2 þ λ05Þu21u3 þ ð6λ2 − 3λ03 − λ05Þu1u22 þ ð4λ1 þ 2λ2 þ 3λ03 − λ05Þu2u23 þ β2u2 þ β3u1 ¼ 0;

λ0u2 þ 2ðλ1 þ 2λ2Þu21u2 þ ð6λ2 − 3λ03 − λ05Þu1u23 þ ð4λ1 þ 2λ2 þ 3λ03 þ λ05Þu22u3 þ β2u1 þ β3u3 ¼ 0;

ð19Þ

where

λ0 ¼ μ2 þ γ1σ
2
a þ γv2h; λ03 ¼

4λ3
9

; λ05 ¼
4λ5
9

; ð20Þ

β2 ¼ γ2σ
2
c; β3 ¼ γ3σ

2
b: ð21Þ

This equation system has a special solution with
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u21 ¼ u22 ¼ u23 ¼ −
λ0 þ β2 þ β3
6ðλ1 þ 2λ2Þ

≡ u2 ð22Þ

and another solution with

u1 ≠ u2 ≠ u3 ≠ u1; ð23Þ

which, however, has too long of an expression to be written
down here (in fact, we do not need its explicit analytical
expression but below numerical calculations are done). As
we see later, the solution (22) leads to a TBM model, while
the solution (23) leads to a non-TBM model.

2. Lepton sector

Based on the A4 × Z3 × Z4 flavor symmetry we can
construct the following Yukawa terms of the effective
Lagrangian for the lepton sector of the present model:

−LY ¼ λeðl̄LϕhÞ~eR
φE

Λ
þ λμðl̄LϕhÞ00 ~μR

φE

Λ
þ λτðl̄LϕhÞ0 ~τR

φE

Λ

þ λDl̄L
~ϕhN þ gNðNcNÞφN þ gξðNcNÞ1ξþ H:c:

ð24Þ

From this Lagrangian we get the following mass matrix of
the charged leptons:

Ml ¼ vh

0
BBB@

λev1
Λ

λμv2
Λ

λτv3
Λ

λev3
Λ

λμv1
Λ

λτv2
Λ

λev2
Λ

λμv3
Λ

λτv1
Λ :

1
CCCA: ð25Þ

As explained above, we choose the VEV alignment (18),

hφEi ¼ ðv; 0; 0Þ: ð26Þ

This choice of the VEV of φE breaks the symmetry A4

down to its subgroup GS [19]. The corresponding charged
lepton mass matrix automatically has a diagonal form,

Ml ¼

0
B@

yevh 0 0

0 yμvh 0

0 0 yτvh

1
CA ; ð27Þ

where

ye ¼
λev
Λ

; yμ ¼
λμv

Λ
; yτ ¼

λτv
Λ

: ð28Þ

It is obvious that v must be nonzero (v ≠ 0); otherwise, the
charged leptons are massless (this case happens when ξ0
and ξ00 are absent or they develop no VEV).
For the neutrino mass matrix, the Majorana partMN and

the Dirac part MD are respectively

MN ¼

0
B@

2b1 þ d −b3 −b2
−b3 2b2 −b1 þ d

−b2 −b1 þ d 2b3

1
CA; ð29Þ

and

MD ¼ λDvh

0
B@

1 0 0

0 0 1

0 1 0

1
CA; ð30Þ

where

d¼ 2gξσa; b1¼
2

3
gNu1; b2¼

2

3
gNu2; b3 ¼

2

3
gNu3:

ð31Þ

From the seesaw mechanism [10–12,52,62–65], we get a
neutrino mass matrix of the form

Mν ¼ −MT
DM

−1
N MD: ð32Þ

As the scale ofMM is very large but not fixed yet [however,
the relative scale (32) is important] we can work, for a
further convenience, in a scale where MD is normalized to
1, that is, ðλDvhÞ2 ∼ 1. It is not difficult to see that for the
VEV alignment u1 ¼ u2 ¼ u3 ¼ u in (22), that is,
b1 ¼ b2 ¼ b3 ≡ b, the matrix (32) has the form

Mν0¼
1

D0

0
BB@
3b2þ2bd−d2 −3b2þbd −3b2þbd

−3b2þbd 3b2þ2bd 3b2−bd−d2

−3b2þbd 3b2−bd−d2 3b2þ2bd

1
CCA

≡ 1

D0

M0
0; ð33Þ

where D0 ≡ detðM0
NÞ, taking the value

D0 ¼ 9b2d − d3; ð34Þ

is the determinant D≡ detðMNÞ of the matrix MN for
u1 ¼ u2 ¼ u3. It can be checked that the mass matrix Mν0,
as noted above, can be diagonalized by the TBMmatrix (up
to a phase factor)

Utbm ¼

0
BBBBB@

ffiffi
2
3

q ffiffi
1
3

q
0

−
ffiffi
1
6

q ffiffi
1
3

q
−

ffiffi
1
2

q

−
ffiffi
1
6

q ffiffi
1
3

q ffiffi
1
2

q

1
CCCCCA
: ð35Þ

For the VEValignment u1 ≠ u2 ≠ u3 ≠ u1 of φN in (23)
the neutrino mass has a general form
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Mν ¼ −MT
DM

−1
N MD ¼

0
B@

A B C

B E D

C D F

1
CA; ð36Þ

where A, B, C,D, E, and F in general are complex numbers
but here we do not need their explicit expressions. One of
the key problems of a neutrino mass and mixing model is
diagonalizing the corresponding neutrino mass matrix.
Customarily, instead of (36), the matrix

Mν ≡MνM
†
ν ð37Þ

must be diagonalized. Let Upmns be the matrix diagonal-
izing the matrix (37),

diagðMνÞ ¼ U†
pmnsMνUpmns: ð38Þ

Here, Upmns is a mixing matrix, which may differ from the
PMNS matrix, denoted as UPMNS, by a phase factor. It is a
difficult task to find a realistic (phenomenological) model
to realize Upmns, i.e., UPMNS. To solve this problem,
different methods and tricks have been used. Since, as
discussed earlier, Upmns slightly differs from the TBM form
(35) we follow a perturbation approach. This approach
allows us to find a theoretical mixing matrix, say U, which
must be compared with the empirical PMNS matrix.

III. NEUTRINO MASSES AND MIXING

The standard (three) neutrino mixing matrix, the PMNS
matrix, has the canonical form (up to a diagonal phase
matrix to be specified below)

Upmns ¼

0
B@

c12c13 s12c13 s13e−iδ

−c23s12 − s13s23c12eiδ c23c12 − s13s23s12eiδ s23c13
s23s12 − s13c23c12eiδ −s23c12 − s13c23s12eiδ c23c13

1
CA; ð39Þ

where sij ¼ sin θij, cij ¼ cos θij with θij ∈ ½0; π=2� being
mixing angles, and δ≡ δCP ∈ ½0; 2π� being the Dirac CPV
phase. In a TBM model (for which s13 ¼ 0, s223 ¼ 1

2
,

s212 ¼ 1
3
) this matrix Upmns becomes the matrix Utbm in

(35). Here we work with the choice s23 ¼ −
ffiffi
1
2

q
, s12 ¼

ffiffi
1
3

q

but another choice, for example, s23 ¼
ffiffi
1
2

q
, s12 ¼

ffiffi
1
3

q
, can

be made.
The current experimental data (θ13 ≈ 9°, θ23 ≈ 42°,

θ12 ≈ 33°) [32] show that the matrix Upmns can be obtained
from Utbm by a small correction as seen from their
difference,

0
B@

0.006 −0.029 0.153e−iδ

−0.008þ 0.084eiδ 0.047þ 0.056eiδ 0.054

0.041 − 0.095eiδ −0.027 − 0.064eiδ 0.034

1
CA:

ð40Þ

Therefore, we can consider Upmns as a perturbative
development around Utbm. This requirement imposes a
restriction on the construction of a model, in particular, on
its parameters. Working in the basis of the diagonalized
charged lepton mass matrix (i.e., in the basis l ¼ e, μ, τ)
and with a neutrino mixing matrix treated as a small
deviation from the TBM form, one can write a perturba-
tive expansion ofMν around a nonperturbative TBM mass
matrix M0, which can be diagonalized (cf., [45,48]),

U†
TBMM0UTBM ¼ diagðjm01j2; jm02j2; jm03j2Þ; ð41Þ

by the matrix

UTBM ¼

0
BBBBBB@

ffiffi
2
3

q ffiffi
1
3

q
0

−
ffiffi
1
6

q ffiffi
1
3

q
−

ffiffi
1
2

q

−
ffiffi
1
6

q ffiffi
1
3

q ffiffi
1
2

q

1
CCCCCCA

× P0 ∼ ðj10i; j20i; j30iÞ;

ð42Þ
where m0i, i ¼ 1, 2, 3, are nonperturbative masses, and

P0 ¼ diag

�
ei

α01
2 ; ei

α02
2 ; 1

�
; ð43Þ

with α01 and α02 being Majorana phases. We note that
Utbm given in (35) differs fromUTBM (42), used frequently
in the literature, by the factor P0. Thus, Mν in (36) can be
written as

Mν ¼ M0 þ V; ð44Þ
with

M0 ¼
M0

0

D
; D ¼ detðMNÞ; ð45Þ

where M0
0 is defined in (33) and V is a small matrix to be

specified below. At the first order of perturbation the
matrix M is developed around M0 as follows:

Mν ¼ M0 þ ðM†
0V þ V†M0Þ: ð46Þ
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Thus, the squared masses jmij2 obtained by a diagonal-
ization of M represent a perturbative shift

jmij2 ¼ jm0ij2 þ δjmij2 ð47Þ
from the nonperturbative squared masses jm0ij2, where
m0i now have the form

m01 ¼
ð3b − dÞd

D
; m02 ¼

9b2 − d2

D
;

m03 ¼
ð3bþ dÞd

D
: ð48Þ

Since a homogeneous VEV alignment hφNi ¼ ðu; u; uÞ
such as that in (22) leads to a TBM mixing but the
experiment tells us a mixing slightly deviating from the
TBM one, we must consider an inhomogeneous VEV
alignment (23) to deviate from a homogeneous alignment
with an appropriate amount, that is,

ðu1; u2; u3Þ ¼ ðu1; u1 þ ϵ2; u1 þ ϵ3Þ; ð49Þ
where ð0; ϵ2; ϵ3Þ is an appropriate shift of hφNi from the
level ðu1; u1; u1Þ. It can be shown that it is enough this shift

to obey the condition ϵ2; ϵ3 ≪ D=gN , if not stronger, ϵ2,
ϵ3 ≪ 1. The latter can be satisfied if λ1, λ2, λ03, and λ05 are
chosen to have the same order of magnitude but much
bigger than that of λ0, i.e.,

λ0 ≪ λ1 ≈ λ2 ≈ λ03 ≈ λ05 ≡ λ ð50Þ

as well as β2 and β3 being chosen to be at the same order of
magnitude but much smaller than that of λ, i.e.,

β2 ≈ β3 ≪ λ: ð51Þ
It is observed from (31) that an alignment ðu1; u2; u3Þ is
proportional to an alignment ðb1; b2; b3Þ; therefore, a
homogeneous alignment ðb; b; bÞ corresponds to a TBM
mixing. That means that a realistic alignment ðb1; b2; b3Þ
must deviate from a homogeneous alignment by only a
small amount,

ðb1; b2; b3Þ ¼ ðb1; b1 þ e2; b1 þ e3Þ; ð52Þ

where e2; e3 ≪ D [see (69) below for a numerical illus-
tration]. Taking into account (50)–(52) we get

V ¼ 1

D

0
BB@

4bðe2 þ e3Þ −de3 þ bð4e2 þ e3Þ −de2 þ bðe2 þ 4e3Þ
−de3 þ bð4e2 þ e3Þ 4be2 þ 2de2 − 2be3 bðe2 þ e3Þ
−de2 þ bðe2 þ 4e3Þ bðe2 þ e3Þ 4be3 þ 2de3 − 2be2

1
CCA: ð53Þ

Now a perturbation expansion is made around the TBM
state (42). Here, we follow the perturbative approach
described in [66]. Using the perturbation decomposition

jni ¼ jn0i þ
X
k≠n

aknjk0i þ � � � ; ð54Þ

with jn0i defined in (42) and

akn ¼ ðjm0nj2 − jm0kj2Þ−1Vkn;

Vkn ¼ hk0jM†
0V þ V†M0jn0i; ð55Þ

one can diagonalize the matrix Mν,

U†MνU ¼ diagðjm1j2; jm2j2; jm3j2Þ; ð56Þ
by the matrix

U¼UTBMþΔU

¼

0
BBBBB@

ffiffi
2
3

q
þΔU11

ffiffi
1
3

q
þΔU12 ΔU13

−
ffiffi
1
6

q
þΔU21

ffiffi
1
3

q
þΔU22 −

ffiffi
1
2

q
þΔU23

−
ffiffi
1
6

q
þΔU31

ffiffi
1
3

q
þΔU32

ffiffi
1
2

q
þΔU33

1
CCCCCA

×P0;

ð57Þ

representing a perturbative expansion from UTBM in (35),
where (up to the first perturbation order)

ΔU11 ¼
ffiffiffi
1

3

r
X�; ΔU12 ¼ −

ffiffiffi
2

3

r
X;

ΔU13 ¼ −
ffiffiffi
2

3

r
Y −

ffiffiffi
1

3

r
Z; ΔU21 ¼

ffiffiffi
1

3

r
X� −

ffiffiffi
1

2

r
Y�;

ΔU22 ¼
ffiffiffi
1

6

r
X −

ffiffiffi
1

2

r
Z�; ΔU23 ¼

ffiffiffi
1

6

r
Y −

ffiffiffi
1

3

r
Z;

ΔU31 ¼
ffiffiffi
1

3

r
X� þ

ffiffiffi
1

2

r
Y�; ΔU32 ¼

ffiffiffi
1

6

r
X þ

ffiffiffi
1

2

r
Z�;

ΔU33 ¼
ffiffiffi
1

6

r
Y −

ffiffiffi
1

3

r
Z; ð58Þ

and

X ¼ −a12; Y ¼ −a13; Z ¼ −a23: ð59Þ

We note that the parameters aij defined in (55) and
appearing in ΔU are determined from the elements of
the matrix V in (53) derived under the condition (52)
leading to imposing constraints (50) and (51) on the model
parameters.
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To check how the model works, let us make a numerical
analysis. It is enough (and for simplicity) to assume the
parameters gN; d; λ0; λ1 to be real. Under this assumption
the equation system (19) has 27 solutions ðu1; u2; u3Þ
belonging to the following four types:

Type 1∶ ð0; 0; 0Þ; i:e:; u1 ¼ u2 ¼ u3 ¼ 0; ð60Þ

Type 2∶ ðu; 0; 0Þ; u ≠ 0; ð61Þ

Type 3∶ ðu; u; uÞ; u ≠ 0; ð62Þ

Type4∶ ðu1;u2;u3Þ; u1 ≠ u2 ≠ u3 ≠ u1; ui ≠ 0: ð63Þ
It is observed that the solutions of type 1, type 2, and type 3
do not lead to the PMNS mixing as desired (where only the
type-3 solutions give the TBM mixing); therefore, they are
excluded from our consideration and only the solutions of
type 4 remain as a choice.
One of the type-4 solutions having the form

ðu1;u2;u3Þ¼
�
−ð0.14þ0.28iÞ

ffiffiffiffiffi
λ0
λ

r
;−ð0.019−0.32iÞ

ffiffiffiffiffi
λ0
λ

r
;

− ð0.17−0.26iÞ
ffiffiffiffiffi
λ0
λ

r �
ð64Þ

gives a result consistent with the current experimental data
(see below). It follows that

ðb1; b2; b3Þ ¼ ð−ð0.14þ 0.28iÞK;

− ð0.019 − 0.32iÞK;−ð0.17 − 0.26iÞKÞ;

K ¼ 2

3
gN

ffiffiffiffiffi
λ0
λ

r
: ð65Þ

The neutrino masses (47) now get the form [66]

m2
1 ¼ m2

01 þ V11; m2
2 ¼ m2

02 þ V22;

m2
3 ¼ m2

03 þ V33; ð66Þ

where Vii are given in (55), namely,

Vii ¼ hi0jM†
0V þ V†M0ji0i; i ¼ 1; 2; 3:

Using the experimental data for the squared mass
differences Δm2

21 and Δm2
32 (see Table II below),

Δm2
21 ¼ m2

2 −m2
1 ¼ 7.54 × 10−5;

Δm2
31 ¼ m2

3 −m2
1 ¼ 2.47 × 10−3; ð67Þ

we can find K in (65) and d in (29). Here, for a
demonstration, we work with a normal neutrino mass
ordering, but the case with an inverse neutrino mass
ordering is similar. Since the equations (67) are nonlinear
in K and in d, they may have more than one solution in K
and in d. Below, as an illustration, we expose one of the
numerical solutions,

K ¼ 1.74þ 0.05i; d ¼ −9.01; ð68Þ
giving

e2
D
¼ 0.0003þ0.0015i;

e3
D
¼−0.0001þ0.0014i ð69Þ

and

X ¼ 0.326þ 0.034i; Y ¼ −0.007þ 0.003i;

Z ¼ −0.082þ 0.251i: ð70Þ

The latter values of X, Y, and Z provide

U13 ¼ 0.053 − 0.148i: ð71Þ
It is not difficult to find all other elements of U and V that
we do not expose here to save the paper’s length. Further,
using (68) in (67) we obtain absolute neutrino masses,

m1 ¼ 0.1109 eV; m2¼ 0.1114 eV; m3¼ 0.1217 eV:

ð72Þ

This result is consistent with the current experimental data
[33] and it means that our model and method work
quite well.

TABLE II. Experimental data for a NO and an IO [32,33].

Parameter Best fit 1σ range 2σ range 3σ range

Δm2
21=10

−5 eV2 (NO or IO) 7.54 7.32–7.80 7.15–8.00 6.99–8.18
sin2θ12=10−1 (NO or IO) 3.08 2.91–3.25 2.75–3.42 2.59–3.59
Δm2

31=10
−3 eV2 (NO) 2.47 2.41–2.53 2.34–2.59 2.27–2.65

jΔm2
32j=10−3 eV2 (IO) 2.42 2.36–2.48 2.29–2.55 2.23–2.61

sin2θ13=10−2 (NO) 2.34 2.15–2.54 1.95–2.74 1.76–2.95
sin2 θ13=10−2 (IO) 2.40 2.18–2.59 1.98–2.79 1.78–2.98
sin2 θ23=10−1 (NO) 4.37 4.14–4.70 3.93–5.52 3.74–6.26
sin2 θ23=10−1 (IO) 4.55 4.24–5.94 4.00–6.20 3.80–6.41

KY, QUANG VĂN, and HỒNG VÂN PHYSICAL REVIEW D 94, 095009 (2016)

095009-8



From (71), as U13 ¼ s13e−iδ, we obtain s13 ≈ 0.157 (or
θ13 ≈ 9.03°) and δ ≈ 1.39π. The latter value of s13 is very
close to the experimental data shown in (40). Interestingly,
the Dirac CPV phase, δCP ≡ δ, obtained here, surprisingly
(but hopefully not just accidentally) coincides with its
global fit given in [32]. A more detailed analysis on δCP is
made in the next section.

IV. DIRAC CP VIOLATION PHASE AND
JARLSKOG PARAMETER

In order to determine all variables in the matrix (57), or,
at least, their relations, we must compare this matrix with
the experimental one. Denoting the elements of the matrix
(57) by Uij, i, j ¼ 1, 2, 3, we get the equation (up to the
first perturbation order)

2ðjU21j2 − jU31j2Þ − ðjU22j2 − jU32j2Þ ¼ −2
ffiffiffi
2

p
ReðU13Þ:

ð73Þ

Further, comparing Uij in (73) with the corresponding
elements of the matrix UPMNS given in the “trigonomet-
ric” form

UPMNS ¼

0
B@

c12c13 s12c13 s13e−iδ

−c23s12 − s13s23c12eiδ c23c12 − s13s23s12eiδ s23c13
s23s12 − s13c23c12eiδ −s23c12 − s13c23s12eiδ c23c13

1
CCA × P≡Upmns × P; ð74Þ

where P (which in general is different from P0) is a
diagonal matrix of the form

P ¼ diag

�
ei

α1
2 ; ei

α2
2 ; 1

�

with α1 and α2 being Majorana phases, we obtain the
following relation between the Dirac CPV phase δCP ≡ δ
and the neutrino mixing angles θij,

ðc223 − s223Þð2s212 − c212Þ þ 12s13s23c23s12c12 cos δ

¼ −2
ffiffiffi
2

p
s13 cos δ; ð75Þ

neglecting Oðλ2Þ terms and higher order perturbation
terms. Solving this equation for cos δ we get

cos δ ¼ ðs223 − c223Þð2s212 − c212Þ
2

ffiffiffi
2

p ð3 ffiffiffi
2

p
s23c23s12c12 þ 1Þs13

: ð76Þ

Below, this equation is used for s23 < 0 because, as seen in
(35) and (42), its TBM limit (−

ffiffiffiffiffiffiffiffi
1=2

p
) is negative, while the

small perturbative fluctuation cannot change its sign. Since
we work with δ ∈ ½0; 2π�, if δ0 is a solution of the
equation (76) so is 2π − δ0. Having a value of δCP we
can obtain a value of the Jarlskog parameter JCP.
Based on the relation (76) and experimental inputs (see

Table II), δCP can be calculated numerically. Using the

experimental data of the mixing angles within 1σ around
the best fit value (BFV) [32,33], the distributions of δCP are
plotted in Figs. 1 and 2 for a NO and in Figs. 3 and 4 for an
IO. Here, for each of these distributions, 10000 events are
created and δCP is calculated event by event with sij taken
as random values generated on the base of a Gaussian
distribution having the mean (best fit) value and sigmas
given in Table II. Each of these distributions has two (sub)
populations corresponding to two solutions of (76). In
Figs. 1 and 2, the distributions corresponding to two
solutions are distinguished by being plotted in blue and
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red. We see that the solution located in the range ½π; 2π� is
nearer the BFV (within 1σ region). In Figs. 2 and 4, the
three 1σ, 2σ, and 3σ regions are colored with different
colors (red, green, and blue, respectively).
In the case of a NO, δCP has a mean value of 2.265 ≈

0.72π for one of the solutions, and a mean value of 4.018 ≈
1.28π for the other solution and its distribution gets
maximums at 2.35 ≈ 0.75π and 3.95 ≈ 1.26π, respectively.
We see that the second solution (for both its mean value and
the value at its maximal distribution) lies in the 1σ region
from the BFV 1.39π given in [32,33].
In the case of an IO, δCP gets a mean value around

1.769 ≈ 0.56π (for the first solution), and around 4.514 ≈
1.44π (for the second solution). Its distribution reaches
maximums at about 2.15 ≈ 0.68π and 4.17 ≈ 1.33π. Again,
the second solution lies within the 1σ region of the BFV
1.31π given in [32,33].
Having all the mixing angles and Dirac CPV phase, it is

not difficult to determine the Jarlskog parameter JCP ≡ J.
Indeed, using the expression [10]

jJCPj ¼ jc12c23c213s12s23s13 sin δj; ð77Þ

we obtain jJCPj ≤ 0.038 and jJCPj ≤ 0.039 (rough bounds)
for a NO and an IO, respectively (see the distribution of
JCP in Fig. 5). It, up to a sign, has a mean value and a
maximum at

JNOmean ¼ 0.024 and JNOmax ¼ 0.027; ð78Þ

respectively, for a NO, and

JIOmean ¼ 0.027 and JIOmax ¼ 0.033; ð79Þ

respectively, for an IO. The result obtained here is similar to
that obtained in [54–57,67] by other methods by other
authors.
To have a better view in comparing the two cases, the NO

and the IO, the BFVs of δCP and JCP for both cases are
summarized in Table III. These mean values of δCP and JCP
are closer to the global fits than their corresponding values
obtained at the BFVs of the mixing angles [by inserting the
latter in the analytical expressions (76) and (77) for δCP and
jJCPj, respectively]. To avoid any confusion, let us stress
that the mean values of δCP and jJCPj do not coincide, in
fact and in principle, with their values obtained at the BFVs
of the mixing angles. It means that a value of δCP or jJCPj
obtained at a BFV of the mixing angles should not in any
way be identified with the mean value of the quantity
concerned, although in some cases they may be close to
each other.
It is also important to note that Eq. (76) is ill defined in

the 3σ region of the mixing angles. It means that this
equation of determination of δCP restricts the dissipation of
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TABLE III. The mean values of δCP and jJCPj in a NO and
an IO.

Normal ordering Inverse ordering

δCP=π 1.28 1.44
jJCPj 0.024 0.027
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the mixing angles (that is, the values scattered too far, in the
3σ region of distribution, are automatically excluded).

V. CONCLUSIONS

Based on the fact that the observed neutrinomixing differs
fromaTBMone just slightly,we have suggested a non-TBM
neutrino mixing model corresponding to this observation.
Thismodel represents an extended standardmodel acquiring
an additional A4 × Z3 × Z4 flavor symmetry. Besides the
SM fields assumed now to have also an A4 × Z3 × Z4

symmetry structure (see Table I), this model contains six
additional fields; all are SUð2ÞL singlets, which are one
A4-triplet fermionN (right-handed neutrinos), twoA4-triplet
scalars φE and φN , and three A4-singlet scalars ξ, ξ0, and ξ00.
The presence of the fields ξ0 and ξ00 (alongwith the SMHiggs
fieldϕh) is very important as it guarantees nonzeromasses of
the charged leptons. To avoid unwanted Lagrangian terms
two discrete symmetries Z3 and Z4 are also introduced.
Then, neutrino masses can be generated via Yukawa
couplings of neutrinos to all scalars but φE. The correspond-
ing neutrino mass matrix is obtained for a general VEV
structure of the scalar field φN . It is observed that the model
in general is a non-TBM model, but it becomes a TBM
model [25] under a given circumstance with a specific VEV
alignment of φN as in (22). Because the current exper-
imentally established neutrinomixing represents just a small
deviation from a TBM mixing we must build a theoretical
model to satisfy this requirement. The latter puts a restriction
on the model, in particular, it imposes constraints on its
parameters. Therefore, the model constructed can be per-
turbatively developed around a TBM model, and, thus, the
perturbative method can be applied to our further analysis.
As usual, diagonalizing a mass matrix is a difficult task.

Here, within the above-suggested model and via a pertur-
bation approach, the obtained neutrino mass matrix can be
diagonalized by a matrix UPMNS perturbatively expanded
around the tribimaximal matrix UTBM. In this way, a
relation, see (76), between the Dirac CPV phase and the
mixing angles is established. Based on the experimental
values of the mixing angles this relation allows us to
determine the Dirac CPV phase and the Jarlskog invariant

in a quite good agreement (within the 1σ region of the best
fit) with the recent experimental data at both the normal and
the inverse neutrino mass ordering. These hierarchies are
not compatible with each other; hence, only one of them, at
most, can be realized in nature; however, none of them, so
far, has been confirmed or excluded experimentally.
Therefore, we here consider both NO and IO, and have
obtained results in both cases close to the global fit [32,33].
For an illustration checking the model, numerical calcu-
lations have been also done and give results that are in good
agreement with the current experimental data.
The determination of δCP and JCP is often both a

theoretically and experimentally difficult problem and it
can be used to verify the corresponding theoretical neutrino
mixing model. This paper’s method allows us to obtain an
explicit δCP as a function of the mixing angles; thus, δCP
could be determined experimentally via the mixing angles.
This function in turn isolates the mixing angles from
dissipated values in their distribution, i.e., the latter should
be excluded. Our approach is useful and its application to
higher order perturbations that may give a better fit is our
next consideration. Finally, the mass spectrum that can be
obtained by diagonalizing the mass matrix (36) is a subject
of analysis to be done in a separate work.
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Note added.—Recently, we learned about new results [68]
from T2K that are in quite good agreement with our results;
in particular, the value of θ13 ≈ 9.03° obtained by us above
is very close to that of θ13 ≈ 8.47° given by T2K (and to
θ13 ≈ 8.8° in [33]).
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